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ABSTRACT

Markets are useful mechanisms for performing resource al-
location in fully decentralised computational and other sys-
tems, since they can possess a range of desirable properties,
such as efficiency, decentralisation, robustness and scalabil-
ity. In this paper we investigate the behaviour of co-evolving
evolutionary market agents as adaptive offer generators for
sellers in a multi-attribute posted-offer market. We demon-
strate that the evolutionary approach enables sellers to au-
tomatically position themselves in market niches, created
by heterogeneous buyers. We find that a trade-off exists
for the evolutionary sellers between maintaining high pop-
ulation diversity to facilitate movement between niches and
low diversity to exploit the current niche and maximise cu-
mulative payoff. We characterise the trade-off from the per-
spective of the system as a whole, and subsequently from
that of an individual seller. Our results highlight a deci-
sion on risk aversion for resource providers, but crucially we
show that rational self-interested sellers would not adopt the
behaviour likely to lead to the ideal result from the system
point of view.
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J.4 [Computer Applications]: Social and Behavioural
Sciences— Economics
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1. INTRODUCTION

Markets are now widely regarded [6, 7, 12, 19] to be use-
ful mechanisms for performing resource allocation in fully
decentralised computational and other systems. They can
be efficient, dynamic and decentralised, leading to desirable
properties such as robustness and scalability. Individual re-
source providers and users are typically represented by au-
tonomous agents, acting as buyers or sellers in a market for
resources. The agents follow some predefined or adaptive
strategy, in order to act in the best interests of their host.
In both strategy design and modelling, evolutionary algo-
rithms are often used, due to an analogy between fitness-
seeking evolution and rational profit-seeking self-interested
economic agents [1, 5, 11, 19, 21, 22].

In this paper, we build upon a previous retail-inspired ap-
proach [19], in which evolutionary market agents decide the
prices of resources in a posted-offer market mechanism. In
the original model, self-interested competitive behaviour be-
tween agents led to evenly balanced allocation of resources
when buyers valued resources equally, and stable uneven al-
locations reflective of buyers’ valuations when they valued
the resources differently. These are useful outcomes from the
perspective of system designers harnessing economic princi-
ples to build decentralised computing systems.

Our new extension in this paper allows for resources to
be described over additional quality attributes, rather than
simply their price. In this extended model, resource users
may have different preferences and constraints over multiple
attributes, and as such form niches in the market into which
sellers may segment. The key contribution of this paper is
a deeper understanding of the complex interactions between
the sellers’ strategies in such markets, with a particular em-
phasis on those which lend themselves to an evolutionary
interpretation. This insight will enable the better design
of such strategies for posted-offer and other markets in the
future. Throughout, we are concerned with the use of arti-
ficial markets as a control method for engineered systems.
We therefore contrast the behaviour of the system from the
global perspective of the system designer with that of the
individual agents.

Specifically, we show that service providing nodes using
evolutionary market agents [19] are able to position them-
selves in niches created through heterogeneous buyers auto-
matically, providing levels of a quality attribute appropriate
to them. However, we also show that algorithmic artefacts
may distort this. Sellers are faced with a classic trade-off
between exploring the attribute space for more profitable
regions and exploiting a known good market position. In



evolutionary algorithms higher levels of exploration are a
feature of greater population diversity. Evolutionary sellers
are therefore faced with the decision of either maintaining a
high population diversity to perpetuate search or maintain-
ing a low diversity to exploit a market position and hence
gain a higher immediate payoff. This trade-off is illustrated
in the context of evolutionary market agents using a hyper-
mutation operator.

Of course, the trade-off between exploration and exploita-
tion is not new, and is well known particularly in the re-
inforcement learning community (see e.g. [23]). Indeed, it
is often characterised in terms of a family of multi-armed
bandit problems [2]. The problem is also well known in
the evolutionary computation community [10] and accord-
ing to Holland [13] a classic problem affecting all adaptive
and learning systems.

However, what is investigated here is different from those
evolutionary cases previously studied, due to the online na-
ture of the fitness evaluation and the dynamics brought
about by co-evolution. Particularly, in classical evolutionary
search, the goal is that one individual within the population
finds the optimum. In the case studied here, every fitness
evaluation performed counts towards the performance of the
algorithm. The goal in optimising the trade-off presented in
this paper is to maximise total payoff over all fitness eval-
uations across the lifetime of the algorithm. This is similar
to the performance metrics often used in dynamic optimi-
sation (e.g. [20, 26]), though these cases do not consider
co-evolution. Furthermore, in this paper we consider the
competing outcomes of the achievement of the local objec-
tives of the individual agents, and the global objective of the
system designer.

Additionally, the idea of niching has been well used in the
design of evolutionary algorithms [9]. However, the niching
described in this paper is concerned with the proximity of
offers, each of which is the result of an independent evolu-
tionary algorithm rather than an individual within a single
population. Since each evolutionary algorithm acts inde-
pendently of the others as it converges to a particular point
in the attribute space, no landscape information is shared
between algorithms. Any such sharing between algorithms
would require private market information to be shared be-
tween independent sellers, something which is ruled out by
our model and often illegal in real markets.

The contributions of this paper therefore fall into two
main areas. Firstly we show how the market-based con-
trol model previously proposed by us [19] can be extended
to include multiple attributes of resources, not simply price.
This allows for agents’ preferences and constraints to be con-
sidered and leads to the emergence of niches in the market,
into which evolutionary market agents can position them-
selves automatically, in order to provide attributes appro-
priate to the users. Secondly, the diversity trade-off simul-
taneously presents each individual evolutionary algorithm
with a dilemma between high expected payoff and risk aver-
sion. This diversity dilemma leads to sellers often being
unlikely to find the optimal offers, instead becoming stuck
in a less profitable niche. We characterise the trade-off us-
ing a randomly triggered hypermutation operator, the use
of which may help evolutionary market agents to avoid this
problem. However, subsequent experimental results show
that self-interested agents facing this dilemma are unlikely
to use the required level of hypermutation in their evolution-

ary algorithms, since this leads to a loss in expected payoff
and a loss in confidence of achieving the expectation.

The remainder of this paper is structured as follows. In
section 2 we describe our multi-attribute extension to the
market model presented in [19], including describing agent
behaviour and how this may induce niches in the market. We
then demonstrate the emergence of selling agents into these
niches in simulation in section 3. In section 4 we examine the
number of sellers finding each niche, and demonstrate that
the standard evolutionary market agent algorithm can lead
to uneven segment sizes. Section 5 describes the explore - ex-
ploit trade-off and subsequent population diversity dilemma,
which explains why the uneven segments occur and sellers
are unable to obtain the optimal payoff. The dilemma is
investigated in section 6 by means of a parametrised hyper-
mutation operator, and section 7 examines what behaviour
might be expected of self-interested sellers in the context of
the diversity dilemma. Finally, sections 8 and 9 conclude
the paper and look toward future directions respectively.

2. THE MARKET MODEL

The model which forms the basis for the investigation in
this paper is the retail-inspired posted-offer market, which
we previously studied in the context of computational re-
source allocation scenarios [19]. This approach has been
shown to be capable of achieving a balanced load across
providers [17] as well as other stable resource allocations
[18] in decentralised computational systems. In the original
model, resources are described purely in terms of their price,
and are assumed otherwise to be perfectly substitutable.

Using the original notation, a resource m, is offered by a
seller s; for the price p7,. If 7 may instead be described over
a number of attributes w1, 72, ... 7, then we replace the
offered price p;, with a vector of offered attribute values,
7T
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As described in section 1, the market being investigated is
intended for use as a resource allocation tool for a distributed
computing system. However at this stage, the effect of the
embodiment of the approach in any particular application
or network environment is not considered, since this would
make it unnecessarily difficult to analyse and understand
the underlying behaviour of the model. With this in mind,
a number of simplifying assumptions are taken:

1. That the system proceeds synchronously in discrete
time-steps,

2. that each buyer desires exactly one unit of 7 per time-
step,

3. that the actual provision of m may be regarded as in-
stantaneous, such that it does not interfere with the
mechanism,

4. that each seller has sufficient quantity of 7 available to
satisfy all the buyers, should it be so requested, and

5. that network connectivity is uniform.

The first two assumptions are present at this abstract
stage in order to aid the analysis of the system, and though



their presence has not been fully investigated, there appears
to be no obvious intuition as to why they should alter the
underlying behaviour being demonstrated. Assumptions 3
and 4 may not be appropriate for certain embodiments of the
approach, however are representative in theory of the provi-
sion of information-based services such as HTTP requests,
and are present in other related work such as Kuwabara et
al.’s [16] model. Finally, assumption 5 replicates the net-
work conditions found in Wolski et al.’s [25] G-Commerce
system.

2.1 Agent Behaviour

As in the original model, buying agents are faced with a
decision problem: given the offers available, which one(s)
should be chosen? Sellers are faced with a similar deci-
sion: what offer will provide the maximum payoff given the
buyers and competitors? In order to decide this, the agent
is endowed with a utility model which reflects the decision
making priorities of its owner: the user or supplier of the
resource. To a certain extent, it does not matter what this
utility model is; the agent may treat its utility function as
a black box, into which it places an offer, and from which it
receives a utility value for that offer. In this way, offers may
be compared against each other both in terms of preference
and the magnitude of the preference.

However, in order to aid analysis we make use of the com-
mon utility models of multi-attribute utility theory (MAUT)
[15], a branch of decision theory concerned with multiple cri-
teria. Its aim is to analyse and compare the attractiveness
of a set of alternatives, by calculating a single conjoint util-
ity value for each alternative. This approach has long been
useful in real-world decision making [3, 14, 24], where an
expert’s time is valuable or limited, and an analytical model
may be used as an aid to the decision process. Similar rea-
soning applies here, where for example, the human user of
a resource may not be willing or able to assess each and
every offer for its attractiveness themself, and an agent in
possession of a model may save considerable time and effort.

The translation of human or business needs and prefer-
ences into utility functions and weights for their respective
agents is a large and complex task, and we do not pretend to
contribute to that field here. It is important however to note
the assumptions relied upon by MAUT, particularly that of
utility independence of attributes. Briefly, if the utility func-
tion of attribute & does not shift strategically as attribute y
varies, then z is wutility independent of y. In other words, for
z to be utility independent of y, all the utility functions for x,
defined as y varies, must be positive linear transformations
of each other [15].

2.2 Additive Utility Model

As discussed, agents’ utility functions may be constructed
in a variety of ways in order to represent the underlying
desirability of different combinations of attributes. One of
the simplest utility models in MAUT is the additive utility
function [15]. The additive utility model assumes a refine-
ment of utility independence: additive independence. For
attribute = to be additively independent of attribute y, the
utility contribution of z must not be dependent on the value
of y. If this assumption is true for all attributes, then the
additive model may be used. For a more formal definition
of additive independence, see Keeney and Raiffa [15].

In the additive model the decision maker calculates a

weighted sum of the utility associated with each attribute.
An attribute’s weight represents the importance of that at-
tribute to the decision maker and gives its contribution to
the overall utility of the alternative. The outcome of the
function is a conjoint measure of each alternative, which
may be used to determine the overall relative preference.
Describing a buyer’s consideration of an offer by seller s;,
the buyer’s utility would be as follows:

u(@) = 3 kyuy(al?) @

The attribute’s utility function u; determines the unweighted

contribution of the jth attribute, the attribute’s weight or
scaling constant k; represents the importance of the at-
tribute to the decision maker. The scaling constants are
normalised, such that Vk;,0 < k; <1 and Z?:l ki = 1.

2.3 A Simple Example

The decision process may be illustrated by means of a
simple example. Consider a buyer faced with the following
offers from sellers s; and so:

#T = (600, 300)

#T, = (800, 500)

where a high value for the first attribute is undesirable to
the buyer, but a high value for the second attribute is de-
sirable. The buyer agent’s attribute utility functions will of
course determine the final utility value, but in this example
assume that they are linear functions which normalise from
between some minimum value 0 and maximum value 1000,
and in the case of the first attribute, obtains the inverse.
This may result in a conjoint utility of, for example,

w(ZT,) = —0.6k1 + 0.3ks

w(ZT,) = —0.8k1 + 0.5ks

Since u(Z3, ) > 0 if and only if k > 2k, the offer from s;
is only acceptable to a buyer for whom the second attribute
is twice as important as the first. For s2’s offer, u(Z7,) > 0
if and only if k2 > 1.6k1, which is somewhat less demanding.

Note that though this example is described in terms of a
buyer agent, the same approach is applied to a seller, when
comparing the utilities of two or more offers which it is con-
sidering making.

2.4 Buyer and Seller Strategies

For consistency with previous work [19], buyers then make
use of a given fixed strategy in order to decide amongst of-
fers, given their expected utility values. In this paper, we
use spread buyers, who purchase a proportion of the resource
from each acceptable seller, relative to the expected utility
gain from purchasing from that seller. Spread buyers have
been shown to lead to stable desirable outcome resource al-
locations due to the smooth nature of their payoff functions.
Further details and analysis of these strategies can be found
in [18] and [19]. Since we fix the buyers’ strategies, in this
paper our investigations are restricted to those cases where
adaptation is driven by sellers. An important extension to
this work will be the consideration of co-adaptive systems.

In the context of the evolutionary market agent algorithm,
which we recall from [19] in algorithm 1, the conjoint utility



measure provided by the multi-attribute utility function pro-
vides the payoff associated with a certain offer, and hence
a fitness measure for each agent’s evolutionary algorithm.
This is the most straightforward approach taken in extend-
ing the single attribute case, is sufficient for our purposes
here, and therefore that taken in this paper.

Algorithm 1: The evolutionary market agent algorithm
[19]

1. Decide upon the design parameters to be used: initial

price range [Pmin, Pmas|, population size and
mutation factor, a. In the simulations described,
Pmin = 0, and pmaz = 500. A population size of 20
was used, with a mutation factor, o = 3.0.

2. Generate an initial population, Pop, and set k = 1.
Each individual in Pop is a real value, drawn from
the uniform random distribution [pmin, Pmaz]-

3. Initial fitness testing

(a) Set the seller’s offer to the value of the first
individual in Pop, and enter the market for one
market time-step. Record the seller’s payoff, Ps
as that individual’s fitness.

i

(b) Repeat for the next individual in Pop, until all
initial individuals have been evaluated in the
market.

4. Probabilistic tournament selection

(a) Select four individuals, z1, 22,23 and x4 from
Pop, at random, such that x1 # x2 # x3 # 4.

(b) Let champion ¢; be either 21 or z2, the fitness of

whichever is greater with probability 0.9, the
fitness of whichever is less otherwise.

(c) Let champion cz be either 3 or x4, the fitness of

whichever is greater with probability 0.9, the
fitness of whichever is less otherwise.

5. Let the offspring, o, be a new individual with its price

equal to the mid-point of ¢; and cs.

6. Mutate o, by perturbing its value by a random

number drawn from a normal distribution with mean

zero and standard deviation «.

7. Select the individual in {z1,x2,z3, 4} with the

lowest fitness value, remove it from Pop, and insert o

into Pop.

8. Set the seller’s offer to the value encoded in o, and
enter the market for one market time-step. Record
the seller’s payoff, Ps, as o’s fitness.

9. Repeat from step 4.

2.5 Budget Constraints

The utility functions above describe how an agent may
order and compare offers described over multiple attributes.
However, they do not consider that an offer, though attrac-
tive, may be unattainable. A simple example of this is an

offer which, from a buyer’s perspective, provides a highly
attractive resource at a reasonable but unaffordable cost. In
this scenario, an undesirable attribute such as price, may be
beyond the buyer’s budget constraint.

Similar constraints may exist on desirable attributes; a
buying agent may be instructed not to accept an offer where,
for example, a security attribute is below a certain thresh-
old. Similarly, a seller agent may be physically unable to
provide a resource with a latency below a certain limit value.
Regardless of its utility, we consider that an offer is unac-
ceptable if any attribute is beyond the budget constraint of
the decision maker. Such offers are therefore rejected.

The presence of heterogeneous hard constraints in a pop-
ulation of buyers leads to the presence of market niches even
when in all other respects the buyers are homogeneous. We
call this constraint-induced niching. It is important to be
aware that there are other forms of market niching, for ex-
ample those induced through a trade-off between multiple
desirable or undesirable attributes, especially in the pres-
ence of more complex non-linear utility functions and con-
straints. However, in this paper we investigate the perfor-
mance of the evolutionary market algorithm in the presence
of such constraint-induced niching, though we see no reason
why the results presented here would not apply to any other
form of market niching.

3. EMERGENCE OF MARKET NICHES

We firstly illustrate, by means of simulation, that evo-
lutionary market agents, as introduced in [17] and without
modification are able to position sellers in market niches,
by considering a conjoint utility value for each offer as that
offers fitness value in the evolutionary algorithm.

Our experimental set up consisted of 20 seller agents and
1000 buyer agents trading a resource with two attributes,
m1 and 72, notionally price and quality respectively. Both
buyers and sellers had homogeneous linear attribute utility
functions, such that attribute m; was desirable to the sellers
but undesirable to the buyers, while attribute w2 was un-
desirable to the sellers but desirable to the buyers. For the
additive utility functions, sellers were given the weights 0.7,
0.3, while buyers were given the weights 0.3, 0.7. The exact
values of these weights, and their symmetry, proved not to
be important, however they were found to provide a good
range within the attribute space for feasible offers.

In order to generate the niches, each buyer had a hard
budget constraint in terms of attribute 71, notionally price,
such that any offer for which ™ was greater than this con-
straint is rejected as unacceptable by that buyer. The value
of each buyer’s budget constraint was drawn with equal
probability from one of two Gaussian distributions, with a
relatively low standard deviation when compared with the
offer space as a whole. The means of these distributions
were 100 and 200.

Figure 1 shows the position of each of the 20 sellers’ offers
in the attribute space, at four occasions during the simula-
tion. As can be clearly seen, from an initial random distri-
bution, sellers’ offers quickly found the feasible region be-
tween the two diagonal lines. The offers then converged to
two niches, forming market segments, one for each subset
of the buyer population. The system then remains stable,
other than for ongoing small mutations about the centre of
each niche. In summary, we observe the seller agents self-
organising to equilibrium values for their offers’ attributes.



6o

Iteration 1

®e, ®
o
‘n"unoa

o

o

o

Iteration 250

Iteration 50

Iteration 500

Figure 1: Evolution of the offers in the attribute space through time for a typical simulation run. Each point
represents an individual seller’s offer. The space between the diagonal lines is the feasible region in which
offers are acceptable to both buyers and sellers. The two vertical lines indicate the means of the Gaussian
distributions from which the buyers’ budget constraints are drawn. Evolutionary market agents lead the

sellers to find the niches created by the heterogeneous budget constraints.
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Figure 2: Segment A, the lower niche, repeatedly
contains fewer sellers than segment B, the higher
niche.

4. QUANTIFYING MARKET NICHES

We know therefore that the sellers use of evolutionary
market agents allows them to find and position their of-
fers in otherwise unknown market niches. However, it is
also clear from the results in figure 1 that the sellers are not
evenly split between the niches. Figure 2 shows the number
of sellers positioned within a radius of 30 from the centre of
each niche, as the simulation progresses. Mean and standard
deviation are shown for 30 independent runs.

We can verify that this is not optimal seller behaviour
by looking at the payoffs the sellers obtain in each niche.
Figure 3 shows the mean payoffs, along with their standard
deviation, for the sellers in each segment, over time.

The sellers in segment A generally obtain a higher payoff
than those in segment B, however their payoff is highly un-
predictable, indicated by the very high standard deviation
across the independent runs. Conversely, the sellers in seg-
ment B are obtaining a lower payoff, though this is highly
stable.

The question then arises of why the sellers in segment B
do not move their offers to the niche occupied by segment A,
given the increased likelihood of obtaining a higher payoff
for doing so. Indeed, beyond iteration 50, there is relatively
little change in either segment size or payoff. This is due
to the lack of diversity in the sellers’ populations of offers
after this stage in the simulation. Since the populations
are highly converged, making a jump to the more attractive
niche is very unlikely.

5. THE DIVERSITY DILEMMA

Since each seller makes use of its own independent evolu-
tionary algorithm to generate competitive offers, the perfor-
mance of each generated offer at a given time is dependent
in part on the current offers from the other sellers. Of vi-
tal importance therefore when considering the behaviour of
evolutionary sellers is that since the seller has no model of
the market, in order to obtain a fitness value for an offer
in its population, it must test this offer in the live mar-
ket. This is due to information being private and therefore
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Figure 3: Mean and standard deviation seller payoffs
for each segment. The payoff for sellers in segment
A, the lower niche, is greater though highly unpre-
dictable. The payoff for segment B is lower though
more stable.

a seller having no knowledge of the buyers or behaviour of
its competitors, other than the payoff returned from its ac-
tions. Performing a fitness evaluation on a given offer in the
population therefore counts towards the total payoff which
is obtained by the seller over time.

Since every fitness evaluation counts, once a seller can be
sure it has found the best position for its offer, it can max-
imise its payoff over time by always taking that position. In
terms of the evolutionary algorithm, this means the seller’s
population of offers converging to that point, losing all di-
versity.

However, as is usual with evolutionary algorithms, a seller
can never be sure it has found this position, since if it is at
a local optimum, a better position may exist elsewhere in
the attribute space. This is what we observe occurring in
the simulation results described in section 4. In order for a
seller to find a position in the attribute space which would
lead to a higher payoff, or indeed to gain confidence that
there does not exist such a position, the seller must perform
a search. In the context of the evolutionary algorithm, this
search requires population diversity. It is here that the di-
versity dilemma presented is different from those previously
studied; the algorithm must balance the diversity required
to increase the likelihood of finding better solutions against
the loss of cumulative fitness that will occur when an evalu-
ation of a poor individual is made (due to higher diversity).
Since every fitness evaluation must be made in the live mar-
ket, the real problem instance, the algorithm cannot achieve
both simultaneously. Additionally, since each seller has its
own independent evolutionary algorithm, which all compet-
itively co-evolve and do not share information, previously
accumulated landscape knowledge and knowledge of good
search behaviour (with respect to the diversity dilemma)
will have only a limited use.

Since the evolutionary market agent algorithm has been
hitherto tested primarily in single attribute environments
with single equilibria, it is no surprise that the algorithm
favours an initial search period with high population diver-



sity, in which the equilibrium is found, followed by a loss of
diversity in the population, as the discovered position may
be exploited to obtain maximum payoff. In scenarios such as
that investigated in this paper, where, from the perspective
of the algorithm, more than one optimum exists, a different
approach to the diversity dilemma may be needed.

6. INVESTIGATING THE DIVERSITY
DILEMMA

Our focus in this section is to explore the diversity dilemma
described in section 5, and attempt to mitigate its effect on
the overall payoff which a seller achieves. Increased popula-
tion diversity is a characteristic which is often found to be
desirable in evolutionary algorithms applied to dynamic op-
timisation problems [4]. Methods of diversity generation and
preservation include immigrant schemes, random restarts
and hypermutation [8]. In this section we use hypermu-
tation in order to characterise the diversity dilemma, as it
has been shown to generate and preserve diversity without
discarding as much information as alternative schemes such
as random restarts [8]. Hypermutation is typically applied
periodically in order to inject a greater amount of diver-
sity into the population, and involves the mutation factor
applied being substantially higher than the base mutation
factor, but for just one or a small number of mutations. For
the vast majority of mutations, the normal mutation factor
is used.

However, our departure from hypermutation as originally
presented is that rather than rely upon a trigger, such as a
drop in evolutionary fitness, to initiate the increase in muta-
tion factor, we instead trigger the hypermutation randomly.
In our scenario, it is not clear what might constitute an
effective trigger, since it is not a drop in fitness or a lack
of diversity per se which indicates the need for an increased
search. Instead, as described in section 5, any seller could at
any time be in a suboptimal market position without knowl-
edge of this. Therefore, we instead perform a hypermutation
instead of a regular mutation with a very small probability,
each time a mutation is made.

In the first experiment in this section, each time a muta-
tion was due to be performed, a hypermutation was instead
made with probability 0.01. The occurrence of a hypermu-
tation event caused the standard deviation of the Gaussian
distribution from which the mutation factor was drawn to
increase from 3.0 to 50.0 for that mutation only. All else
remained the same as the simulation described in sections 3
and 4. Figure 4 shows that despite the initially converged
populations being similar to in the version without hypermu-
tation, the addition of random hypermutation allows sellers
in segment A to move occasionally to segment B in order to
take advantage of the higher payoff available. This plot may
be compared with that in figure 2.

As the number of sellers in segment A increases, so the
market share served by each seller in that segment decreases,
and conversely so for segment B. This is reflected in the pay-
off obtained by the sellers, illustrated in figure 5, which may
be compared with figure 3. It is clear that the ability of even
a small number of sellers to move to the more profitable seg-
ment A leads to a somewhat more equitable payoff between
the segments. However, more importantly, the addition of
the hypermutation operator allows the sellers to continue
to move between niches throughout the simulation, with-
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Figure 4: The addition of hypermutation allows sell-
ers to continue to move between niches throughout
the simulation, without requiring a higher base mu-
tation factor.
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Figure 5: The addition of hypermutation leads to
both more equitable and stable payoffs between the
two segments.
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Figure 6: Mean sellers’ payoff after convergence, by
segment, calculated over thirty independent runs, as
the number of hypermutations, n, increases. As n
grows, the segments’ payoffs become more equitable.

out requiring a higher base mutation rate and despite their
converged populations.

This result in itself is useful, however even given hyper-
mutation, we still do not observe the segments’ respective
payoffs equalising within any reasonable time, rather drift-
ing together at a slow pace. The rate of equalisation may
be increased by increasing the level of hypermutation. In
the following set of experiments, the hypermutation opera-
tor was modified such that, when triggered, the subsequent
n mutations were hypermutations. The probability of a hy-
permutation occurring remained the same.

Here we observe the mean payoff of the sellers in each
segment, calculated between iterations 4000 to 4999, late
enough such that the sellers’ populations have completed
their initial convergence period, and any observed popula-
tion diversity and subsequent movement is due to mutation
or hypermutation. Figure 6 shows the mean and standard
deviation of these values, calculated over for thirty indepen-
dent simulation runs, plotted as the number of hypermuta-
tions per hypermutation event, n varies. Similarly, figure
7 shows the mean of the standard deviations between the
sellers’ payoffs in each run, again calculated over the same
thirty independent runs.

As figure 6 shows, increasing the number of hypermuta-
tions performed, n, leads to increasingly equitable payoffs
between the sellers, as an increasing amount of movement is
facilitated between the niches, and they become less uneven
in size. However, there is a price to pay for this equity; this
increase in diversity brought about by more hypermutation
leads also to an increased standard deviation between the
sellers’ payoffs, as shown in figure 7. This is due to the sell-
ers’ populations becoming more diverse, and the evaluation
of each individual contributing towards the total payoff.

7. EXPECTED SELLER BEHAVIOUR

In the model investigated, each seller makes use of its
own independent evolutionary algorithm. The algorithms
competitively co-evolve in the live market, do not share in-
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Figure 7: Standard deviation between the sellers’
payoffs after convergence, by segment, calculated
over thirty independent runs, as the number of hy-
permutations, n, increases. As n grows, the stan-
dard deviation between the sellers’ payoffs within
the segments also increases.

formation or possess more than local knowledge. However,
the results and discussion presented in section 6 are largely
from the perspective of the system as a whole, from a bird’s
eye view, where global knowledge, full information about
all sellers is available. This information is of course not
available to the individual sellers, who rely upon private in-
formation only. What behaviour then should we expect of
self-interested sellers’ evolutionary market agents, given the
information they have available, with regard to the diversity
of their populations?

Figure 8 shows the mean payoff and standard deviation
over all sellers in the model, during the converged phase
between iterations 4000 and 4999, regardless of their position
or payoff. This may be interpreted as an expectation of a
seller’s payoff during this phase, given that which segment
they find first is not yet determined. Again, we vary the
number of hypermutations, n, on the horizontal axis.

Firstly, we observe that the highest expected payoff may
be achieved by using no hypermutation at all, when n is
zero. Secondly, this comes at a high price in terms of the
certainty of the expectation, indicated by the high accom-
panying standard deviation amongst the sellers. This is due
to there being a chance of the seller finding a niche which
it shares with relatively few competitors. However, this is
not guaranteed, and the payoff it receives will be much lower
if it finds only the more populated niche. Figures 2 and 3
illustrated this.

Thirdly, by adopting a small amount of hypermutation
(e.g. n = 1), a seller can drastically increase its chance
over time of finding the more profitable niche and hence
the certainty of the expectation. This comes at a small but
significant cost to its expected payoff.

The highest degree of certainty was achieved by sellers
in this simulation by performing a small number of hyper-
mutations. Values for n between 2 and 4 give rise to the
lowest standard deviations, again with a small penalty in
the expected payoff.
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Figure 8: Mean of and standard deviation between
the sellers’ payoffs after convergence, for all sellers,
calculated over thirty independent runs, as the num-
ber of hypermutations, n, increases. Rational sellers
face a choice between a high expected payoff with a
low certainty, and a lower expected payoff with a
greater certainty. High levels of hypermutation do
not appear beneficial.

Larger number of hypermutations however led to a de-
crease in the level of certainty with which a seller would
obtain the expected payoff, and a decrease in the expected
payoff itself. Despite that from the perspective of the sys-
tem as a whole, this leads to more equitable payoffs and
evenly sized segments, such behaviour is hard to motivate
from a seller’s perspective. Rather, we expect that sellers
might choose between maximising their expected payoff, at
a cost of certainty, or else sacrifice a small amount of ex-
pected payoff in order to buy a greater amount of certainty
over their payoff. This is how the diversity dilemma may be
characterised from a seller’s perspective, and either option
leads to the greatest likelihood being an uneven balance of
sellers between the segments.

8. CONCLUSIONS

In this paper we have extended significantly our previous
evolutionary market-based approach to resource allocation
[19], in order that resources may be described over mul-
tiple attributes in addition to price only. Resource users
may have different preferences and constraints over the at-
tributes, and as such form niches in the market, into which
sellers may segment. Resource providers’ pricing strategies
are modelled using using evolutionary market agents, which
decide the offers for their resources, in a posted-offer market
mechanism.

We showed, through simulation, that evolutionary mar-
ket agents are able to position themselves automatically
in niches created by heterogeneous buyers, providing lev-
els of a quality attribute appropriate to them. However, we
highlight a dilemma faced by evolutionary sellers, between
a maintaining high population diversity to facilitate search
and a low diversity to exploit a market position and hence
gain a higher payoff. This dilemma arises from an instance

of the explore - exploit trade-off, which was illustrated and
characterised using a parametrised hypermutation operator.

We found that the standard evolutionary market agent
algorithm can lead to uneven segment sizes, since popula-
tions of offers with low diversity and hence less exploratory
behaviour are unlikely to move between niches. As a re-
sult, sellers are unable to obtain the optimal payoff. We
further found that by introducing a randomly triggered hy-
permutation operator, sellers become more likely to move
between niches in order to obtain a higher payoff, making
the segment sizes more even. This increase in exploratory
behaviour leads to an increased certainty of achieving the
expected payoff. Certainty comes at a cost however, as in-
creased exploration also means that sellers must accept a
slightly lower overall expected payoff. This presents the
seller with a decision, which will be made based on their
attitude to risk.

However, the levels of exploration (through evolutionary
diversity) required to achieve truly even segment sizes and
fluid movement between segments are unlikely to be realised
by self-interested sellers, since when this is the case both
the expected payoff and the confidence of achieving the ex-
pectation are reduced. Importantly, the exploration by use
of hypermutation has highlighted the need to consider ex-
ploration - exploitation trade-offs in the design of adaptive
pricing algorithms for market-based control systems.

9. FUTURE WORK

Since nothing in the implementation of the agents or evo-
lutionary algorithm is specific to the particular way in which
the niches in the market were generated in our experiments,
we expect that the results obtained here will apply equally
to other forms of market niching. Nevertheless, it will be
useful to confirm this experimentally in more complex mar-
kets, for example through the study of niches induced not
just by agents’ constraints, but also by their preferences over
a greater number of attributes.

It is important to note that in this paper we are not argu-
ing that hypermutation should be a preferred way of tackling
the sellers’ diversity dilemma; though we demonstrate that
it provides one such method, we use it primarily as an ex-
ploratory tool. Therefore, though the trade-offs faced by
sellers appear to be inherent to the system itself, other di-
versity mechanisms could lead to potentially more attractive
positions within the trade-off. This will of course depend on
the objectives of a particular resource provider, and there
is therefore significant scope for numerous other diversity
mechanisms to be explored in this context.

Finally, it will be interesting to validate these results in
real-world applications which make use of market-based ap-
proaches to resource allocation. We have begun work to
apply this approach to cloud computing, which provides a
large scale test bed for such multi-attribute market-based
control methods.
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