
CusComNet: A Customisable Network
for Reconfigurable Heterogeneous Clusters

Stewart Denholm, Kuen Hung Tsoi, Peter Pietzuch and Wayne Luk
Department of Computing, Imperial College London, UK

{swd10, khtsoi, prp, wl}@doc.ic.ac.uk

Abstract—Computer clusters equipped with reconfigurable
accelerators have shown promise in high performance com-
puting. This paper explores novel ways of customising data
communication between accelerator nodes, which is often a
bottleneck when scaling up the cluster size. Based on the
direct connection of high speed serial links between advanced
reconfigurable devices, we develop and evaluate CusComNet,
a scalable, flexible and efficient communication framework.
The CusComNet framework is built around customisable,
packet-based communication and supports three main types
of customisation: packet protocol customisation, system-level
customisation, and prioritised communication customisation.
A performance model for estimating CusComNet’s communi-
cation latency is proposed and demonstrated. Our framework
is applied to a 16-node cluster, each node of which contains
an FPGA accelerator which can be connected directly to other
FPGA accelerators. The proposed framework can be used to
improve the scalability of a reconfigurable cluster by involving
more nodes in a single application. Performance measurements
show high efficiency data throughput for both large and small
data volumes, as well as low communication overhead.

Keywords-FPGA; reconfigurable heterogeneous clusters; cus-
tomisable networks

I. INTRODUCTION

The heterogeneous reconfigurable cluster combines ideas
from both computer clusters and hardware accelerators.
In such clusters, both the algorithm kernels are imple-
mented in reconfigurable hardware resources such as Field
Programmable Gate Arrays (FPGAs) for optimised per-
formance, and the application is mapped to multiple ac-
celerators for parallel computation. Many clusters employ
a standard network, such as Gigabit Ethernet, to connect
together its nodes; this network can become a bottleneck.
Fortunately some accelerators contain network interfaces,
enabling them to connect directly to one another. So how can
we make the best use of this reconfigurable communication
capacity?

Before we address this question, let us look at an example.
Figure 1 shows the paths when a block of data is transferred
from one accelerator to another. As indicated by the thin
arrow lines in the figure, transferring data between accel-
erators through Ethernet must go via the PCIe channel and
host memory bus multiple times. Alternatively, since there
are fast, point-to-point (P2P) serial communication macro-
blocks in modern FPGA devices, we can make use of these

Accelerator

CPURAM

E
th

er
ne

t

PCIe

RAM

Data FPGA

I/O Chip

Heterogeneous Node

PCIe
Accelerator

CPU RAM

E
thernet PCIe

RAM

Data

I/O Chip

FPGA

Heterogeneous Node

PCIe

Sw
itc

h

connection
P2P serial

Figure 1. Data transfer between accelerators in a heterogeneous cluster.

communication resources, as indicated by the thick arrow
lines. By eliminating data movement during the accelerator-
host communication and host software stack overhead, the
communication overhead can be significantly reduced and
thus achieve better performance in applications. When com-
munication is the limiting factor of the cluster scalability,
we can expect application performance to improve further
by the addition of more accelerators.

There are several challenges related to heterogeneous
communication in cluster computing. The difficulty lies in
providing a systematic and efficient framework to benefit
the communications within real-world applications. This
requires us to first understand the characteristics of the ded-
icated P2P direct connections between the FPGA accelera-
tors. It is also important to make the framework customisable
so that the final design can be specifically optimised for a
given application. To support message routing without an
external network switch, hub-based routing facilities must
be available. To assist the development of designs at a
higher level, analytical models and application wrappers are
necessary to improve ease of use. In the following, we
address these issues and evaluate the proposed approach.
The new contributions of our work include:

- CusComNet, a customisable communication framework
for heterogeneous clusters, based on the fast serial
connections on FPGA devices. The data format, con-
nection schemes and architecture parameters can be
optimised for specific applications to improve system
performance.

- A performance model for exploring the effects of
customisation in CusComNet. System parameters such
as bandwidth and latency are captured in the model to
provide performance estimation.

- Implementation of CusComNet on a production cluster

system, and evaluation of the proposed performance
model against the measured bandwidth and latency
values. This is done across directly connected nodes
and communications requiring routing via one or more
intermediate nodes. An N-Body simulation shows that
the overall performance can be improved by about 3
times with over 12 nodes before saturation.

The paper is organised as follows. Section II reviews
systems with a dedicated inter-FPGA network. Section III
presents the details of the network architecture at various
levels. Section IV presents an analytical model for perfor-
mance estimation when utilising the proposed framework.
Section V describes the details of a CusComNet imple-
mentation within a 16-node cluster. Section VI presents the
results of experiments carried out on our implementation.
Finally, Section VII draws conclusions.

II. BACKGROUND

Various FPGA-based clusters have been reported in the
last few years. The following presents several examples, and
describes the differences between our work and theirs.

The Cray XR1 blade [1] for the XT5 system contains
two optional Xilinx Virtex-4 XC4VLX200 FPGAs per blade.
Each FPGA is interfaced to the CPU through a Hyper-
Transport channel. Inter-FPGA communication in the XT5
system must go through the CPU and the Cray proprietary
SeaStar2+ interconnection chips. Software running on the
CPU must be developed first to make use of the inter-FPGA
communications.

The SGI RC100 blade [2] contains two Xilinx Virtex-
4 XC4VLX200 FPGAs. An SGI proprietary NUMAlink
ASIC chip is used to connect different blades with over
6Gbps bandwidth. SGI provide the core service IPs for
FPGA development. At the cost of one-tenth of the FPGA
logic resources, the core service provides connection to both
NUMAlink and external memory modules. SGI also pro-
vides an abstraction layer which enables one application to
be spanned across multiple FPGA devices. This abstraction
layer is comprised of library function calls running on the
CPU, hence inter-FPGA communications have to go through
the CPU.

The Maxwell system [3] has 32 computing nodes hosted
in five IBM BladeCenter chassis. Two FPGA accelerators
using Xilinx Virtex-4 FPGAs are hosted on each node.
Besides the Gigabit Ethernet on the host side, there is an
8 × 8 2D torus network using the MGT serial ports of the
FPGAs. Each FPGA accelerator is connected to four other
accelerators using the single channel HSSDC2 InfiniBand
cable. To simplify development, the project excludes routing
logic in the FPGA and thus users must develop their own
mechanisms for transferring data to the indirectly connected
FPGA accelerators.

The Reconfigurable Computing Cluster (RCC) project
developed a prototype [4], called spirit, with 64 Xilinx

ML410 evaluation boards. The PowerPC in the Virtex-4
FPGA is used as the main CPU in the cluster and the
connection between FPGA boards is through SATA cables.
The SATA channel provides up to 2.5Gbps bandwidth.
Extensive experiments have been carried out to test the
communication performance against various factors includ-
ing cable length. However, there is little information about
applications supported by this cluster.

Our research complements previous work in that we focus
on opportunities for customising communication networks
in heterogeneous clusters based entirely on extending the
FPGA configuration, without dedicated or proprietary hard-
ware extensions. To estimate the effects of customisation we
provide a performance model, and demonstrate our approach
using a realistic application based on N-body simulation.

III. COMMUNICATION FRAMEWORK

While much has been written about ways of customising
computation and network-on-chip, customising communica-
tions within computing clusters appears less popular. We aim
to provide a unified, easy to use inter-FPGA communication
network capable of both specific customisations for user ap-
plications, as well as application-independent packet routing
at a lower level. The purpose of our research is to:

- determine the areas of cluster communications that
benefit from customisation;

- provide a framework that facilitates multiple applica-
tions communicating within a single cluster;

- quantify the performance gain for customised commu-
nications.

The following presents a systematic exploration of cus-
tomising communications for an FPGA-based cluster, focus-
ing on the data link layer and the network layer. A prototype
implementation of CusComNet on a 16-node heterogeneous
computing cluster is also outlined.

A. Customisation: Overview

CusComNet supports customisation in three main areas:
packet protocol customisation, system-level customisation,
and prioritised communication customisation.
Packet protocol customisation: Compared to traditional
Ethernet-based communications, the direct FPGA-to-FPGA
connections allow larger customisation benefits—i.e., more
direct control over the communication stack—achieved via
user definable packet and buffer sizes, priority levels, etc.
FPGA resources which remaining available after implement-
ing the user application can easily be incorporated into the
communication framework to improve system performance,
for example, by increasing buffer depths or packet data
widths. Application-specific improvements can be made by
exploiting the run-time flexibility of the packet protocol. For
example, the upper packet size limit can be large, but the
actual sizes of transmitted packets can vary between, and
within, each application.

1 2 3 4

5 6 7

9

8

10 11 12

13 14 15 16

X
R

M
−

H
S

S
D

C
2A Port 0

Port 1

Port 2

Port 3D
D

R
2

R
A

M

D
D

R
2

R
A

M

D
D

R
2

R
A

M

D
D

R
2

R
A

M

XC5VLX330T

A
D

M
−

X
R

C
−

5T
2

CPUCompute Node 8

G
T

P

PCIe

East

West

North

South In
fin

iB
an

d
1x

−
1x

 c
ab

le
s

Figure 2. A prototype CusComNet within a 2D torus network utilising
P2P FPGA serial communication.

System-level customisation: Build-time customisations al-
low for application and topology specific improvements via
the scheduling algorithm for incoming data and the packet
routing functionality. Nodes can be designed and optimised
for specific tasks, such as those designated as communica-
tion hubs incorporating additional buffer space and separate
routing algorithms. A universal routing algorithm can also be
defined to implement hard-coded logical topologies, or a less
stringent system can be created via preferred transmission
paths within the scheduler.
Prioritised communication customisation: The inclusion
of packet priorities enables the creation of communication
hierarchies to allow for packets or whole applications within
a cluster to be given preference over others. Cluster-wide
control applications, such as those for performance measure-
ment or load-balancing, will benefit from higher prioritised
traffic.

Note that the underlying design of the CusComNet frame-
work is application-independent and can be used by multiple
cluster applications running simultaneously. This is facili-
tated by the low level routing allowing ‘foreign’ packets
to pass through an application’s network. Foreign packet
routing is particularly important for heterogeneous clusters
since different resources may be spread throughout the
network, and producers and consumers may not necessarily
occupy adjacent nodes.

B. Framework Implementation

The CusComNet framework has been implemented on a
16-node cluster in order to demonstrate its operation and
measure communication performance. Each compute node
has one FPGA accelerator board hosting a Virtex-5 FPGA
for user applications, interfaced to the host system through
the PCIe bus. There are 4 banks of DDR2 memory, each with
512MB capacity, associated with the Virtex-5 FPGA. Each
accelerator has four RocketIO GTP transceivers exposed to
the external interface, linking the accelerator to four others
and forming a 2D torus network (Figure 2), similar to that
in [3]. The cluster allows topologies to be customised by
re-arranging the physical connections. InfiniBand cables are
used as communication links between adjoining nodes and
are connected directly to the FPGAs. The InfiniBand cables
vary in length from 0.5 to 2.5 meters and are rated for a
maximum bandwidth of 2.5 Gbps. Beside the FPGA, each

CRC32

user kernel

HOSTIF

MEM ctrl

DDR RAM

PCIe

G
T

P
til

es

G
T

PI
F

da
ta

 li
nk

in
te

rc
on

ne
ct

PK
T

IF

routerscheduler

us
er

 a
pp

lic
at

io
n

Figure 3. Design architecture utilising the GTP core.

cluster node has a CPU with Ethernet access. An Ethernet
network in a switched star topology connects each node
via an Ethernet controller on the PCIe bus, providing an
additional means of inter-node communication.

Figure 3 shows a simplified structure of our prototype
design using the embedded fast serial connection cores
within the FPGA. The framework is implemented as a multi-
layered wrapper around the four physical GTP tiles, with the
functionality split into data link and network layers.

C. Data Transmission

The lowest layer of CusComNet is the data link layer
which is specific to each transceiver on a node’s FPGA; in
the case of our prototype design, the four GTP tiles. We
provide error checking at this level, as packets pass from
one node to the next, rather than only at the packet’s final
destination. This allows us to gather information about the
status of each node-to-node connection as well as ensure the
integrity of the packet at each communication step. Through
analysis of any errors caused by transmitter and receiver
misalignment or altered transmission data, as well as by
counting the frequency of repeated transmissions, it is possi-
ble to create an overview of the network’s state at run-time.
Future work will make this information available to network
routing modules, allowing the creation of algorithms that can
dynamically alter network transmission paths to avoid error
prone connections.

Data are transmitted using the 8B/10B encoding [5]
scheme with special characters used to denote the IDLE,
SYNC, SOF (start of frame) and EOF (end of frame)
symbols. We support full duplex communication, enabling
simultaneous data transmission and receiving. During packet
transmission, the transmitter first syncs the channel with the
receiver then transmits the serialised bit stream, enclosed by
the SOF and EOF symbols. Finally, the locally calculated
CRC is sent, which the receiver compares to its own calcu-
lated value, prompting either the confirmation of a successful
transmission, or a request to resend the packet.

CusComNet supports variations in clock speed, synchro-
nisation period and frame acknowledgement period. Through
experimentation, we observe that the maximum applicable
frequency for the communication link is affected by cable
attributes and electronic noise. The synchronisation period
and frame acknowledgement timeout period are controllable

through VHDL generic ports. Together with the adjustable
link frequency, these customisable parameters are critical
for maintaining reliable links between FPGAs. Future work
will focus on the run-time optimisation of each inter-node
connection’s synchronisation and frame acknowledgement
periods. By taking into account the different cable lengths
and error rates between each node-pair, we aim to minimise
the impact of any connection issues, therefore maximising
the available throughput.

D. Packet Protocol Customisation

Packets are assembled and processed within the network
layer. Each packet contains the unique addresses of the
destination and source nodes. The bit widths of these two
fields are automatically determined when the user defines
the maximum number of nodes in the cluster. Packets
also contain a type identifier that denotes either a data or
control packet. Further types can be defined to support
more complex control or data-passing mechanisms, such
as congestion detection and flow control. Each packet also
holds a unique identifier allowing out-of-order transmis-
sion, however, the user must manually reorder the arriving
packets. By examining each packet’s unique identifier, the
network layer automatically rejects any duplicate packets
targeted to its local node. The data field of a packet is design-
time customisable. At run-time, packets can be transmitted
with data widths of any size upto this value. One example
is acknowledgement packets which do not carry data and so
will have a data width of zero.

This layer makes use of design-time customisable FIFO
buffers for storing packets. The maximum payload size of
a packet must be selected by the user to reflect the most
common message size of the application. The storage space
in the buffer will be wasted if the maximum payload size
is consistently larger than the actual size of the transmitted
packets. If the packet payload size is too small, the number
of generated packets will increase which, coupled with the
packet’s embedded header, saturates the buffer more quickly.
With the combination of customisable payload sizes and
maximum buffer depths, we allow a trade-off between FPGA
storage resources and the blocking probability of a node.
Nodes with different queue sizes can improve the overall
performance of applications with irregular communication
patterns.

E. System-level Customisation

The network layer provides packet switching functionality
in the PKTIF module, allowing FPGAs to communicate with
each other via intermediate nodes. In our prototype system,
the 2D torus network provides each node with 5 possible
inputs: the 4 GTPs and the local node itself, as shown in
Figure 4. A Round-robin scheduler—isolated in a separate
module—ensures an evenly distributed access probability for
both routed and locally generated packets. More advanced

GTPIF (TX)Queue

GTPIF (TX)Queue

GTPIF (TX)Queue

Queue PKTIF (RX)
user logic

Queue GTPIF (TX) re
m

ot
e

de
st

in
at

io
n

Scheduler

RouterPKTIF (TX)

RoutersGTPIF (RX)

RoutersGTPIF (RX)

RoutersGTPIF (RX)

user logic

Figure 4. Network layer routing.

algorithms can be provided simply by changing the sched-
uler module.

A routing module is responsible for determining the
destination of each incoming packet, with waiting packets
held in the design-time customisable FIFO buffers. The
router for the 2D torus in this work routes packets along
the shortest path, based on the relative column and row
positions of the local and destination nodes. Similar to the
scheduler, packet routing information is held in a separate
module. Other topologies or priority routing algorithms can
be implemented by changing the routing module.

If the user logic occupies only a small percentage of
available FPGA resources, the additional hardware resources
may be used to optimise the communications via appropriate
scheduler and routing module designs. Conversely, these
modules may also be scaled back to meet the demands of
the user logic.

F. Prioritised Communication Customisation

To support customisation of prioritised communication, a
field for packet priority is included. A priority is assigned
by the user to every outgoing packet. When routed by
the local node and processed by any intermediate nodes,
packets are stored and retrieved from FIFO buffers according
to their priority level. Each FIFO buffer is defined within
CusComNet as one or more separate buffers: one for each
of the priority levels specified by the user. At build-time, the
user is able to set the number of priority levels as well as
define the depth of each corresponding buffer. This approach
enables CusComNet to support a number of different priori-
tised packet protocols, or remove prioritisation completely
to allow for a single, large storage buffer.

G. Usability

The PKTIF module, as shown in Figure 4, provides a
wrapper for user applications, abstracting away any data
link or packet level information. Application scaling has no
effect on the wrapper or communication operations at the
user level, as users simply provide the data, destination node
and the associated priority.

When communicating between nodes using a PCIe-based
system, data transmitted between FPGAs must first be
passed to the CPU-level via the PCIe bus, then to the
Ethernet controller for transmission. Received data are then

routed via a CPU-level program before being delivered to
the receiving node’s FPGA. The use of a directly-connected,
dedicated inter-FPGA network does not require the devel-
opment and inclusion of a separate application at the CPU-
level to handle communications. This way, the majority of
the development focus can be shifted towards the FPGA,
with the exception of FPGA initialisation. Applications that
make use of both the CPU and FPGA will also benefit as
they will not need to arbitrate for use of the connection
channel.

IV. PERFORMANCE MODEL

The performance of the proposed customisable communi-
cation framework depends highly on the target application
and also on the physical network connection topology. While
various parameters can be customised in the framework to
optimise the performance for an application, it is not simple
to identify suitable values before actually implementing the
design. Exploring the complete design space in multiple
implementation iterations can be time consuming. Thus, we
develop a performance model for rapid parameter explo-
ration in the early design stages.

To model network performance, two sets of parameters are
required. The platform parameters represent the attributes of
the underlying hardware designs and configurations; these
parameters are obtained by measurements and profiling
on a specific FPGA cluster. The application parameters
represent the communication pattern of the implemented
algorithm; these parameters are obtained either by analysing
the algorithm or by profiling.

Table I shows the platform parameters used in our perfor-
mance model. We define a link to be a direct connection
between two FPGA accelerators and a channel to be a
path for a packet to travel from the source FPGA to the
destination FPGA. A channel is a connected sequence of
links. We also define the FPGAs involved in a channel to
be hubs if they are neither the source nor the destination.
Here Tl is the FPGA link transmission delay, which covers
the propagation delay of the cable and is negligible for
our copper wire connection. Tr is the FPGA packet routing
latency and it covers the time for unpacking, inspecting and
routing the packet after it is received by the GTP tile. Ta is
the latency for data moving between the user logic and the
routing logic.

Experiments show that some parameters, such as Bl,
are dependent on the physical environment of the cluster
nodes and have a range of possible values. To simplify the
problem, we use the average values of these parameters in
our performance model.

Table I also shows the application parameters used in our
performance model. Again, for simplicity, the average values
will be used for these parameters. Here we assume that the
application sends out data randomly to a random destination.

Table I
PARAMETERS FOR NETWORK PERFORMANCE MODELLING.

symbol unit meaning typical value
platform parameters

k number of links along a path 1 - 3
p bits size of a packet 16 - 528
q max. packets in a queue 64
Bl Mbps bandwidth of physical link 1600
Tl µs FPGA link transmission latency 0
Tr µs FPGA packet routing latency 0.57
Ta µs application to routing logic latency 0.13

application parameters
d bits total data size to be transferred N/A
λ 1/s average packet rate N/A
k̃ average links per path N/A

The total time (T) required to transmit a packet of data
from one node to another can be expressed in the following
equation. The first two terms represent the total latency along
the path, and the last term is the time required to transmit
the actual data bits:

T = (k − 1)× (Tl + Tr + Tpkt) + 2× Ta (1)

where Tpkt = p/Bl is the packet transmission time. This
equation is sufficient to capture the theoretical performance
of transferring a packet without queuing delay. More ad-
vanced models are needed to estimate the communication
performance at the application level. This is due to link
contention when multiple packets are routed to the same
output link. In this case, the input packet must first wait
for the scheduled time slot from the scheduler, then wait
again to clear the queue before it can reach the GTP tile.
Our performance model considers this situation for a more
accurate estimation.

Without losing generality, we consider the behaviour of
each router and queue combination using an independent
M/M/1 queuing model [6]. Since the average number of
packets generated per second (λ) is captured as a model
parameter, and we have four outgoing GTP links per accel-
erator, the enqueue rate is:

EQpkt = λ/4. (2)

Since there is little delay introduced between the packet
queues and the GTP links, the dequeue rate can be derived
from the packet transmission time (Tpkt) as:

DQpkt = 1/Tpkt = 1/(p/Bl) = Bl/p. (3)

Here we assume that the packets addressed to the local
node are consumed in zero time, and we define ρ =
EQpkt/DQpkt. The expected number of packets in a queue
is then:

q̃ = ρ2/(1− ρ). (4)

The expected waiting time in the queue is:

Tq = ρ/(DQpkt − EQpkt). (5)

The current Round-Robin scheduler can process a packet
in one clock cycle and there are only 5 possible inputs to
any queue: the four GTP links and the local node itself. So
the scheduling delay, Ts, is practically zero in this case. For
more advanced scheduling algorithms, the Ts value may be
significant in the overall performance. Therefore the average
time for a packet to pass through a hub is

Tp = Ts + Tq + Tpkt. (6)

For the average k̃ links distance in a packet transmission,
the average time to transfer a packet is Tp × (k̃ − 1). Thus
the average time spent by the application to send a packet
is obtained by combining Equations 1 and 6.

T̃ = (k̃ − 1)× (Tl + Tr + Tp) + 2× Ta (7)

Note that this model is based on a set of assumptions
such as a 2D torus network topologies and Round-Robin
scheduler. When these assumptions are no longer valid
with different platforms or different applications, the above
equations must be changed accordingly. To obtain more
accurate performance estimation, network simulators such
as [7] should be used for each specific application.

To apply this performance model, the user should first col-
lect the platform dependent parameters by experimentation,
as shown in Section VI. This process is needed only once
for each platform and implementation configuration and the
results can be reused for any application. The typical values
in Table I are obtained as described in Section VI for our
Virtex-5 platform.

Equation 4 can help users to determine a suitable queue
size—the customisation parameter in Section III-A—based
on the application’s communication pattern. Equation 7
provides a simple and accurate estimation of the network
performance. Experiments in Section VI shows that the mea-
sured results agree with the estimated network performance
using this model.

V. IMPLEMENTATION DETAILS

We implement our prototype framework on Xilinx Virtex-
5 LX330T FPGAs within a production cluster. The device
utilisation is given in Table II, where each slice contains
four Look-up Tables (LUTs) and four registers. As this is
an initial design we do not focus on resource efficiency;
this will become an important aspect in later design itera-
tions. Since CusComNet must be incorporated into existing
applications, it must therefore possess as small a resource
footprint as possible.

For our prototype design, we measure the throughput and
latency of CusComNet’s communications between adjoining
FPGAs and those separated by at least one intermediate hop.
The maximum packet payload size is set as 64 bytes and
the FIFO buffers are able to hold 64 packets. The packet
transmission time is measured using the FPGA internal
clock, then converted into seconds based on the operating

Table II
CUSCOMNET’S SLICE UTILISATION ON THE VIRTEX-5 LX330T.

Slice Type Number Utilised Percentage of Total
All 21,219 40

Registers 47,685 22
LUTs (Total) 48,444 23
LUTs (Logic) 35,842 17

LUTs (Memory) 12,408 6

frequency of 100MHz. This operating frequency translates
to a line speed of 2Gbps; it is set to this value since exper-
imentation shows that, above this frequency, transmission
errors are increased. Line speeds at the InfiniBand cable’s
maximum speed of 2.5Gbps result in communications taking
up to two orders of magnitude longer than those transmitted
at 2Gbps. This is mainly attributed to the transmitter and
receiver frequently becoming misaligned, requiring more
packets to be retransmitted.

Two experiments will be performed to determine the
bandwidth of the prototype design. The first experiment
involves sending small packets of data in order to measure
the bandwidth when transmitting lower quantities of data.
For smaller payload sizes, we do not saturate the packet
buffers, but the header occupies a larger percentage of
the total packet and thus has an effect on performance.
The second experiment involves sending larger numbers of
packets between two nodes to determine to what extent the
effect of buffer saturation has on overall throughput, and to
find the worst-case average bandwidth. We determine com-
munication latency by measuring the time taken to transmit a
packet containing zero bytes of data. Transmissions between
non-adjoining nodes are also tested to determine to what
extent the latency increases with successive hops, and its
effect on the bandwidth.

VI. RESULTS

A. Network Performance Measurement

The average bandwidth is found to be around 1479Mbps
when transmitting small data packets between adjoining
nodes, as shown in Figure 5. For packet payloads at or near
the maximum value of 64 bytes, the bandwidth approaches
the 1600Mbps limit of the 2000Mbps network connection
when using 8B/10B encoding, as the amount of data in each
packet becomes large relative to the header size. Figure 6
shows that as the number of transmitted packets increases
past the buffer limit, the saturation has little effect on the
bandwidth, which averages 1565Mbps. We can conclude that
CusComNet is able to process packets at least equal to the
rate at which the user application can produce them, even
when supplied with a continuous stream of data.

The average latency per packet transmission is found to
be 0.83µs for communication between two directly con-
nected nodes. This varies slightly due to the differences

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600

B
an

dw
id

th
 (

M
bi

ts
/s

)

Data Transmitted (bits)

Low Volume Bandwidth

Figure 5. CusComNet’s bandwidth for low volume communications.

in the lengths of the cables used to connect each node-
pair, but the difference within the prototype design never
exceeds ±0.01µs. When increasing the number of packets
per transmission, the latency increases uniformly with the
number of packets for all communicating node-pairs. When
transmitting data via one or more intermediate nodes, the
bandwidth is the same as that of directly connected nodes,
while each hop increases the latency by 0.57µs.

When dealing with small volumes of data, CusComNet’s
average bandwidth of 1479Mbps results in an efficiency
of between 88 − 93%, given the theoretical line rate of
1600Mbps when using 8B/10B transmission. The uncer-
tainty in the efficiency arises from the reference clock’s
±5% error rate. As we increase the packet payload to its
maximum value, we find the resulting best-case efficiency
rises to between 93−97%. For larger scale transmissions, the
average bandwidth of 1565Mbps also gives an efficiency of
93− 97%, however tests across different nodes suggest this
value to be closer the 97% limit for a 64 byte CusComNet
packet. The remaining inefficiency is caused in part by
the packet header, but is primarily due to the transmis-
sion protocol used by the data link layer. This protocol
is dependent on the connections between each node-pair
and is dominated by the inter-FPGA synchronisation: there
is at least one synchronisation character—but may require
more, depending on the stability of the connection—and
synchronisation is performed at regular intervals. Future
work will focus on minimising this communication overhead
to improve the bandwidth and overall efficiency of the inter-
FPGA network.

From the above measurements, we have B = 1565Mbps,
Tl = 0µs, Tr = 0.57µs and Ta = 0.13µs. We can use these
parameters to estimate the transmission time as shown in
Equation 1. For a path including two links (i.e. k = 2),
a 64-byte packet will take T = (2 − 1) × (0 + 0.57 +
512/1565) + (2 × 0.13) = 1.16µs. This agrees with the
measured results in our experiments. Based on this, we

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600

B
an

dw
id

th
 (

M
bi

ts
/s

)

Data Transmitted (Mbits)

High Volume Bandwidth

Figure 6. CusComNet’s bandwidth for high volume communications.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200
 0

 500

 1000

 1500

 2000

 2500

 3000

La
te

nc
y

(u
s)

La
te

nc
y

(c
yc

le
s)

Nodes in the cluster

0 Byte Data Packet
64 Byte Data Packet

Figure 7. The projected latency when using CusComNet within 2D torus
connected clusters.

can project the expected latency value for communications
within larger clusters utilising the CusComNet framework.
Assuming the use of a 2D torus connection, Figure 7 shows
the expected latency when communicating along the longest
path in a network, as well as the time taken to transmit
a 64 byte data packet. The figure defines the latency both
in terms of time for the prototype implementation, and
in terms of compute cycles for an application-independent
characterisation. Latency is shown for clusters with up to
1024 nodes, but can easily be extended using the above
formula to estimate CusComNet’s performance for larger
clusters.

B. Scalability: N-Body Simulation

The N-Body simulation algorithm is used to simulate
the interaction between N particles. This is an iterative
process where the position and velocity vectors of a par-
ticle are updated by the previous velocity vector and the
computed acceleration vector in each iteration. In this work,
we implemented the N-Body application using the FPGAs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16

N
-B

od
y

ite
ra

tio
n

tim
e

(s
)

number of nodes

Ethernet network
inter-FPGA P2P network

Figure 8. N-Body application scalability using the inter-FPGA network.

as processing units. All FPGA accelerators in the cluster
are programmed with the same configuration, while each
computes a pre-assigned portion of the total particle space.

Before starting a new iteration, all nodes must have the
updated vectors of all the particles. This means that the local
partial results in each FPGA must be transferred to all other
FPGAs. In an Ethernet only implementation, the local results
are distributed through the MPI framework running on the
host CPU. With CusComNet, additional circuitry is used to
send and record the partial results bypassing the host system.
In this case, the iteration management and vector updating
are all performed within the FPGA.

In the experiments, the FPGA designs are captured by
VHDL descriptions and implemented using the Xilinx ISE
12.3 tool chain. OpenMPI version 1.3.3 is used for inter-
CPU communication. The experiments are based on the 4×4
2D torus inter-FPGA network in Figure 2, using the default
values for the parameters listed in Table I for FPGA designs.
The input data set includes 81920 particles.

Figure 8 shows the improvement gained by migrating the
partial result transmission from Ethernet to CusComNet’s
dedicated inter-FPGA network. The iteration time is ob-
tained by averaging the time of a single iteration without
the overhead of FPGA configuration and data initialisation.
The results indicate that not only can a 3 times speed-up
be achieved for 16 nodes in overall performance, but the
performance also continues to improve beyond 8 nodes when
using the dedicated inter-FPGA network.

Without a dedicated broadcasting mechanism, the current
design has to send the same local results 15 times separately
to the 15 nodes. This overhead can be reduced with a
broadcast protocol. Based on this implementation, further
optimisations can be obtained to allow better application
performance. It is possible to overlap the computation and
communication times by sending results over the network
as soon as they are generated. For a CPU-centric com-
munication system, the overhead of constantly monitoring
the FPGA partial results is prohibitively large for this

asynchronous communication scheme, but this overhead is
much lower for FPGAs.

VII. CONCLUSION

In this paper we describe CusComNet, a customisable
communication network for FPGAs in a computing cluster.
The CusComNet framework provides an efficient and versa-
tile data transmission framework with a standardised, easy to
use wrapper. CusComNet is implemented in a heterogeneous
computing cluster including commodity Gigabit Ethernet
and customisable inter-accelerator serial connections. The
measured results show that this inter-accelerator network
achieves communication throughput of between 88 − 93%
of the theoretical limit when transmitting small volumes of
data, and between 93 − 97% efficiency for larger data vol-
umes. Communication latency is found to scale linearly as
the number of intermediate hops increases when transmitting
a packet, and agrees with our latency projections based on
a performance model.

Future work will focus on improving the latency and
efficiency via low level automated optimisation of the inter-
FPGA connections, and the development of adaptive routing
algorithms based on the run-time status of the network.
High level user interfaces will also be created to ease
application development, such as MPI based facilities [8]
with automated code generation.

Acknowledgement
This work was supported in part by the UK EPSRC, the European
Union Seventh Framework Programme under Grant agreement
number 248976 and 257906, and by the HiPEAC NoE, Alpha Data,
Maxeler, and Xilinx.

REFERENCES

[1] Cray XR1 Reconfigurable Processing Blade, Cray Inc., 2007.

[2] SGI RASC RC100 Blade, Silicon Graphics Inc., 2006.

[3] R. Baxter et al., “Maxwell - a 64 FPGA supercomputer,” in
Proc. Conference on Adaptive Hardware and Systems (AHS),
2007, pp. 287–294.

[4] R. Sass et al., “Reconfigurable computing cluster (RCC)
project: Investigating the feasibility of FPGA-based petascale
computing,” in Proc. IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2007, pp. 127–140.

[5] Byte oriented DC balanced (0,4) 8B/10B partitioned block
transmission code, IBM, 1984.

[6] H. C. Tijms, A First Course in Stochastic Models. Chichester:
Wiley, 2003.

[7] OMNeT++ User Manual, OMNeT++, 2010. [Online]. Avail-
able: http://www.omnetpp.org/doc/omnetpp41/manual.pdf

[8] M. Saldana et al., “MPI as a programming model for high-
performance reconfigurable computers,” ACM Trans. Reconfig-
urable Technology and System (RTES), vol. 3, pp. 22:1–22:29,
November 2010.

