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Abstract—In the next decades, hybrid multi-cores will be
the predominant architecture for reconfigurable FPGA-based
systems. Temperature-aware thread mapping strategies are key
for providing dependability in such systems. These strategies
rely on measuring the temperature distribution and predicting
the thermal behavior of the system when there are changes
to the hardware and software running on the FPGA. While
there are a number of tools that use thermal models to
predict temperature distributions at design time, these tools
lack the flexibility to autonomously adjust to changing FPGA
configurations.

To address this problem we propose a temperature-aware
system that empowers FPGA-based reconfigurable multi-cores
to autonomously predict the on-chip temperature distribution
for pro-active thread remapping. Our system obtains temper-
ature measurements through a self-calibrating grid of sensors
and uses area constrained heat-generating circuits in order
to generate spatial and temporal temperature gradients. The
generated temperature variations are then used to learn the
free parameters of the system’s thermal model. The system thus
acquires an understanding of its own thermal characteristics.

We implemented an FPGA system containing a net of
144 temperature sensors on a Xilinx Virtex-6 LX240T FPGA
that is aware of its thermal model. Finally, we show that
the temperature predictions vary less than 0.72 degree C on
average compared to the measured temperature distributions
at run-time.
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I. INTRODUCTION

Thermal management gains importance for FPGA-based
embedded systems, since thermal effects dramatically in-
crease for shrinking device structures. High temperatures
influence the switching speed of transistors, which can lead
to soft (timing) errors, and contribute to the premature
occurrence of hard errors [1]. Over the last years, several
dynamic thermal management techniques were discussed,
which aim at avoiding hot spots (spots on the chip exceeding
certain temperature thresholds) and at balancing the on-chip
temperature.

One popular approach to enable thermal management on
embedded multi-core systems is thermal thread mapping.
For instance, [2], [3] developed thread mapping strategies
for FPGA-based multi-processor systems-on-chip. Using
thermal thread mapping strategies, the operating system
maps threads to cores such that currently hot cores run
with reduced thermal stress, while currently cold cores have

to bear a higher level of thermal stress. We believe that
these mapping strategies are not limited to multi-processor
systems, but can be extended to heterogeneous multi-core
systems, e.g. ReconOS [4], containing processors that exe-
cute software threads and reconfigurable hardware slots that
execute hardware threads. However, predicting accurate tem-
perature distributions of different mapping scenarios (based
on the current temperature distribution and thread mapping)
on-line is still an open research challenge. This challenge
needs to be solved, so that thermal thread mapping strategies
are able to select the optimal mapping variant and, hence, the
the number of thread migrations can be significantly reduced
compared to trial and error strategies.

To meet this challenge, the system, on the one hand,
needs to measure the current temperature distribution at
run-time. While this is already possible using a sensor net
based on ring oscillators [5], these sensors have to be cali-
brated manually using external devices, e.g. a temperature-
controlled oven, beforehand. On the other hand, the system,
requires a thermal model to predict or simulate the effect of
thread remapping. Today’s thermal models of VLSI designs,
unfortunately, require knowledge of the chip structure and
the material properties which have to be provided by the
system designer. Furthermore, the complexity of today’s
thermal models, e.g. HotSpot [6], prevents their application
on embedded devices. To overcome these shortcomings, we
propose a system that is temperature-aware in the sense, that
it is able to calibrate its sensors and to construct its internal
thermal model without outside intervention. Thus, such a
system enables autonomous thermal thread mapping.

Following our approach, the system first calibrates its sen-
sors and then learns its internal thermal model autonomously
in an initial testing phase, before the system starts execution.
As precondition, we assume that the FPGA contains an built-
in pre-calibrated thermal diode. We fill the FPGA with local
heat-generating circuits (heaters) and place a net of ring
oscillator-based temperature sensors on top of it. In a first
step, the system uses all local heaters to globally heat up the
chip. The sensors are calibrated to the temperature readings
of the thermal diode while heating. In a second step, the
system generates spatial gradients by activating only some
of the local heaters. Using a learning algorithm, the system
determines the parameters of its internal thermal model. This
enables modern FPGA-based systems to measure and predict



temperature distributions autonomously which forms a basis
for later thermal thread mapping strategies on (heteroge-
neous) multi-cores.

As novel contribution, we propose a temperature-aware
system that is able to measure and predict temperature
distributions on-chip without any knowledge about the chip
structure or the material properties of the FPGA. Finally, our
proposed sensor calibration technique replaces the extensive
manual sensor calibration using external devices, e.g. a
temperature-controlled oven [5], [7], [8] or an infrared
camera [9], by self-calibration using local heaters and a
built-in thermal diode.

The remainder of the paper is structured as follows. We
discuss related work on temperature sensors, temperature
models and temperature simulations for FPGAs in Section II.
We introduce our system architecture that can measure
temperature distributions and generate temporal and spatial
thermal gradients on-chip in Section III. Section IV presents
our proposed thermal model and a learning algorithm that
identifies the system’s thermal model parameters at run-time.
The learned parameters can be used to predict future temper-
ature distributions, e.g. after thread mapping. In Section V,
experimental results for on-chip sensor calibration, thermal
model parameter learning and temperature predictions are
presented and analyzed for an Xilinx Virtex-6 LX240T
FPGA. Finally, Section VI concludes the paper.

II. RELATED WORK

This section presents related work in temperature mea-
surements, temperature models and temperature simulations
in FPGA-based systems.

A. Measuring Temperatures on FPGAs

In the last decade, several works [5], [7] used ring
oscillators combined with counters to design temperature
sensors on FPGAs. More recently, [8] designed a net of such
sensors on a Xilinx Virtex-5 and showed that ring oscillator-
based sensors can furthermore be used to measure leakage,
delay and dynamic power. Similar to [5], [7], [8], we use
a ring oscillator combined with a counter as temperature
sensor. Unlike [5], [7]-[9], we do not calibrate the sensors
using a temperature-controlled oven or an infrared camera.
Instead, our system self-calibrates its sensors using local
heat-generating cores and an internal thermal diode which
can be found in many modern FPGA devices, e.g. Xilinx
Virtex-5 and Virtex-6 FPGAs.

B. Temperature models and simulations

HotSpot [6], [10] is a widely-used tool for temperature
simulations of VLSI designs, e.g. FPGAs. HotSpot provides
a compact thermal modeling methodology that makes use
of the duality between thermal and electrical phenomena.
Thus, it defines a multi-layered RC-network to compute the
heat flow on the chip. The model consists of multiple layers

like heat sink, heat spreader, thermal interface material,
silicon bulk, interconnect layer, etc. Each layer is partitioned
into blocks. Each block has a thermal capacitance (heat
absorption capability) and is connected to other blocks
with lateral and vertical thermal resistances. Many model
parameters of the RC-network can be defined by the material
properties of the considered layer. In [7], the authors show
that the temperature distributions on FPGA systems that are
measured using ring oscillators closely match the simulated
temperature distributions using HotSpot. Although, HotSpot
provides a compact thermal model methodology for fast
temperature simulations, it is infeasible to use it on em-
bedded systems due to its high level of detail. Thus, we use
a thermal model with only two layers, trading accuracy for
performance. Unlike [6], [10], we assume that our system
cannot define the model parameter using material properties
provided by the manufacturer but learns them at run-time.

III. MEASURING TEMPERATURE DISTRIBUTIONS
A. Temperature Sensor

A ring oscillator contains an odd number of inverters
as depicted in Figure 1 whose output oscillates between
0’ and I’ at some frequency. The frequency of the ring
oscillator changes almost proportional to the temperature,
since the switching speed of transistors is directly influenced
by the temperature which was shown in [5]. Before a
measurement is done, the oscillator ’tunes in’ for a short
amount of time. Then, a counter counts the oscillations for
a fixed amount of time to define the current frequency of
the oscillator which can be translated into temperatures. We
enable our ring oscillator-based temperature sensor for 2'3
system clock cycles before measuring. Then, we measure for
217 system clock cycles to reduce the impact of the system’s
noise. Note, that the ring oscillators have to be designed
such that their frequencies is at most half of the counter’s
clock frequency in order to provide reliable sampling. Ring
oscillators containing 11 inverters showed good temperature
sensitivity when the inverters were mapped to different
slices.
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Figure 1.

Ring oscillator with an odd number of inverters.

B. Heat-generating Circuits

As our temperature-aware system needs to learn its in-
ternal thermal model, it has to be able to generate spatial
thermal gradients. Thus, we developed local heat-generating
circuits (heaters) and map them on the FPGA using area
constraints. Figure 3(b) shows an exemplary positioning
of such heaters on an FPGA. All heaters are connected



to a system bus and can be activated independently from
a MicroBlaze processor. When activated, a heater toggles
10,000 flip flops at each clock cycle to produce heat. Using
an Virtex-6 FPGA, we were able to generate spatial thermal
gradients up to 6.5°C.

C. Sensor Calibration

To translate the measured frequencies of a ring oscillator-
based sensor to temperatures, the system needs to calibrate
the sensor. To apply our approach, the FPGA needs to
contain a pre-calibrated built-in thermal diode which the
system uses to calibrate the sensors. Such thermal diodes
can be found in Virtex-5 and Virtex-6 FPGAs. According
to [S], [7], the correlation between measured frequencies
and temperatures is almost linear. Thus, we propose that
the system calibrates a sensor by mapping distinct sensor
frequency measurements to the corresponding temperature
measurements of the thermal diode. For a sensor calibration,
the on-chip temperature distribution should be balanced.
Hence, the system only measures twice, (1) where all heaters
are deactivated and (2) where all heaters are activated. The
system generates a linear frequency-temperature transforma-
tion function T'(f) that is defined by the measurements.
Since sensors might be routed differently, each sensor needs
its own translation function. Once the individual translation
functions are defined, the system can measure temperature
distributions on the chip.

D. Sensor Net

In order to get a good sensor coverage of the FPGA,
we propose to partition the FPGA into an regular grid of
tiles and place a sensor at the center of each tile. Thus, the
sensors form a sensor net where all sensors are connected to
the same monitoring unit. The monitoring unit is connected
to a MicroBlaze CPU that controls not only the heaters but
also the sensors using the PLB bus. When a measurement is
triggered by software each sensor performs a measurement
as described in Section III-A. The individual counter values
can be accessed by the MicroBlaze processor using the
PLB bus. These counter values can then be translated to
temperatures using the calibrated translation functions T'(f).
An exemplary sensor net can be seen in Figure 3(a).

IV. PREDICTING TEMPERATURE DISTRIBUTIONS

The purpose of our thermal model lies not so much in ac-
curately modeling physical reality given a set of parameters,
as it is done for instance in design-time thermal analysis [6].
Instead we focus on an efficiently computable model with
a small number of free parameters that can be easily found
by an on-line learning algorithm.

A. Model Layout

In order to model heat flow and temperature distributions
we make use of the well known duality between thermal

heat sink

heat sources

Figure 2. Thermal model: The nodes are arranged in two layers where
each layer is a regular grid of nodes. Layer O receives heat input while
layer 1 is connected to the heat sink.

models and RC-networks. Our model consists of two verti-
cally arranged layers, Ly and L;. Each layer is a regular grid
of nodes of width w and height h, that matches the layout
of the temperature sensor grid. Each node 7 is identified by
a coordinate p(i) = (z,y), and the number | € {0,1} of
its layer. A capacity C'(¢) is assigned to each node. Nodes
within a layer [ are connected by the resistance R ;, for
nodes that are neighbors in the z-coordinate and R, ; for
neighbors in the y-coordinate. Nodes of different layers are
vertically connected through the resistances R, (ig, 1) with
i9 € Lo and iy € Ly with p(ip) = p(i1). The nodes iy
in layer 1 are connected to a heat sink of temperature T
with the resistances Rg(i1) while the nodes iy in layer O
are connected to heat sources I(ig). Figure 2 illustrates the
model layout.

In this model the heat flow I, (i) to a node i from its
neighbors N (7) is given as

R(i, )
where T'(i) is the current temperature of node ¢ and

R(i,7) is the resistance between the nodes i and j. The
flow I, to the heat sink is:

JEN(i)

Isink (7/) =

For small time intervals At the temperature change AT
of a node 7 can be approximated as

In (Z) + Isource(i) + Isink(i)
C(i)

where Iy, (1) is the heat input generated by circuits on

the FPGA. Only layer Ly is connected to sources and only

AT, = At (1)




layer L; is connected to sinks. Therefore, Iue(i1) = 0
and Isink(i()) =0 for all 79 € Ly and i1 € Lq.

Using a two layer model is a compromise between pre-
diction accuracy and computational efficiency: A one layer
model cannot generate the temporal gradients we observed
while three or more layers do only marginally improve
predictions and at the same time generate a greater workload
for the learning algorithm because of the increased number
of free parameters.

B. Learning Parameters

The model we propose contains a set P of free parameters
that have to be learned by the system in order to make
useful predictions (see Table III). In order to evaluate how
good a parameter set P is, we first measure a time series
of temperature distributions, then we run a simulation of
our model using P and compare the resulting temperature
distribution T (P, t;, j) at each time step ¢; and at each node
j € Lo with the measurement T, (¢;, 7). The goal is to find
a parameter set P that minimizes the mean square error mse
of the simulation given by:
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mse(P) = (P,t;,5) — Tin(ti,§))°

where N is the set of layer-0 nodes and M is the set of time
indices at which measurements were taken. We do this in
two steps: First, we generate a spatially uniform temporal
temperature gradient by activating all heaters at the same
time. Since this leads to a spatially uniform temperature
distribution, there is no heat flow I, between neighboring
nodes on the same layer. This allows us to learn the parame-
ters that determine the vertical heat flow through our model
independent of the lateral components. The learning itself
is done by randomized hill climbing, where the objective
function to be minimized is mse(P). The algorithm starts
from an initial solution P = PF,; and through random
variation of P tries to improve mse(P). Over a pre-defined
number of iterations the random variations become smaller
until the algorithm terminates in or close to a minimum.

In the second step, we generate spatial gradients by
selectively activating the heaters to the top, bottom, left and
to the right. This is mainly used to find values for the lateral
resistances R, ; and R, ;.

C. Predicting Temperature Distribution

Using the previously learned thermal model, the
temperature-aware system can predict future temperature
distributions at run-time: The system initializes the tile
temperatures of layer 0 with the current measurements of
the temperature sensors. If some of the tiles do not contain
temperature sensors, their temperatures can be gauged by
neighboring tiles that contain sensors. The temperatures of
the tiles in layer 1 can then be initialized so that the system

is in thermal equilibrium. For temperature prediction, the
changes in temperature have to be updated iteratively for all
tiles using Equation 1. Continuous updates of the tile tem-
peratures for small At values lead to accurate temperature
predictions of arbitrary length.

In the case of a reconfigurable multithreaded HW/SW
system, each thread may be mapped to a CPU or to a digital
circuit implemented on the FPGA. Each thread has a thermal
footprint in the form of heat sources Iouce (i) that depends
on where it is running and on its current workload. These
thermal footprints have to be known in advance in order to
predict the system’s future temperature distribution.

We propose that the temperature-aware system learns the
Tsource (¢) parameters of different threads at run-time and
during thread execution. In the beginning, this implies that
the system has to explore the effects of different thread
mappings. If an entire thread schedule should be predicted,
the system has to change the heat sources of affected tiles
for the specific points in time. An example can be seen in
Figure 5 where the activation of the local heaters change at
run-time.

V. EXPERIMENTAL RESULTS
A. FPGA Setup

For experimental measurements, we used the Xilinx
Virtex-6 LX240T FPGA ML605 Evaluation Kit that contains
a pre-calibrated internal thermal diode that can be accessed
inside the FPGA using the dedicated system monitor hard
macro. We partitioned the FPGA containing 160x239 slices
into an regular grid of 10x15 tiles where each tile contains
a temperature sensor at the center. For our experiments
this setup proved to be a good compromise between grid
resolution and FPGA resource usage. On this FPGA, there
is a central region which is not reconfigurable so that we
could not place temperature sensors for 6 tiles in this region.
Figure 3(a) shows our sensor net. We implemented 12 heat-
generating circuits and constrained them to disjunct areas
that can be seen in Figure 3(b). This layout was chosen
because on one hand it enables us to heat up the left, right,
upper and lower sides of the FPGA independently and on the
other hand the size and shape of the heater regions resemble
that of possible hardware threads that may run on the FPGA.

B. Calibrate Sensor Net

In order to calibrate the sensors, the system must first be
in thermal equilibrium, which we assume is reached when
the thermal diode does not vary more than 0.3°C in a time
interval of 20 seconds. At this point the system makes a tem-
perature measurement for each sensor and stores the number
of oscillations for a fixed time interval of 2'7 clock cycles
as well as the measured temperature of the thermal diode.
In a second step, the FPGA activates all heat-generating
circuits and again waits for thermal equilibrium. At this
point, the system makes a second temperature measurement
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(a) sensor net (b) heaters

Figure 3. FPGA setup: (a) sensor net and (b) regional heaters mapped
on a Virtex-6 LX240T ML605 FPGA. The black box in the center is not
reconfigurable.

Figure 4. Measuring temperature distribution (in °C) on an Virtex-6 FPGA
where the top five heat-generating cores are activated.

for each sensor and computes a linear function mapping
sensor readings to temperature. The sensor self-calibration
takes about 3 to 4 minutes in our experiments.

Figure 4 depicts an exemplary temperature distribution
that was measured after self-calibration. In all our experi-
ments, the fan of the FPGA’s cooling element is active.

C. Learn Thermal Model Parameters

After sensor calibration, the temperature model parame-
ters are learned. Therefore, the system creates a 12-minute
test scenario, see Table I, where the system creates spatial
and temporal temperature gradients. In a first step, the sys-
tem activates all heaters for 2 minutes, before it deactivates
them again. In a second step, it activates the local heaters
on each side of the FPGA for 1 minute, before it deactivates
them again for 1 minute. The temperature reading of a sensor
(marked in Figure 3(a)) can be seen in Figure 5. The system
performs measurements on the entire sensor net each second
and stores all temperature readings in main memory.

Table I
12-MINUTE LEARNING SCENARIO

time (min.)  description

1-3  all local heaters are activated

4-5  top five local heaters are activated

6-7  bottom five local heaters are activated

8-9  five local heaters to the right are activated
10-11  five local heaters to the left are activated
other  all local heaters are deactivated

Then, randomized hill climbing—see Section IV-B-is ap-
plied for the measurement data. Table III shows the initial set
Pinie of the free parameters for the learning algorithm that
were defined manually. Table II defines the improvement
of the average root mean square error (rmse) between
measurement and simulation data while the parameters are
learned for both stages. The temperatures of the tiles in layer
0 are initialized with the first measurement. For this scenario
the number of heat sources Isource(?) is limited to the cases
where the local heater that covers tile ¢ is activated, o, (i),
and where the local heater is deactivated, Tog (7).

Table II
LEARNING PROGRESS OF THE RANDOMIZED HILL CLIMBING
ALGORITHM

stage rmse in (°C)

initial ~ 3.256703
stage 1 0.773082
stage 2 0.719692

Here, the learning algorithm is executed on a MicroBlaze
processor clocked at 100 MHz. Learning the thermal model
parameters at run-time takes between 50 and 60 minutes
depending on the input data in our experiments. The learned
(averaged) temperature model parameters Pieymeq are listed
in Table III.

Table IIT
INITIAL AND LEARNED TEMPERATURE MODEL PARAMETER

param. Pinit Plearned param. Pinit Plearned
Ry (7) 100 101.07 C(i),i € Lo 0.001  0.00099
Rs(i) 33.333 35.164 C(i),i € L1 1.5 1.51013
Rz0 150 151.87 Ion(7) 0.25 0.22636
Ry 150 148.47 Toge(7) 0.15 0.17421
Rz 0.0667 0.0682 Ts 25 25.2999
Ry1  0.0667 0.0681

D. Compare Predictions to Measurements

Figure 5 compares the temperature measurements with
the temperature predictions according to the learned tem-
perature model for an exemplary sensor. It can be seen
that the temperature predictions closely match the measured
temperatures. The average prediction error for all sensors
is 0.72°C for this 12-minute scenario. Predicting the entire



scenario on a MicroBlaze processor clocked at 100 MHz
at run-time takes 99.5 seconds. We used a time resolution
of At = 0.02 seconds for a prediction step. The prediction
time can be reduced if the time resolution is reduced, but
this has negative effects on the prediction accuracy.
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Figure 5. Temperature difference between measured and predicted
temperature over the entire scenario sample set (defined in Table I) for
an exemplary sensor. The sensor position is marked in Figure 3(a)

VI. CONCLUSION

In this paper, we have proposed a temperature-aware
design for FPGA-based systems that can measure and predict
temperature distributions at run-time. For hybrid multi-
cores, our approach forms a basis for future thermal thread
mapping strategies that can predict temperature distributions
of different thread mappings at run-time. These systems can
minimize the number of migrations compared to trial and
error strategies, since they can select the optimal thread
mapping to balance the on-chip temperature.

For measuring temperature distributions, we have pre-
sented a novel self-calibration technique for FPGAs that
calibrates a ring oscillator-based sensor net internally us-
ing a pre-calibrated internal thermal diode and local heat-
generating circuits instead of external devices. In our experi-
ments, the system was able to self-calibrate its sensors in 3-4
minutes and measured spatial thermal gradients up to 6.5°C
and temporal thermal gradients up to 8°C. Furthermore, we
have introduced a thermal model where the system learns
the model parameters following a 2-stage randomized hill
climbing algorithm at run-time. Using the learned thermal
model, the system is able to predict future temperature
distributions with an average root mean square error of
0.72°C in a measured temperature range of §°C.

For future work, we want to quantify the calibration error
of our approach using temperature measurements obtained
by an infrared camera. Then, we plan to extend the pro-
posed temperature-aware approaches to hybrid multi-cores
containing processors and reconfigurable hardware modules.
The temperature sensor map will help us to identify hot spots

which shall be avoided using thread mapping. Furthermore,
we want to study at which quality an FPGA-based multi-core
system can predict the temperature distributions of possible
thread remappings at run-time. Finally, we plan to develop
and analyze different thermal thread mapping techniques that
benefit from these temperature predictions and apply them
to a real-world case study.
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