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ABSTRACT

Network programming is widely understood as program-
ming strictly defined socket interfaces. Only some frame-
works have made a step towards real network programming
by decomposing networking functionality into small modu-
lar blocks that can be assembled in a flexible manner. In
this paper, we tackle the challenge of accommodating 3 par-
tially conflicting objectives: (i) high flexibility for network
programmers, (ii) re-configuration of the network stack at
runtime, and (iii) high packet forwarding rates. First ex-
periences with a prototype implementation in Linux suggest
little performance overhead compared to the standard Linux
protocol stack.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network
Architecture and Design

General Terms

Design, Experimentation, Performance

Keywords

Network architecture, flexible network stacks, Future Inter-
net experimentation, performance

1. INTRODUCTION

Beyond doubt, the Internet has grown out of its infancy
and has become a critical infrastructure for private and busi-
ness applications. Its success is largely due to the plethora
of transport media it uses and to the rich set of network ap-
plications it offers. Yet, network programming is still mainly
about programming sockets that form a strictly defined in-
terface between the networking (TCP/IP) and the actual
application part (Facebook, VoIP, etc.). What if design-
ers of network applications could even tailor the networking
functionality to their needs? We can just speculate about
the resulting innovations.

Nowadays, changes in the configuration of a protocol stack
usually require applications or even the operating system to
be restarted. The need for changing the protocol stack can
arise if networking functionality needs to be patched, if the
used encryption method is not considered safe anymore, or
when privacy concerns change. Ideally, applications should
not be affected by such changes. Therefore, we advocate
run time reconfigurable protocol stacks. For example, such

protocol stacks can be useful for self-star properties in com-
puting, since they provide an algorithm that configures and
adapts the protocol stack autonomously.

Similar objectives were also followed by active network-
ing [3], the Click modular router project[4], or OpenFlow [5],
etc. Yet, we are not aware of any research that has achieved
the following three partially conflicting goals:

1. Simple integration and testing of new protocols on end

nodes on all layers of the protocol stack.

2. Runtime reconfiguration of the protocol stack in order

to allow for even bigger flexibility.

3. High performance packet forwarding rates.

In this paper, we propose the Lightweight Autonomic Net-
work Architecture (LANA). Our architecture borrows ideas
from ANA [2], where network functionality is divided into
functional blocks (FB) that can be combined as required.
Each FB implements a protocol such as IP, UDP, or con-
tent centric routing. ANA does not impose any protocols
to be used. Rather it provides a framework that allows
for the flexible composition and recomposition of FBs to
a protocol stack. This allows for the experimentation with
protocol stacks that are not known by today’s standard op-
erating systems, and it allows for the optimization of proto-
col stacks at runtime without communication tear down or
application support. The existing implementation of ANA
shows the feasibility of such a flexible architecture but suffers
sever performance issues. In contrast to ANA, the proposed
LANA architecture relies on a message passing by reference
scheme, minimizes the number of threads, and uses opti-
mized packet processing structures provided by the Linux
kernel. Surprisingly, our first experiences with a prototype
implementation suggest that we can offer comparable flex-
ibility as ANA, but at packet forwarding rates comparable
to those of the standard Linux networking stack.

2. LANA: APPROACH

Generally, the LANA network system is built similarly to
the network subsystem of the Linux kernel. Applications can
send and transmit packets via the BSD socket interface. The
actual packet processing is done in a packet processing engine
(PPE) in the kernel space. An overview of the architecture
is presented in Figure 1.

The hardware and device driver interfaces are hidden from
the PPE behind a virtual link interface, which allows for a
simple integration of different underlaying networking tech-
nologies such as Ethernet, Bluetooth or InfiniBand.

Each functional block is implemented as a Linux kernel
module. Upon module insertion a constructor for the cre-
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Figure 1: Packet flow in LANA

ation of an instance of the FB is registered with the LANA
core. Upon configuration of the protocol stack the instances
of the FBs are created. The instances register a receive func-
tion with the PPE. This function is called when a packet
needs to be processed.

Functional blocks can either drop a packet, forward a
packet to either ingress or egress direction, or duplicate a
packet. After having processed a packet, the FB returns the
identifier of the next FB that should process this packet.
In addition, FBs belonging to the virtual link interface will
queue the packets in the network drivers transmit queue and
FBs communicating with BSD sockets will queue the packets
in the sockets receive queue.

The PPE is responsible for calling one FB after the other
and for queuing packets that need to be processed.

2.1 Implementation

The protocol stack can be configured from user space with
the help of a command line tool. The most important com-
mands are summarized below.

e add, rm: Adds (removes) an FB from the list of avail-
able FBs in the kernel.

e set: sets properties of an FB with a key=value se-
mantic.

e bind, unbind: Binds (unbinds) an FB to another FB
in order to be able to send messages to it.

e replace: Replaces one FB with another FB. The con-
nections between the blocks are maintained. Private
data can either be transferred to the new block or
dropped.

Within the Linux kernel the notification chain framework
is used to propagate those configuration messages to the
individual FBs.

The current software is available under the GNU Gen-
eral Public License from [1]. In addition to the framework,
it also includes five functional blocks: Ethernet, Berkeley
Packet Filter, Tee (duplication of packets), Packet Counter
and Forward (an empty block that forwards the packets to
another block). The framework does not need any patching
of the Linux kernel but it requires a new Linux 3.X kernel.

2.2 Improving the Performance

We have evaluated different options for the integration of
the PPE with the Linux kernel. We summarize our insights
to provide guidance for researchers who apply fundamental
changes on the Linux protocol stack.

We compared the maximum packet reception rate of the
Linux kernel while not doing any packet processing with
LANA. In LANA packets are forwarded between three FBs
that do only packet forwarding.

e One high priority LANA thread per CPU achieves ap-
prox. half the performance of the default Linux stack.

Mechanism Performance
Kernel threads (high priority) 700.000
Kernel threads (normal priority) 750.000
Kernel threads (controlled scheduling) 900.000
Execution in ksoftirqd 1.300.000
Linux kernel networking stack 1.380.000

Table 1: Performance evaluation in pps with 64 Byte
packets. (Intel Core 2 Quad Q6600 with 2.40GHz,
4GB RAM, Intel 82566DC-2 NIC, Linux 3.0rcl)

The performance degradation is due to ’starvation’ of
the software interrupt handler (ksoftirqd). Changing
the priority of the LANA thread only slightly increases
the throughput.

e Explicit preemption and scheduling control achieves
approx. two third of the performance of the default
stack. The performance degradation is due to schedul-
ing overhead.

e Execution of the PPE in ksoftirqd context achieves
approx. 95% of the performance of the default stack.

The corresponding numbers are listed in Table 1.

3. CONCLUSIONS AND FUTURE WORK

We described how to implement a flexible protocol stack
with similar performance as the default Linux stack. Its
flexibility allows to include and test protocols, yet to be de-
veloped, and to change the protocol stack at runtime. In
contrast to TCP/IP, our proposed solution allows to tailor
the networking layer for the needs of a particular networking
situation. In the short-term, we will compare LANA perfor-
mance achieved in real scenarios with other systems (e.g.,
default Linux stack, Click router, etc.). In the mid-term, we
plan to work on mechanisms that automatically configure
protocol stacks based on the needs of applications and net-
works. In the long-term, we envisage a system that requires
less configuration as compared to today’s networks and that
is able to adapt itself to changing network conditions.
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