2011 21st International Conference on Field Programmable Logic and Applications

Memory Virtualization for Multithreaded Reconfigurable Hardware

Andreas Agne, Marco Platzner
Computer Engineering Group
University of Paderborn
Paderborn, Germany
e-mail: {agne, platzner}@uni-paderborn.de

Abstract—With the introduction of multithreaded pro-
gramming for reconfigurable hardware, it is possible to
map both sequential software and parallel hardware to a
single CPU/FPGA platform using threads as a unifying
development model. At the same time, platform FPGAs
are a natural technology for implementing computationally
intensive systems in the aerospace, automotive and industrial
domains, as they combine high performance and flexibility
with lower non-recurring engineering (NRE) costs when
compared to low-volume ASIC solutions. The reusability
and portability of hardware components in these safety-
critical domains could be significantly improved by using
multithreaded programming. However, the unique design
considerations for memory virtualization, as required in
safety-critical systems, are difficult to transfer directly from
software to autonomous hardware threads.

This paper presents a transparent and efficient way of aug-
menting current multithreaded and partially reconfigurable
hardware runtime environments with dedicated, hardware-
thread-aware memory address translation units to provide
seamless memory translation for hardware threads. We show
an analysis of the overheads, as well as an experimental
evaluation of the latencies caused by address translation.

Keywords-multithreaded hardware; virtualization; safety-
critical systems; FPGAs

I. INTRODUCTION

Recent years have seen the evolution of FPGAs
from low-density prototyping platforms to highly com-
plex million-gate-equivalent programmable hardware plat-
forms, which has significantly broadened the application
areas of these reconfigurable devices. On one hand, this
development has given rise to a number of intriguing
devices such as platform FPGAs [1], [2] and Extensi-
ble Processing Platforms [3], which allow the efficient
integration of control-dominated sequential software and
high-performance data-parallel hardware on a single chip.
On the other hand, the class of hybrid hardware/software
systems opens up new questions as to what programming
models would be suitable for a CPU/FPGA platform,
as the predominant paradigms for (logic-centric parallel)
hardware and (sequential) software differ significantly. A
promising approach is that of multithreaded hardware,
where both software threads, running on a CPU, and
hardware threads, mapped to an FPGA’s fabric, use a
common set of operating system services [4], [5], [6].
Multithreaded hardware has been successfully adopted in
a number of different application areas, such as adaptive

978-0-7695-4529-5/11 $26.00 © 2011 IEEE
DOI 10.1109/FPL.2011.42

185

Enno Liibbers
Innovation Works
EADS Deutschland GmbH
Munich, Germany
e-mail: enno.luebbers@eads.net

networking [7], distributed systems [8], and video track-
ing [9].

In low-volume safety-critical applications such as space
transportation systems, aircraft electronics, or avionic test
systems, CPU/FPGA platforms are of particular interest, as
they provide high-performance, flexibility, fault-tolerance
through reprogrammability (i.e., self-healing or adaptive
redundancy), and in-field upgradeability while avoiding
the NRE overheads of traditional ASICs. However, safety
issues currently prevent the widespread application of
CPU/FPGA systems in these areas, as methods for the
functional separation of HW and SW components with
different levels of criticality (which is a prerequisite for
any certifiable embedded system) are still missing.

This paper presents a novel concept for providing trans-
parent memory virtualization support for hardware threads
in hybrid CPU/FPGA systems. By providing thread-aware
translation-lookaside buffers (TLBs) for the reconfigurable
slots in which hardware threads are executed, our approach
enables multithreaded hardware to seamlessly operate on
virtual addresses. The proposed system provides data
integrity of separated processes, access control to memory
segments shared between hardware and software, as well
as a transparent extension of the multithreaded hardware
approach to virtual memory environments, and takes an
important step towards the adoption of multithreaded
reconfigurable hardware in future safety-critical systems.

II. RELATED WORK

Multithreaded programming of reconfigurable hardware
is an emerging research field with recent work from a
number of different directions. The idea of managing
programmable hardware modules using an operating sys-
tem was first proposed by Brebner [10]. Later, Steiger
et al. [11] introduced the notion of hardware tasks as
independent units with access to OS resources like FIFOs
or memory blocks. These ideas were successively refined
and have by now been implemented in a number of devel-
opment and execution environments such as ReconOS [4]
(which will be extended in this work) and hthreads [5].

Although these systems provide transparent access to
the main memory, they are still lacking in support for
virtual address translation.

An approach to provide a common address space
for hard- and software threads is discussed by Vuletic
et al. [12], who propose Virtual Memory Windows to

IEEE
computer
psoue

ty

allow hardware threads to access a dedicated memory area
using virtual addresses. Transaction requests to addresses
outside of this window cause the Virtual Memory Window
Manager running on the CPU to copy the missing page
into a local buffer directly accessible by the hardware
thread. While this system enables the hardware to connect
to virtual memory, random page accesses across page
boundaries are not efficiently implemented, as they involve
copying entire pages between system and local memory,
even if only a single byte is to be changed.

The idea of augmenting hardware threads with a ded-
icated address translation unit has been investigated by
Garcia and Compton [13]. Similar to the approach pre-
sented in this paper, they add an MMU with a 16-
entry TLB managed by system software to each hardware
thread. A TLB miss interrupts the CPU, which resolves
the page fault and adds the missing entry to the hardware
thread’s TLB. While this approach more transparently
integrates the hardware threads into the system, random
memory accesses still cause considerable delays due to
the software-based resolution of TLB misses.

This deficiency is addressed by the system proposed by
Lange und Koch [14], where the implemented TLBs are
able to read translation entries from the page tables of
the operating system without any software intervention.
Page faults (i.e., requests for pages not present in the
process’s page tables) are again delegated to software. This
efficient approach allows hardware modules to access the
entire virtual memory subsystem, and is also adopted by
our implementation. In extension to their work, we focus
on integrating virtual memory management with a uni-
fied programming model to combine the transparency of
multithreaded reconfigurable hardware development with
efficient memory management. In this way, we close a
crucial gap between hybrid CPU/FPGA platforms and the
domain of safety-critical applications.

III. MULTITHREADED PROGRAMMING OF
RECONFIGURABLE HARDWARE

In software-centric systems, multithreaded program-
ming is already a popular means to decompose an appli-
cation into individual threads of execution. The operating
system ReconOS [4] extends the multithreaded program-
ming model to the domain of reconfigurable hardware.
Instead of regarding hardware modules as passive copro-
cessors to the system CPU, they are treated as independent
hardware threads on an equal footing with the software
threads running in the system. In particular, ReconOS
allows hardware threads to use the same operating system
services for communication and synchronization as soft-
ware threads, providing a transparent programming model
across the hardware/software boundary. The structured
modularization of components, together with a familiar
API as a common abstraction layer for hard- and soft-
ware, simplifies design space exploration and incremental
design, and streamlines modular development for hybrid
CPU/FPGA systems.

186

[:' """"""""""" * """"" ‘ """ 1
S | SwW Sw delegate delegate |
£ thread thread thread thread]
8 : ----- t ------ ‘; ------- ‘; --------- t ------ | -‘I
e 1
1 N N . I
. POSIX API other libraries (networking, !
2 math, etc.) '
f= |
g: scheduler | mutexes | semaphores | \
(8] |
° | dynamic memory management | drivers E
:_ ____________________________________ 1
: i
o, main
g memory
T
S\
< 1
1
1
Figure 1. ReconOS hardware architecture.

ReconOS builds on top of and extends existing op-
erating system kernels, such as eCos or Linux, and is
targeted specifically at platform FPGAs integrating mi-
croprocessors and reconfigurable logic. Figure 1 shows
the architecture of a typical ReconOS system. The CPU
executes the operating system kernel and manages all
interactions between the individual threads of the applica-
tion. In addition, it can run regular software threads that
use the kernel’s software API. The reconfigurable area is
divided into multiple slots. These slots are connected to the
system through a dedicated hardware OS interface (OSIF).
The OSIF also manages the low-level synchronization and
includes the logic necessary for partial run-time reconfig-
uration. Hardware threads running in the reconfigurable
slots route all their operating system interaction requests
through their OSIF, which forwards the requests to a
corresponding delegate thread running on the CPU. This
delegate thread performs all OS interaction on behalf of
the hardware thread. Hence, the operating system can
transparently handle, control, and supervise both hardware
and software threads running on a mix of heterogeneous
processing elements.

IV. MEMORY VIRTUALIZATION FOR HARDWARE
THREADS

In order to enable address space separation and memory
access control for hardware threads, we use the concept of
a Memory Management Unit, as it is widely used in the
domain of general purpose processors. For software-based
systems, the MMU is typically closely integrated into
the CPU’s caching and bus logic. In ReconOS, hardware
threads are connected to the memory bus through the
Operating System Interface. By integrating the hardware
thread MMU (HWT-MMU) into the OSIF, we are able
to make use of the already existing communication link
between OSIF and the software operating system so that
MMU exceptions can be handled by the delegate threads,

memory bus

CPU
l memory
OS kernel controller IR]

OSIF module
HW thread
/dev/osif [
[

delegate
threads

user process

HWT-MMU

HW thread

OS interface

control bus

Figure 2. Multiple HWTs connected to a shared TLB.

as it is the case for many other operating system services
provided by ReconOS.

While address translation can be delegated to software,
where it can be handled transparently by the operating
system, this incurs a large overhead, mainly due to inter-
rupt processing. Instead we chose to supply the HWT-
MMU with a state machine that is able to access the
operating system’s page tables directly. This way, page
table entries can be accessed autonomously by each HWT-
MMU without interfering with the CPU’s processing,
which significantly reduces the overhead associated with
TLB misses. Status registers that contain statistics on TLB
hits, misses and page faults are attached to the control bus
and can be read by software. An overview of the topology
of the system is given in Figure 2.

While the HWT-MMU is designed to provide address
translation for the HWTs autonomously, exceptions may
occur that require further processing in software. There are
two possible causes for HWT-MMU exceptions: (1) An
access violation exception is generated when the mode of
memory access is not permitted, as for instance a write
access to read-only memory. Apart from programming
errors, a common cause for this is the operating system
keeping track of pages that have been written to, by
initially marking them read-only. A write access will then
trigger an MMU exception and the page can be marked
“dirty’. (2) A page fault exception may occur when there
is no valid page table entry for the page being accessed.
While this may be caused by an error in the program
resulting in an access to a region in the address space that
has not been allocated, page faults may also be generated
by the operating system employing demand paging - a
strategy that defers the creation of page table entries to
the point when the pages are accessed for the first time.

In both cases, the execution of the hardware thread
is stopped and the associated delegate thread is notified.
The delegate thread will repeat the memory access that
triggered the exception. The operating system will then
either remove the condition that caused the exception (i.e.
marking the page writable, or creating the page table entry)
or - in the case of a programming error - terminate the

process. In a safety-critical application the termination
of the process gives the system software the opportunity
to enter a safe state and take further measures, such as
resetting the system or switching control to a backup
system. If no error occurs, any cached page tables are
flushed to system memory, where they can be accessed by
the HWT-MMU and the hardware thread is resumed.

In order to stay consistent with the system page tables,
the HWT-TLB is invalidated and the CPU data cache
is flushed to system memory whenever the operating
system changes or removes existing page table entries.
We achieve this by modifying the Linux kernel’s Cache
Flush Architecture [15].

V. ANALYSIS AND EXPERIMENTAL RESULTS

In order to assess the overhead of address translation we
have analyzed the MMU state machine, and implemented
and benchmarked the system on a modern platform FPGA.

Through an analysis of the MMU state machine, we
can determine the platform independent address translation
overheads. While a TLB hit only incurs 4 cycles overhead
to the memory access, a TLB miss requires 11 cycles plus
2 read operations. This compares well to the PowerPC-
MMU which handles TLB hits within 1 to 4 cycles
(depending on the location of the matching entry within
the TLB) and requires an additional context-switch in
the case of a TLB miss [16]. A page fault or an access
violation encountered in the HWT-MMU cause additional
overheads through exception handling on the main CPU.

In order to determine the relative overheads of address
translation in practice, we implemented the system on a
Xilinx XC2VP30-FPGA with an embedded PowerPC 405
processor running at a clock frequency of 300MHz. The
single hardware thread used for the benchmarks as well as
the memory bus were clocked at 100MHz. We performed
latency measurements of single word and 32-word burst
accesses with address translation involving TLB hits,
misses and page faults. For the TLB hit/miss values the
average of 102.4 million individual measurements were
taken. Page fault values were averaged over 1024 single
measurements. The overhead of address translation was
then calculated as a percentage of total memory access
latency. The results obtained are presented in Table I.

The performance overhead caused by address transla-
tion for two common use cases can be derived from the
measurements: The additional latency incurred on random

Table 1
MEMORY ACCESS LATENCIES FOR DIFFERENT ACCESS MODES AND
ADDRESS TRANSLATION PATHS

translation path

access mode TLB hit TLB miss page fault
single read 0.50us (+8.7%) 1.22us (+165%) 1314us
single write 0.27us (+17.4%) 1.09us (+374%) 1293pus
burst read 0.89us (+4.7%) 1.59us (+87%) 1324us
burst write 0.63us (+6.8%) 1.35us (+129%) 1301us

For TLB hits and misses the calculated relative overhead of the address
translation is given in percent.

access patterns on large memory regions where the TLB
offers no advantage can be taken from Table I as 165% for
single word read and 374% for single word write accesses.
In contrast, sequential burst accesses make good use of
the TLB, causing 1 miss, followed by 31 hits for each
accessed page. This results in an average overhead of 7.3%
for sequential reading and 10.6% for writing.

Since page faults caused by demand paging are very
costly when encountered by a hardware thread, it is
advisable to initially access allocated pages in software
first or to turn off demand paging entirely.

VI. CONCLUSION AND OUTLOOK

Due to their combination of reconfigurability and per-
formance, modern platform FPGAs represent an imple-
mentation platform with high potential for safety-critical
applications. While multithreaded programming for recon-
figurable hardware offers considerable benefits in exploit-
ing the flexibility of these platforms, missing support for
data separation via memory virtualization, as requested
by certification guidelines, currently prevents the adoption
of this promising development approach in safety-critical
systems.

In this paper, we have presented a reconfigurable ar-
chitecture for multithreaded hardware, which extends OS-
controlled virtual memory services to hardware threads.
Our hardware-thread-aware address translation units en-
able reconfigurable hardware threads to transparently use
virtual memory addresses, which ensures both data in-
tegrity of functionally independent processes and a unified
memory model across hard- and software. Thus, our
approach enhances system safety as well as designer pro-
ductivity and opens the area of safety-critical systems as a
new application domain for multithreaded reconfigurable
hardware.

In future research, we are going to extend ReconOS
to provide not only spatial but also temporal separation
of hardware threads by further investigating predictable
scheduling techniques using partial reconfiguration. These
mechanisms will also require adaptive management of
the HWT-MMUs to cope with changing hardware threads
from possibly different processes. In consequence, we are
also going to develop application case studies from safety-
relevant domains to demonstrate our separation mecha-
nisms in a real-world setting.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme under
grant agreement n 257906. This work was also partly supported
by the German Research Foundation under project number
PLA471/2-1.

REFERENCES

[1] Xilinx, “Virtex-6 FPGA Family Overview (DS150),” Data
Sheet, January 2010.

[2] Altera, “Stratix V Device Family Overview,” White Paper,
January 2011.

188

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]

(16]

Xilinx, “Zynqg-7000 EPP Extensible Processing Platform,”
Product Brief, 2011.

E. Liibbers and M. Platzner, “ReconOS: Multithreaded
Programming for Reconfigurable Computers,” ACM Trans-
actions on Embedded Computing Systems (TECS), Special
Issue CAPA, 2009.

D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck,
J. Stevens, F. Baijot, and E. Komp, “Achieving Program-
ming Model Abstractions for Reconfigurable Computing,”
1IEEE Transactions on Large Scale Integration (VLSI) Sys-
tems, 2008.

N. W. Bergmann, J. A. Williams, J. Han, and Y. Chen, “A
Process Model for Hardware Modules in Reconfigurable
Systems-on-Chip,” in Architecture of Computing Systems,
Dynamically Reconfiguable Systems Workshop, 2006.

A. Keller, B. Plattner, E. Liibbers, M. Platzner, and
C. Plessl, “Reconfigurable Nodes for Future Networks,” in
Proc. IEEE Globecom Workshop on Network of the Future
(FutureNet). 1EEE, Dec. 2010, pp. 372-376.

S. Samara, “Partitioning granularity, communication over-
head, and adaptation in OS services for Distributed Recon-
figurable Systems on Chip,” in The 13th IEEE International
Conference on Computational Science and Engineering.
IEEE Computer Society, Dec. 2010.

M. Happe, E. Liibbers, and M. Platzner, “An Adaptive
Sequential Monte Carlo Framework with Runtime HW/SW
Repartitioning,” in Proceedings of the International Confer-
ence on Field-Programmable Technology (FPT), Dec. 2009.

G. J. Brebner, “A Virtual Hardware Operating System for
the Xilinx XC6200,” in International Workshop on Field-
Programmable Logic and Applications (FPL), 1996.

C. Steiger, H. Walder, and M. Platzner, “Operating Systems
for Reconfigurable Embedded Platforms: Online Schedul-
ing of Realtime Tasks,” IEEE Transactions on Computers,
2004.

M. Vuletic, L. Pozzi, and P. Ienne, “Virtual Memory
Window for Application-Specific Reconfigurable Copro-
cessors,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 2006.

P. Garcia and K. Compton, “A Reconfigurable Hard-
ware Interface for a Modern Computing System,” in
Proceedings of the 15th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM
2007), 2007.

H. Lange and A. Koch, “Low-Latency High-Bandwidth
HW/SW Communication in a Virtual Memory Environ-
ment,” in Field Programmable Logic and Applications
(FPL), 2008.

D. S. Miller, “Cache and TLB Flushing Under
Linux,” Linux Kernel Documentation, December 2008,
linux/Documentation/cachetlb.txt.

“Xilinx UGO11 PowerPC Processor Reference Guide,”
2007.

