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This work investigates hardware acceleration of object
tracking by parallelising an algorithm for object classifica-
tion involving decision trees. Object tracking is the process
of recognizing and locating a particular moving object in the
spatial as well as in the temporal domain of a video stream.
One key application of object tracking is video surveillance,
to provide an operator in a control room with novel tools for
assessing complex events among hundreds of live videos.
Object tracking can be achieved between two consecutive
video frames through template-based or feature-based cor-
relation of images. Although this approach is computation-
ally efficient, it can be unreliable or unsuccessful, because
the appearance of the object may drastically change or the
object may become occluded.

As an alternative, one can apply object classifiers in sub-
windows that vary in scale, size and position [1]. A classifier
can identify an object appearances based on a limited feature
set. One example of such a feature set are 2-bit Binary Pat-
terns that capture brightness variation in certain rectangular
regions of an object’s image. This feature set is used as an
input for an ensemble of decision trees known as a random
forest [2] that can determine the probability of the object
being present in a search window. A single 2-bit Binary Pat-
tern gives a very weak indication that the sought object is
present in the current search window, while the mapping of
several features on one decision tree, and the combination
of several trees, can identify objects with high confidence.

A classifier can automatically be trained, starting from
a given instance of the object’s appearance [1]. Appearance
changes are addressed through P-N learning [3], an machine
learning technique that combines a Lucas-Kanade frame-by-
frame tracker [4] with a random-forest-based classifier. P-N
learning identifies positive and negative instances of object
appearances in the video stream and uses these instances to
update the information captured by the decision trees.

Classifier-based object tracking is robust to appearance
changes and to total occlusions; however, it is computation-
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ally demanding and it is hard and sometimes impossible to
achieve the required frame rates. We aim to alleviate this
problem by accelerating the exhaustive search for potential
object detections with reconfigurable hardware. Profiling of
a software algorithm reveals that 90% of the total computa-
tion time is spent on the detector. We are therefore interested
in developing a new custom hardware architecture for this
part of the algorithm in order to achieve high frame-rates
while lowering the power consumption at the same time.
We also aim to perform a fully exhaustive search for object
instances with pixel-by-pixel increments over each video
frame, which will increase the robustness of the tracker.

The following describes the algorithm of our classifier-
based detector. The incoming video frames have 8-bit grey-
scale representation and standard VGA resolution. We store
incoming frames as integral images where each pixel value
is the cumulative sum of pixel values in the rectangular im-
age region to the left and above of the pixel [5]. This image
representation makes the summation of the pixel values in a
rectangular region independent of the region’s size: the op-
erations are simple additions and subtractions of the pixel
values at the region’s corners. Binary Patterns are used for
capturing horizontal and vertical brightness variations in an
image region resulting in a 2-bit code. The 2-bit Binary Pat-
terns can be computed based on simple additions and sub-
tractions of a region’s corner pixels as described above. In
order to classify a sub-window in one video frame we use a
random forest consisting of ten decision trees, and each de-
cision tree is traversed based on ten 2-bit patterns. The leaf-
nodes of each tree specify the probability of an object match.
Fig. 1 illustrates this for three decision trees with three fea-
tures each. The probabilities from all trees are averaged to
yield a final probability; an unambiguous object identifica-
tion is determined after the exhaustive search by hysteresis
thresholding. This search is exhaustively repeated over the
entire image with various search window scaling factors.

We now present a novel hardware architecture that im-
plements the integral image conversion and classifier on an
FPGA in order to accelerate the most compute-intensive part
of the object tracking algorithm. The hardware architecture
is illustrated in Fig. 2. Here, we briefly introduce the design
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Fig. 1. An example classification of a sub-window. Three
decision trees are used, each basing its decision on three fea-
ture locations. Probabilities at leaf nodes have been trained
in advance. In this example, the sub-window represents the
trained model with a probability of 80%.

of classifier, since it is the bottleneck in the original software
implementation.

To accelerate the classification process, we exploit the
parallelism inherent in the random forest search: the ten
decision trees with the same sub-window input can be tra-
versed independently. We customise ten processing units
(PUs) on the FPGA, each working on one decision tree and
processing ten features associated with one tree in a pipeline.
Each PU has four adders, eight subtractors and two com-
parators to calculate the 2-bit Binary Patterns for each fea-
ture in four clock cycles.

As shown in Fig. 2, image data is transferred from the
integral module into a buffer from where several parts of the
image can be accessed in parallel. Each PU has a dual-port
local on-chip memory storing all data elements of a sub-
window. In the current implementation, the sub-window
size is limited to 1024 elements that can be stored in one
36 Kbit block RAM (BRAM); if larger sub-window sizes
are desired then more on-chip memory is needed. This dis-
tributed memory system allows all PUs to work indepen-
dently. Since eight data elements are needed to calculate
the 2-bit Binary Pattern for one feature, four accesses to
the dual-port local memory are required, completing in four
clock cycles. This is well matched with the four clock cycle
arithmetic operations in the PU. Thus, the memory access
time is overlapped with computation time, reducing laten-
cies. The hardware classifier outputs the tree traverse path,
i.e. ten 2-bit patterns. These patterns are transferred back to
the CPU to resolve the corresponding P-N values. The learn-
ing part of the algorithm which updates P-N values based
on changing object appearances is also implemented on the
CPU.

The resource utilization of one PU in the current imple-
mentation on a Xilinx Virtex-5 FPGA is one 36 Kbit BRAM
and 2600 slices. Initial performance results show that with a

—pp data FPGA

===4» control /|

vl

mage Image integral y ’ Mem( Memg

converson | |
=

PUO PU9

.o Clas_sifier (tree0) (tree9)
Processor [ (sub-windows)

Fig. 2. Hardware architecture for object detection.

clock rate of 125 MHz, the classification of one sub-window
can be performed in 0.62ps. This corresponds to a frame
rate of 5 fps (frames per second) when performing a fully ex-
haustive search over VGA-resolution images. For compari-
son, our software implementation of the classifier on an In-
tel Xeon 2.4 GHz PC achieves a frame-rate of less than 1 fps
when performing the same exhaustive search, which is over
5 times slower than the FPGA version. The performance
can be further increased by processing several sub-windows
simultaneously. This can be achieved by implementing mul-
tiple classifiers in parallel as illustrated in Fig. 2.

Two target architectures for our hardware architecture
are a high performance compute node at Imperial College
with an AMD Phenom quad-core CPU and Virtex-5 LX330T
FPGA, and a Sony XCI-V100C Smart Camera with a VIA
Eden processor and a Virtex-5 SX50T FPGA. On the Virtex-
5 LX330T, 20 classifiers can be implemented in parallel and
on the Virtex-5 SX50T, 3 classifiers can be implemented.
This corresponds respectively to 100 times and 15 times
speed-up over the original software implementation. The
speed-up can be used for faster frame rates or processing
higher resolutions video streams. Current power estimates
for the Sony Smart Camera indicate that the computation
can be performed with less than 20 W. This is significantly
more efficient than the original PC implementation which
consumes 112 W during processing.
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