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Abstract—The continuous evolution and unpredictability
underlying service-based systems leads to difficulties in making
exact QoS claims about the dependability of architectures
interfacing with them. Hence, there is a growing need for new
methods to evaluate the dependability of architectures inter-
facing with such environments. This paper presents a method
for evaluating the security quality attribute of architectures in
service-based systems.

The proposed method combines some properties of the
Architectural Tradeoff Analysis Method (ATAM) and security
testing using Implied Scenario. In particular, the scenario
elicitation process of ATAM is improved by utilising Implied
Scenario technique to generate scenarios which may be un-
detected using plain ATAM. An industrial case study of a
problem related to securing data at the Software-as-a-Service
layer on Force.com Cloud platform is adopted to validate the
new method. The results indicate that our method found four
additional security scenarios beyond the plain ATAM, resulting
in four new risks and two new tradeoff points.

Keywords-ATAM, Implied Scenario, Security, Cloud Archi-
tectures, Dynamic Architectures

I. INTRODUCTION

The success recorded by some of the dominant Cloud
service providers (e.g. Amazon EC2, Salesforce, Google
App Engine) has motivated many organisations to consider
adopting Cloud services as a means of reducing IT opera-
tional cost amongst other benefits. The risk of data misuse,
data loss and security breaches however, remains a major
concern for most Cloud users. An example is the case of a
phishing attack targeted at Salesforce.com which led to the
theft of customers’ emails and addresses [1].

The inability of Cloud providers to meet security require-
ments which are mandated by territorial laws governing
critical applications such as financial and health systems has
necessitated the design of secure architectures interfacing
the Cloud to exploit the economies of scale offered by
Cloud Computing. One approach adopted by such Cloud
interfacing architectures is to store some sensitive data in
their local datacentres while other non-sensitive data are
stored in the Cloud. Two examples in the literature adopting
this approach are the work of [1] and [2]. While these
results provide some insight into addressing the security

challenges impeding Cloud adoption, existing architecture
evaluation methods are not suitable for verifying whether
such architectures are indeed secure.

We argue that the existing architecture evaluation methods
have limitations when assessing architectures interfacing
with unpredictable environments such as the Cloud. This is
because the Cloud environment is fundamentally different
from the classical environments for which most software
evaluation methods were developed [3]. The unpredictability
of this environment is attributed to the dynamic elasticity,
scale, and continuous evolution of the Cloud topology (e.g.
due to new services, mashups, unpredictable modes of ser-
vice use, fluctuations in QoS provision due to unpredictable
load/growth etc.). As a result, architectures interfacing
such unpredictable environments are expected to encounter
many uncertainties resulting from emerging behaviour from
concurrent and unexpected modes of interaction of their
components with the Cloud environment and its various
components. These challenges call for holistic approaches
combining aspects of both dynamic and static evaluation.

The aim of this paper is to present a methodology for
evaluating the security quality attribute of architectures in
unpredictable environments such as the Cloud. Our approach
extends well established methods in software architecture
namely: Architectural Tradeoff Analysis Method (ATAM)
[4] and Implied Scenario for security testing [5]. We em-
pirically evaluated the new method by considering a non-
trivial industrial case study with the goal of securing data
on the Force.com Cloud platform. The combination of both
approaches (ATAM and Implied Scenario) has proven to
be effective, where the benefits outweigh the cost. This is
because the combination has provided the architect with a
systematic and well informed methodology for detecting the
“right” scenarios, which are critical for revealing security
threats and weaknesses in the key architecture design de-
cisions. The results indicated that our method was able to
detect critical security scenarios not captured with the use
of static analysis alone. The method was beneficial to the
architect for understanding the architecture from both static
and dynamic analysis perspectives. Furthermore, proven ex-



isting tools were utilised to facilitate the evaluation process,
thus making the method easily accessible to architects.

The rest of the paper is structured as follows. In section
2 we provide the background required to understand ATAM
and Implied Scenario. Our proposed methodology is pre-
sented in section 3. The case study adopted for evaluating
our method is presented in section 4, while the architecture
evaluation is the focus of section 5. In section 6 we discuss
the lessons learned from our experience. Section 7 covers a
review of related work and we conclude in section 8.

II. BACKGROUND

A brief overview of the ATAM and Implied Scenario
are presented as a precursor for our discussion about the
new evaluation methodology that systematically blends these
methods together.

A. ATAM

The ATAM is considered a mature and validated scenario-
based Software Architecture (SA) evaluation method [6].
The inputs of the ATAM are scenarios elicited by stake-
holders and documented descriptions of the architecture. The
goal of the ATAM is to analyse architectural approaches with
respect to scenarios generated from business drivers for the
purpose of identifying risk points in the architecture [4]. This
is achieved by a disciplined reasoning about SA relating
to multiple quality attributes [6]. There are two important
classifications of risk points in ATAM namely sensitivity
points and tradeoff points. A sensitivity point refers to a
parameter of the architecture that affects the achievement of
one quality attribute. On the other hand, a tradeoff point
refers to a parameter of the architecture that affects the
achievement of more than one quality attribute, where one
improves and the other degrades. These risk points, together
with extensive documentations of the architecture, scenarios,
and quality-attributes analyses are the products of ATAM. A
more detailed description of ATAM is presented in [7].

B. Implied Scenario Testing

Scenarios generally refer to a description of an interac-
tion between a user and the system or interaction among
components of a system [8]. Implied scenarios are unan-
ticipated interactions among components which arise when
multiple well understood scenarios are combined together.
An implied scenario could take different forms: a useful
scenario which could aid understanding of the system, a
trivial scenario which could be ignored or an unacceptable
scenario which could pose risks to the system [5], [9].

A framework for synthesising behaviour models for
scenario-based specifications and detecting implied scenar-
ios was proposed by [9]. This framework was integrated
with the Labelled Transition System Analyser (LTSA)1 open
source tool [10] allowing the representation of a system

1http://www.doc.ic.ac.uk/ltsa/
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Figure 1. Implied Scenario Security Testing Methodology [11]

model via Message Sequence Charts (MSC). Thereafter,
the application of Implied Scenario for testing architectures
for security risks was motivated by [11]. A model-based
technique for applying the concept to security testing was
later proposed by [5]. This technique utilised the frame-
work proposed by [9] as a mechanism for automating the
Implied Scenario detection process. The seamless plug-in
of the LTSA tool with the Acme2 architectural modelling
tool offers the benefit of easily representing architectures
modelled with Acme in a way suitable for implied scenarios
analysis.

Our proposed methodology builds on these evaluation
methods and lessons learned from their applications (e.g.,
via case studies and illustrative examples).

III. PROPOSED METHODOLOGY

As earlier motivated, our methodology combines the
strengths of the ATAM with the dynamic scenario generation
process of the Implied Scenario technique. Our motivation
for combining aspects of both methods is based on observ-
able weaknesses in each of them. Precisely, we noted that
the ATAM suffers from the following weaknesses:

• The iterative nature of the ATAM means it is necessary
to have a substantial number of human experts on
the team at different times to provide insight into the
implications of different architectural approaches. From
our experience in evaluating architectures (in general),
it is often expensive to speculate the availability of such
domain experts for small-mid size software projects due
to budgetary or time constraints.

• Also, the architectural analysis in the ATAM takes into
consideration only a few highly prioritised top-level

2http://www.cs.cmu.edu/ acme/



scenarios elicited during the utility tree and brainstorm-
ing steps. We argue that the selection of only a few
top-level scenarios may lead to missing some critical
security scenarios which may later be exploited by
attackers.

On the other hand, the Implied Scenario evaluation tech-
nique is a semi-automated process that combines both tool-
based scenario analysis and subjective expert judgment [11].
When used singlehandedly it may be susceptible to the
following weaknesses:

• The sole use of Implied Scenario as an evaluation tech-
nique is not as mature as ATAM in terms of disciplined
reasoning about architecture design decisions, although
it suggests the use of expert judgment to select and
prioritise security scenarios.

• There is as yet no provision to understand the impact
of implied scenarios on other quality attributes aside
from security and reliability.

Therefore, we propose the following enrichment to ATAM
with specific consideration for evaluating security properties
of architectures:

1) The steps of the ATAM evaluation technique should
be performed in a logical and iterative sequence to
assess the security attribute of the architecture and its
tradeoff against other non-security quality attributes.

2) The risks, sensitivity points and tradeoff points, iden-
tified in the ATAM process should be used to refine
the architecture in order to mitigate their impact.

3) Next, the interaction among the security critical com-
ponents in the revised architecture from Step 2 should
be modelled using MSCs and fed into the LTSA tool
for the purpose of detecting implied scenarios.

4) If any implied scenario is detected go to Step 5 or else
terminate the evaluation process.

5) The detected implied scenario(s) is/are analysed by
members of the ATAM team and classified appropri-
ately either as non-risk or risk. If the implied sce-
nario(s) is/are considered as risk points, the expertise
of the ATAM team is exploited to take one or more
of the follow actions.

a) Evaluate the cost of refining the architecture to
address the risk.

b) Prioritisation of the risks based on risk assess-
ment outcome.

c) Implement mitigation measures to reduce likely
impact of risk.

d) Ignore the implied scenario if it is considered
trivial.

6) In the presence of critical security risks, the ATAM
team may choose to repeat step 2 - 5 to possibly
uncover additional subtle implied scenarios.

Implied scenarios that were derived by modelling the
concurrent interaction of architectural components improves

the scenario elicitation process of the ATAM (step 3-5)
by generating additional subtle scenarios which may not
be discovered using ATAM alone. The scenarios gener-
ated using the implied scenario method as a follow-up to
ATAM serve to provide a better understanding of security
risks. Within a dynamic unpredictable environment such as
Cloud Computing, there are benefits of using this method
to unveil security risks arising from concurrent component
interactions which may otherwise only be discovered after
deployment.

The method benefits from the expertise of the ATAM team
to decide the best course of action after the detection of
implied scenarios (step 4-5).

We suggest that the method should not be followed in
a rigid sequence for all cases. In our opinion, it is logical
to first account for architectural risks by subjective human
judgment before applying tool-based dynamic analysis to
detect implied scenarios. The reverse of the process may
be beneficial in cases where little is known about the
architecture style or the evaluator is not fully competent
to carry out a proper ATAM security evaluation. In the
rest of this paper, we shall refer to this method as ATMIS
(Architectural Tradeoff Method using Implied Scenario).

IV. CASE STUDY

We adopted an industrial case study provided by Xactium
Limited3 as a means of evaluating the ATMIS method. The
following criteria were used to measure the achievement of
the goals of study:

1) Does the ATMIS method detect relevant security risks
in the architecture following initial refinement using
ATAM?

2) How critical are the detected security risk points?
3) Could any detected security risks have been detected

using other static methods (i.e. plain ATAM and non-
ATAM methods)?

A. The Problem

Smart bank has recently decided to adopt Force.com
SaaS Cloud provider as the platform to deliver a robust,
scalable and on-demand service provisioning for the risk
management aspect of its business.

In order to achieve the goal of the study, the first step taken
was to understand the requirements. Following this exercise,
a subset of elicited requirements is presented below:
R1: Smart bank’s policies prohibit certain sensitive data

from being hosted on any server outside the its country
of operation. Thus, data fields specified as sensitive
should not be accessible in clear text outside this
territory.

R2: Security mechanisms should not degrade defined per-
formance thresholds. Specifically, response time for

3http://www.xactium.com



add, delete, update and display data operations should
not exceed 5 secs at peak period and 2.5 secs during
normal operations.

R3: Critical components within the architecture should not
constitute a single point of failure thereby affecting the
system’s uptime.

R4: Any mechanism adopted should not impact the pro-
grammability of the platform. Thus, native Force.com
functions and reporting tools should not require addi-
tional language extensions.

R5: It should be easy to manage security keys and add new
data fields to the sensitive dataset without compromis-
ing the security of the system.

Requirements R1, R3 and R5 have security implications
which must be factored into the design decisions taken to
realise the architecture. In addition, requirements R2, R3
and R4 should be factored into performance, availability
and modifiability design decisions of the architecture respec-
tively.

B. Architectural Design

Members of the architecture team elicited and reviewed
several candidate architectures prior to the evaluation pro-
cess (E.g. [1]). The candidate architecture adopted to meet
the requirements specified by Smart bank is shown in
Figure 2.

The security objective of this architecture is to ensure that
data fields marked as sensitive by the bank administrator
(denoted by Admin in Figure 2) are stored in encrypted
format, while other non-sensitive data fields are stored in
clear text within the Cloud. It should be impossible for an
attacker to link the encrypted sensitive data fields in the
Cloud to any local data stored within the bank’s subsystem.
Some of the important features of this architecture are
elaborated upon below.

• Web Service; a middleware between the Cloud infras-
tructure and the bank’s subsystem for exchanging meta-
data required for synchronising the state of the two
subsystems.

• Security Manager; is the component responsible for
managing the security of data passed on to the Cloud
and also making it readable when fetched by Cloud
users. It consists of 3 main sub-components namely:
data filter, encryption and decryption components.

• Data Repository; this refers to the database located
within the bank’s premises storing data field definition,
security keys and sensitive data.

• Administration Tool; is used by the bank’s IT admin-
istrator to flag data fields as either sensitive or non-
sensitive and also to manage cryptographic keys on
behalf of users.

C. Component Description

The main sub-components of the Security Manager are
described here to provide sufficient information for security
analysis.

• Data Filter Component; requires a record consisting of
data fields. Suppose we have a record, R with fields,
f1, f2, ..., fn. The data filter component queries the data
repository for the type (i.e. sensitive or non-sensitive)
of each fi in R. Each fi marked as sensitive is passed
to the encryption component for encryption and the
returned ciphertext, c is sent to the Cloud in place of
the original value of fi.
The reverse is the case when the data is fetched from
the Cloud. If the field fi was previously encrypted
then its ciphertext value, c is passed to the decryption
component and the decrypted result (i.e. original value
of fi) is presented to the user.

• Encryption Component; this component requires the
data filter component for the case where the field fi is a
sensitive field. The encryption component encrypts the
value assigned to field fi using the following scheme:

h← H(fi||na)

c← Enc(h||s, K)

where, || is the concatenation operator
na is a nonce (a random number generated and used
only once)
H is a hash function
fi is the original value of the sensitive field
K is the user’s symmetric encryption key
s is a unique identifier generated per encryption
Enc is the encryption function, and
c is the resultant ciphertext
The value of c is returned to the data filter component
while those of fi, na and s are stored securely. The
ciphertext corresponding to the value of each sensitive
field, along with the values of the non-sensitive fields
in the record are passed on to the Cloud.

• Decryption Component; requires the ciphertext, c stored
in the Cloud. The value of c is decrypted to its original
plaintext using the key, K, assigned to the user request-
ing the data. The decryption scheme is as follows:

Dec(c, K)→ h||s

The component retrieves the values of fi and na based
on the value of s. The verification, h = H(fi||na) is
performed to ensure the encrypted value has not been
compromised. If the verification succeeds, the actual
value fi is displayed to the user.

Figure 3a depicts the interaction among these components.
We reiterate here that while the detailed description of
components informs proper analysis, our objective is not to
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design cryptographic protocols, rather we seek to identify
security risks in the architecture by a systematic application
of the ATMIS method.

V. ARCHITECTURAL EVALUATION

A. Direct Evaluation (ATAM)

Space limitation constrains us from providing full details
of the ATAM analysis. Hence, we provide only relevant
information required to understand how we arrived at the
ATAM deliverables; especially risks, sensitivity and tradeoff
points.

1) Security Quality-Attribute Characterisation: The work
of [7] provided characterisation for the availability, perfor-
mance and modifiability quality attributes. We found only
one such characterisation for the security quality attribute
[12]. Since our work is concerned with the security prop-
erties beyond the infrastructural level, it was necessary
for us to design a characterisation of the security quality
attribute which we used to elicit security-specific questions
for probing the architecture. Figure 4 shows this security
characterisation.

2) Security Analysis: Given the quality attributes identi-
fied from the scenarios from all stakeholders. Utility trees
were created to elicit specific scenarios related to these
quality attributes. The scenarios were prioritised with respect
to their importance to the realisation of the client require-
ments. The security quality attribute of the architecture was
described using the expression:

Qs = F (Df , E, D)

where Qs refers to the security quality attribute, F is the
function taking the security parameters, Df is the data filter

component, E represents the encryption component and D
is the decryption component.

• Data Filter Component, Df : This component was
modelled as

Df = g(f)

where the function g returns the query latency per field,
f , to determine whether it is a sensitive field or not.
Consider the case where the function g = 5ms per
data field. The performance impact is minimal when
few data fields are involved, but this impact increases
exponentially as the number of data fields increases.
This problem may result in unintended security con-
sequences such as buffer overflow which may be ex-
ploited by an attacker to execute malicious code.

• Encryption component, E: Recall that the parameter,
s, in the encryption scheme is a unique identifier
generated per encryption operation. The limit of such
a unique identifier generator could represent a risk
point for the architecture. This is important because
any collision in the value of s will result in the same
ciphertext for two separate data fields having equal
values.

• Decryption Component, D: The following questions
were used to probe this component: What is the com-
plexity of the decryption function? During peak peri-
ods, what is the cost of the repository fetch operation
for retrieving a user’s key based on the value of s?
What is the complexity of the verification function?

3) Risk, Sensitivity points and Tradeoff points: In this sec-
tion some of the security-related tradeoff points discovered
during the ATAM analysis are presented.
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• Security Vs Usability: This tradeoff is evident from the
choice of key management scheme. While centralised
key management offers better usability by isolating the
users from the burden of key generation, renewal and
revocation. Decentralised key management offers better
security but less usability.

• Security Vs Maintainability: Storing sensitive data in-
house and non-sensitive data in the Cloud provides
better assurance since sensitive data could not be easily
compromised because they are under the control of the
client. However, if a substantial amount of the client’s
data are sensitive, the maintenance overhead incurred
by storing them in-house could outweigh the benefits
of adopting CC for provisioning the service.

• Security Vs Performance: Using arguments similar to
(2) above; the more data marked as sensitive, the
more performance overhead incurred due to encryp-
tion/decryption of data. Also the computational com-
plexity of the encryption scheme (symmetric or asym-
metric) could further degrade performance.

• Security Vs Locality of Data: Replication of data across
multiple sites introduces the risk of exposing the data to
security attacks. Suppose a replica of the data repository
is held in a country which does not enforce strong
security policies (e.g. permitting encryption algorithms
which are already broken or weak encryption keys).
There is the risk of compromising the data from this
replica, while the primary data repository may be in a
more secure location.

• Security Vs Availability: The Security Manager is a
potential single point of failure, hence a replica of
the component is provided to ensure availability in the
event of a distributed denial of service (DDoS) attack
on the primary Security Manager. In addition, the use of
a DDoS detection mechanism would serve to facilitate
early detection of such attacks.

4) Findings: Some of the important findings from the
ATAM analysis are: (i) The security of the Data Repository
poses the highest risk to the security of the architecture.
(ii) There could be a huge cost in terms of maintenance



and performance if a large proportion of the client data are
sensitive. (iii) The Administration tool represents a single
point of absolute trust in the architecture. Therefore, an
additional layer of security is required to secure data in
the presence of corrupt administrators. Two approaches are
to: (a) Use a Trusted Platform Module (TPM) [13] thereby
transferring trust to a tamper-resistant hardware. (b) Utilise
a (k, n) threshold scheme (e.g [14]) to share trust among a
number of trusted entities.

While some of the findings from the analysis may appear
unsubtle, they were not obvious prior to the evaluation of
the architecture using the ATMIS method.

B. Indirect Evaluation (Testing for Implied Scenarios)

This phase of ATMIS could be described as the enrich-
ment to plain ATAM because it involves performing dy-
namic analysis of component interactions to reveal security
risks resulting from concurrent behaviour. Detected implied
scenarios are useful to architects since security risks that
were not captured by human static analysis efforts may be
revealed. We classified these implied scenarios into one of
three categories: high risk, medium risk and low risk. High
risk implied scenarios will necessarily require a refinement
of the architecture to ensure that they are not exploited.
Low risk implied scenarios may be ignored, but they are
documented as part of the evaluation report. The treatment
of medium risk implied scenarios is left to the judgment of
the evaluation team. Steps 5(a) - 5(d) in section 3 could be
used as a guide to making such decisions.

1) Analysis: The open-source LTSA tool [10] was used
to carry out the Implied Scenario evaluation on behavioural
models of the components interaction. Our experiments
covered scenarios for: storing sensitive and non-sensitive
data in the Cloud; viewing sensitive and non-sensitive data
previously stored or processed in the Cloud; adding, delet-
ing and updating cryptographic keys; and designating data
fields as either sensitive or non-sensitive. As an example,
the SavingSensitiveData scenario is shown in Figure 3a to
illustrate how components interact in the system.

2) Findings: After modelling the interaction among the
scenarios, one implied scenario was detected (see Figure 3b).
This implied scenario corresponds to the case when the
client makes a web service call to encrypt a sensitive field
value but an attacker is able to manipulate the web service to
perform a decryption operation instead. Such a vulnerability
could be exploited to perform a key replay attack on sensitive
fields. This attack could be achieved by first requesting
an encryption of a sensitive field value and subsequently
requesting a decryption with some previously compromised
key.

The detected implied scenario is not trivial as this rep-
resents a security risk which could lead to further security
scenarios when examined from a technical/business perspec-
tive; hence it was classified as high risk. Consider a use-case

where a member of staff at Smart bank requests to secure
the field representing the Net Loss of Smart bank for the
month. This information could be abused by a competitor
to reduce the reputation of Smart bank before its customers
in the media, thereby leading to loss of business for Smart
bank. As an instance of a possible attack path that could
be derived from this implied scenario; a malicious software
developer in possession of a prerecorded ciphertext value of
the field may compromise the architecture as follows:

• Bank staff member sets out to encrypt a sensitive data
field (E.g. Net Loss value).

• Web service queries Security Manager for sensitive
status of this data field.

• Web service passes the request to the Security Manager.
• Security Manager returns result indicating that the data

field is sensitive.
• Instead of calling the encryption component, the mali-

cious web service consumer calls the decryption com-
ponent and passes the prerecorded ciphertext to it as
parameter value.

• The web service returns the actual value of the Net
Loss in plaintext.

These types of attack are predominant in dynamic envi-
ronments where run-time composition of components makes
it impossible to fully account for unpredictable interactions
of components until deployment time.

C. Post-Evaluation Activities

The implied scenario detected in the first phase of the
evaluation was added to the top scenario list of the ATAM
and the architecture was subsequently revised to address
it. Further testing of components derived from the refined
ATAM architecture using Implied Scenario technique re-
vealed 2 additional implied scenarios which were classified
as high security risks (we omit their description due to
spatial constraints). In accordance with the iterative nature
of our method, the architecture was refined twice in this case
before the evaluation process was terminated. During each
iteration of the process, Implied Scenario technique gener-
ated scenarios which were missed during the ATAM static
analysis, while the expertise of the ATAM team was used
to evaluate and prioritise security-related implied scenarios
at the background. Architecture refinement decisions were
made by the architects with guidance from the ATAM team.
Table II shows a summary of the evaluation result. A scaled
graph showing the time and overhead incurred using our
method is shown in Figure 5.

Following the architectural evaluation, we have imple-
mented a prototype of the fittest candidate architecture.
The prototype has proved to be intact with respect to the
detected and probed security scenarios. The time spent
testing the prototype system for security requirements was
shorter. Hence, the time spent evaluating architectures for
security paid off significantly by detecting avoidable security



Table I
COMPARISON OF EVALUATION METHODS

Components \ Methods ATAM Implied Scenario ATMIS

Maturity stage Refinement Development Inception

Process support Comprehensively Coarse-grained Embedded in
covered description method description

Method’s activities 9 activities Message sequence ATAM & Implied
in 2 phases chart analysis Scenario activities

Method’s goals Sensitivity & Detect implied Sensitivity &
Tradeoff analysis scenarios Tradeoff analysis

Quality attributes Multiple Security Multiple
attributes attributes attributes

Applicable project stage After architecture After architecture design After architecture design
design or implementation or implementation

Architectural description Process, data flow, Process & data flow Process, data flow,
uses, physical uses, physical
& module views & module views

Evaluation approaches Questioning & Tool-based Questioning, measuring
measuring analysis & tool-based analysis

Tool support Partially Available Available Available

Stakeholders involved All major Architecture All major
stakeholders Designer stakeholders

Table II
SUMMARY OF EVALUATION RESULT

Metrics \ Method ATAM ATMIS

No. of candidate architectures 4 4

No. of scenarios 25 29

Security-related scenarios 9 13

Security risk points 5 9

Tradeoff points 8 10

Stakeholders involved All All

No. of architecture refinements 0 2

Evaluation duration 3 days 4 days

t1 t2 t3 t4 t5 t6
Time

ATAM

Implied scenario testing
Evaluation 

Method

Figure 5. Effort Estimation

risks early in the development cycle. In addition, the results
improved the architect’s confidence in the fitness of the
proposed architecture towards meeting client requirements.

VI. DISCUSSIONS

Using the framework proposed by [15], we compared
ATMIS with plain ATAM and Implied Scenario technique as
shown in Table I. The results indicated that ATMIS method
is a more holistic approach to evaluating architectures for
security. In particular, our method which is based on expert
questioning, measurement and tool-based analysis offers a
better coverage of scenarios than the ATAM, and a better
expert analysis than Implied Scenario technique. At the
moment, the maturity stage rating of our method (i.e.
inception) makes it hard to arrive at strong claims about
its generalisation. Consequently, more examples and case
studies are required to further validate the ATMIS method.

From figure 5, it is clear that using ATMIS takes more
time than using only ATAM. Therefore, a trade-off exists
between the time required to perform the evaluation and the
probing of the architecture to ensure that as many security
scenarios as possible are accounted for. In an environment
where thousands of components are involved, our method
may require much more time to get results. The criticality
of the architecture or application domain may guide how
this trade-off will be addressed. In particular, the niche
area of critical systems architecture where zero-tolerance
for security failure is desirable may find the method very
applicable.

A more principled approach may also be required to
guide the decision-making process of whether to embark on
architecture refinement or not after the detection of implied
scenarios. As highlighted by the method, one approach to
achieve this is to perform a cost estimation of the likely



impact of the security risk [16]. A possible path to consider
is the idea of using Real Options [17] to precisely quantify
security risks generated from implied scenario.

VII. RELATED WORK

A model-driven framework called TREAT (Tracking of
REquirements And Threats) was proposed by [18]. Their
method blends together several architectural evaluation and
software testing techniques including the ATAM. The ob-
jective of their approach was to match each stage of the
software development process with the risk analysis method
most suitable for it. They have considered misuse cases
elicited by the architects as a mechanism for identifying
security risks to the architecture. This approach suffers from
the same weakness as the ATAM, since it is possible for the
architects (human factor) to miss certain misuse cases which
may pose security risks to the architecture.

Past experience reports using ATAM (E.g. [19]) have also
motivated the need to improve the method based on limita-
tions uncovered during its usage in various settings. Some
attempts to achieve these involved combining the ATAM
with other methods [20], [21]. However, most of these
results have adhered to the static analysis theme underlying
the ATAM. More importantly, they have provided insight
into mechanisms for adapting scenario-based evaluation to
architectures within different domains and industrial settings
[22]–[24]. However, none of them have attempted to adopt
a dynamic analysis approach to enrich the ATAM.

On the other hand, Implied Scenario is primarily a subject
of academic research for testing architectures for security,
reliability, concurrency and assessing the design of imple-
mented systems [5], [25]. To the best of our knowledge,
the use of Implied Scenario and associated tools (Acme and
LTSA) in industrial settings has not been reported.

VIII. CONCLUSION

In this paper, we have motivated the need for architecture
evaluation methods suitable for the dynamic unpredictable
environments such as Cloud Computing. In particular, we
have presented an evaluation method based on ATAM and
Implied Scenario for evaluating the security quality attribute
of architectures in this domain. The novelty of our work lies
in the fact that we have been able to address weaknesses in
a static analysis architecture evaluation method (ATAM) by
enriching it with innovative ideas from a dynamic analysis
method (Implied Scenario) to generate subtle scenarios
which may lead to security attacks on the architecture
if undetected. We have exemplified the approach with an
industrial case study of an architecture interfacing the Cloud.
The results indicated that our methodology found additional
security scenarios beyond the plain ATAM, resulting in new
risks and tradeoff points.

We are currently investigating the use of the method to
evaluate architectures in various domains like identity man-

agement and enterprise web application. In the future, we
seek to report more case studies to illustrate the repeatability
of the method and further refine it to address emerging
issues.
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