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Abstract—Energy harvesting systems provide a promising
alternative to battery-powered systems and create an opportunity
for architecture and design method innovation for the exploita-
tion of ambient energy source. In this paper, we propose a two-
stage optimization approach to develop power adaptive comput-
ing systems which can efficiently use energy harvested from solar
source. At design time, an SPMD (single process, multiple data)
computation structure with multiple parallel processing units is
generated, and a convex optimizer runs at run-time to decide
how many processing units can operate simultaneously subject
to the instant power supplied from the harvester. The approach
is evaluated on three embedded applications. The results show
that the proposed approach can develop and manage a computing
system for each application to adjust its power consumptionwith
respect to the power supply while maximizing speed. Compared
to static systems without adaptability, our power adaptivecom-
puting system improves the harvested energy utilization efficiency
up to 28.8%. These computation systems can be applied to
distributed monitor networks to improve computation capability
at nodes. In our experiments, the throughput per watt in a node
with a ARM9 processor can be improved 19 times by adding the
developed adaptive computing system to the node.

I. I NTRODUCTION

Traditional battery-powered systems work under limited
energy supply. For applications that require long working
duration, such as distributed sensing or distributed monitor
systems, supply of reliable energy becomes a critical concern
and much effort has been devoted to energy efficient or low-
power system design [1]. With advances in energy harvest-
ing technologies, it is possible to implement a self-powered
system that harvests ambient energy from the environment
[2], [3], [4]. Particularly, harvesters provide a spectrumof
power delivery subject to various environmental conditions and
systematic volumetric, including solar [2], electromagnetic [3],
mechanical piezoelectric vibration [4] and so on. Such energy
harvesting systems provide a promising alternative to battery-
powered systems and create an opportunity for architecture
and design method innovation for the exploitation of ambient
energy source.

In this paper, we propose an approach to develop power
adaptive computing systems which can efficiently use energy
harvested from solar source (15mW/cm2 [5]). These systems
can be applied to distributed monitor networks to provide
computation capability at sensory nodes. In this way, collected
raw data are preprocessed and only desired information is

transferred on the networks.
The design criteria for systems using energy harvesting

sources are fundamentally different from those using a battery.
The battery-based system benefits from a relatively predictable
metric of energy residual, suffices to characterize the energy
availability, and is seemingly an unbounded power supply.
For an energy harvesting system, rather than a limited energy
supply, it has a limit on the power at which the energy can be
used, and the power supply from energy harvesters varies with
time. Although power regulators aim to stabilise and deliver a
constant power supply, there is an upper bound for the transient
power delivered to the computational electronics.

In contrast to low-power circuit design principles, it is
desirable that the computational load in an energy harvest-
ing system consumes energy at an appropriate rate that is
compatible with the harvester, in which the computational
performance is maximized while the power consumption of
the computational load is not greater than the power supplied
from the harvester. Therefore, an intelligent control of the
computational load that adapts the computation performance
to the transient power constraints from the energy harvester is
required.

This paper presents a two-stage design optimization ap-
proach to achieve optimized utilization of harvested energy.
Specifically, at design-time, given the characteristics ofthe
solar energy harvester, an SPMD (single process, multiple
data) structure of the computational load is determined for
an application, maximizing the computation speed on a target
hardware platform. The parallel computation structure contains
multiple homogeneous processing units (PUs), each with an
enable control signal. When the system energy is sufficient,
all PUs are enabled and the computation system runs at
the highest speed; otherwise some of the PUs are disabled
correspondingly. This can be realized usingclock gating [6]
technique and can adjust the system power consumption.
At run-time, a convex optimization model is presented to
intelligently determine which PUs are enabled at the same time
(clock gating schemes), subject to the existing state of energy
harvester. The convex model is customized for each specific
application, resulting in fast and globally optimal solutions.
The contributions of this paper are:

• a two-stage optimization approach for designing power
adaptive systems;



• a custom convex model used at run-time to determine
clock gating schemes, adjusting system power consump-
tion to instant power supplied from a solar harvester; and

• evaluation of the approach on a platform with a ARM9
processor and an FPGA for three embedded applications;
results show that our power adaptive system can improve
harvested energy utility efficiency up to 28.8%, compared
to static designs without adaptability; and the computing
system can provide the ARM processor with improve-
ments in FLOPS/W up to 19 times.

The rest of this paper is arranged as follows. Section II
introduces related work. Section III describes the energy
harvesting system. Section IV presents the proposed two-stage
design optimization approach. Experimental results are shown
in Section V and are followed by the conclusion Section VI.

II. RELATED WORK

Harvesting energy from environments to power electronic
devices has been a hot research topic. Especially in the domain
of sensor networks, design methodologies, including power
transfer [7], energy prediction [8], [9], energy storage [2], [5],
and power management [2], [10], [11], [12], [13], [14], have
recently been investigated.

In this paper, we focus on power management techniques
previously used in energy harvesting systems. As mentioned
earlier, power management in the energy harvesting systems
aims at controlling power consumption subject to varying
power supply to improve power efficiency. A well known
dynamic power consumption model for CMOS circuits is

Power =
1

2
× C × V 2 × F, (1)

whereC is the load capacitance,V is the supply voltage and
F is the switching frequency. Therefore, by changingC, V
andF , one could adjust the system power consumption.

Dynamic voltage scaling (DVS) is used in [10], [11] to
improve energy efficiency. DVS technique drives processorsto
work at full speed when the energy is sufficient in the harvest-
ing system; otherwise slows down the processors, by adjusting
supply voltage and frequency. Liuet al. [10] schedule tasks
in terms of system energy and task priority. Zhanget al. [11]
formulate the process of selecting voltages and frequencies and
use enumeration with respect to the system characteristicsto
find the appropriate solution. In energy harvesting systems,
however, voltages are subject to instability in spite of the
existence of power/voltage regulators (introducing additional
overheads), and scaling of voltages may be restricted in
practice.

Another widely used technique is duty cycling [2], [12],
[13], [14]. Duty cycling changes operational frequency of
system components,i.e. the ratio between the component
active time period and the system time period. Reducing duty
cycle corresponds to decreasingF in (1). Works in [2], [12],
[13], [14] formulate the duty cycle control problem using
linear program (LP), and solve the LPs periodically at run-
time. Authors of [2], [12], [13] try to maximize average duty

cycle, while [14] aims at reducing the difference of duty cycles
at different time slots.

The idea of power adaptive computing and power elasticity
were presented in [15], [16]. In particular, [16] proposed using
methods of discrete event control, soft arbitration and concur-
rency management to adapt to power constraints. Stochastic
analysis methods have been used to characterize the behavior
of multi-core system in power-latency tradeoffs [17].

In this paper, we use the clock gating technique [6], [18],
which disables a clock line and the functional units driven
by this clock line in circuits, to reduce the system power
consumption. The computing system developed in this paper
contains multiple parallel processing units (PUs). Disabling
some of the PUs corresponds to reducing the capacitive load
C. We use a customized non-linear convex model to determine
on-line the number of PUs to be enabled, given the harvest-
ing system energy availability and computation tasks. This
dynamic management can adjust the number of active PUs
executed in a clock cycle, and thus modulates the peak power
consumption more effectively. The non-linear convex model
leads to more energy efficient clock gating schemes, compared
to a linear model as shown in Section V, at the cost of longer
solution time. We implement the computing system on an
FPGA-based platform because hardware execution is more
energy efficient. Exploitation of FPGAs in energy harvesting
sensor networks has been previously carried out in [19].

III. POWER ADAPTIVE SYSTEM

Fig. 1 shows a typical energy harvesting system. In this
paper, we focus on designing the adaptive computing system
and developing a run-time power management method.

In this paper, the energy source is solar energy. Apparently
the function of the energy harvester is to transfer ambient
power (light) to the electrical power to supply the whole
system. Fig. 2 shows the variation and density of harvested
solar energy over a week in October 2010. The power varies
in a time scale of minutes. Battery and ultra-large capacitors
are two options for the energy storage. In this work, we assume
that the energy storage only provides adequate energy to
maintain the estimator and control system, when the harvested
power is less than the least working power requirement of the
computing system.

The estimation method uses the length of experiments days,
sampled time, and change rate of weather and weight factor.
Here we use the technique [2], [9] based on the history average
data and previous data values to estimate current output. Itis
sensitive to the sampling frequency. Here we sampled every 5
minutes in the day [9].

The power adaptive computing system is shown in Fig. 3.
The computing system executes in SPMD structure. All pro-
cessing units (PUs) have the same functionality, work on
different data sets and have enable control signals (Ena). The
structure of each processing unit, the number of processing
units and associated local memory size are customized for a
specific application. The local controller communicates with
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Fig. 1. The structure of an energy harvesting system.
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Fig. 2. Solar energy within a week in October 2010 [20].

the system controller in Fig. 1, enables/disables PUs indepen-
dently, and manages data transfers between global memories
and local memories. The dynamic power consumption of
this computing system linearly varies with the number of
working PUs, under the same system voltage supply and clock
frequency. Therefore, clock-gating some of the PUs allows the
system to adapt itself to the supplied power and thus to be used
in an energy harvesting system.

The system controller contains a run-time optimizer, which
determines the proper clock gating scheme for the computing
system at run-time. The optimizer actually solves a convex
optimization problem which will be presented in the next
section.

The system works as follows. The sensed data are first
stored in the global memories. The system controller sends
messages to the energy estimator and run-time optimizer to
bring them into work. The estimator estimates the supply
power, and the optimizer determines a proper clock gating
scheme based on the estimation. Then the system controller
sends control signals to the local controller of the computation
system, including starting operation signal, input data parame-
ters (such as image size), and clock gating signals (Ena). The
local controller then triggers data transfers and computation.
When the computational system completes its job, the local
controller sends a finish signal back to the system controller
and the latter handles results. After that, the system controller
starts the power estimation and run-time optimization again.
The whole process is repeated. It is assumed that the power
stable time interval is greater than the time required by the
computation system for processing one data set. In the context
of this paper, solar energy is sampled every 5 minutes, while
processing one data set for the applications completes within
a few seconds.

IV. POWER OPTIMIZATION APPROACH

To develop and manage the above described power adaptive
system, we propose a two-stage design optimization approach.
In the first stage, a parallel computation structure of the work
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Fig. 3. A power adaptive enabled computing system.

load is determined. In the second stage, a clock gating scheme
is determined dynamically subject to supplied power.

A. Design-time optimization

The task in this stage is to design a parallel computing
system for an application, given a programmable hardware
platform. The target applications contain loop structureswith
potential for parallelization. The objective is to minimize the
system execution time, while design time is not crucial at
this stage. To this end, we apply several design optimization
techniques and explore design space to determine an SPMD
computation structure as shown in Fig. 3. We adopt the
approach [21] to automate the design space exploration at
compile time with exploitation of data reuse, loop pipelining
and loop parallelization. Unlike [21], the design optimization
problem is the following:

min T (~ρ,~k, ii)

subject to Rmem(~ρ,~k, ii) ≤ Resram (P1)

Rcomp(~ρ,~k, ii) ≤ Rescomp

where the execution time modelT , the memory resource
utilization modelRmem and the computational resource uti-
lization modelRcomp are formalized in [21];~ρ is a data reuse
variable vector determining the local memory space for each
processing unit,~k = (k1, k2, . . . , kN ) is a loop parallelization
variable vector indicatingkl iterations of loop l in a N -
level nested loop structure are executed in parallel andii is
the number of clock cycles of the loop pipelining initiation
interval;Resram andRescomp are the availability of memory
resources and computational resources in hardware.

In the computation system generated byP1, each processing
unit (PU) is customized with respect to arithmetic operations
involved in the application and processes data in pipelineii,
and there are

∏N

l=1
kl homogeneous PUs in total. Note that the

customization and parallelism are determined simultaneously,
leading to more efficient designs [21].

Each processing unit just performs arithmetic computations
and could contain adders/subtracters, multipliers or compara-
tors for the target embedded applications. Each processingunit
only accesses its own local memory.



After the parallel computation structure is determined, the
design can be synthesized, placed and routed, and mapped
onto a programmable hardware. This whole process could take
several hours to complete.

This stage decides the computation structure with the peak
speed. However, this peak speed may not always be achievable
due to the changing power supplier in the energy harvesting
environment. Therefore, in the next section, clock gating
schemes are dynamically determined corresponding to the
supplied power.

B. Run-time optimization

To enable run-time power optimization, two key facili-
ties are needed: a) a system power model and b) a fast
optimizer. The system power model estimates the system
power consumption with different clock gating schemes, while
the optimizer selects the most power-efficient clock gating
scheme. In this paper, we present an empirical power model
for each application; the power model is simple and accurate
enough to make sure the computation system works safely,i.e.
the system power consumption is not greater than the supplied
power during a fixed period. Meanwhile, we customize the
optimization problemP1 for each application to derive a
simplified optimization problem, leading to a fast solution.

1) Power model: For the parallel computation structure
derived in the previous section, the system power consumption
variation with different clock gating schemes can be expressed
in a model as below:

Pc(m) = Pconst +m× Ppu, (2)

wherePconst is the constant part of the system power con-
sumption when experimenting with different clock gating
schemes,Ppu is the power consumption of a PU when it is
enabled, andm is the number of PUs enabled.

In our work, for each application, we experiment with the
parallel computation structure on several different clockgating
schemes to measure the system power consumption, and then
fit the power values to the power model (2) to obtain the
parametersPconst andPpu. The instantiated power model is
then used in the optimization problem described below.

Usually, the power values estimated by model (2) sometimes
may be smaller than the real values that may cause problems
where power consumption is greater than power supply. There-
fore, in practice, a fine tuning value is added toPconst in (2)
to guarantee safe operations.

2) Customized optimization model: The optimization
modelP1 formulates the design space of combined optimiza-
tion techniques, determines the whole system structure, and
thus has high complexity and needs from a few minutes to
few tens of minutes to solve on a PC [21]. This optimization
time is higher than the energy sample time interval, which is
5 minutes in this paper. Therefore, modelP1 is not suitable
to be applied to run-time optimization in the context of this
paper.

Note that, however, at run-time the system structure is not
changed and only the system clock gating scheme varies.

The occupancy of the memory and computational resources
keeps constant and thus the resource constraints inP1 can be
removed. In addition, the pipelined operation of each PU is
also fixed and thus the execution time model can be refined.
Based on these discussions, a simplified optimization problem
P2 is customized fromP1 and is shown below:

min (v − 1)× t+ Tin(m) + Tcomp(m) + Tout(m)

subject to max(Tin(m), Tcomp(m), Tout(m)) ≤ t

Pc(m) ≤ Ps (P2)

1 ≤ m ≤ K

L×m−1 × v−1 ≤ 1

wherev = ⌈L/m⌉ is the number of loop strips (each strip
containsm loop iterations executing in parallel),L is the
total number of iterations of the parallelized loops,Ps is the
instantly supplied power,K =

∏N

l=1
kl is the total number

of PUs determined at design-time. The execution time is
divided into three parts: the time for inputting data from global
memories to local memoriesTin(m), the computation time
Tcomp(m) taken by each PU, and the time for outputting
results from local memories to global memoriesTout(m).
These three stages are pipelined in the final system, resulting
in the objective function.

Given a specific application, this optimization problem is
instantiated and application-specific customization is carried
out. Section V shows some examples.

This customized optimization model can be transformed
into a convex model, and has fewer variables and simpler
constraints compared toP1, leading to an optimal and fast
solution. For the tested applications, the model can be solved
in a few milliseconds on a PC. The solution toP2 tells us
that m PUs can be enabled, such that the system speed is
maximized while the system power consumption is not greater
than the supplied power.

V. EXPERIMENTAL RESULTS

As mentioned in Section I, one of the potential applications
of the power adaptive system developed in this paper is a
monitor network, where each node contains the power adaptive
system as well as an energy harvester. Each node not just
collects data, but also processes the data and sends desired
information to the network. In this paper, we develop power
adaptive systems for three applications: matrix multiplication,
k-means clustering and Sobel edge detection algorithm, fol-
lowing the proposed two-stage optimization approach. These
applications are capable of processing input data and generate
reduced data sets. For example, in a monitor system, the
Sobel edge detection can be used to extract edges of subjects
in images, then thek-means clustering algorithm classifies
subjects in terms of their edge properties, and finally the data
of interested subjects are transferred to the network.

In our experiments, the power adaptive system is evaluated
on a hardware platform shown in Fig. 4. The power estima-
tor and system controller are on a ARM926EJ-S processor
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running at 160 MHz and having 64MByte SDRAMs, while
the computation system is mapped onto a Virtex5-330t FPGA
with 192 DSP blocks and 324 RAM blocks on-chip. In
practice, other hardware platforms are equally applicable. In
this experiment, we only implement a stand alone system,
although it can be applied to a network. The real solar energy
data from ORNL website [20] during day time from 6 am to
6 pm in October are used as the harvested power. The data
are scaled down as harvested in a 10cm× 10cm solar cell
panel to power the systems presented in this paper. All results
shown in this section are obtained on the hardware platform,
after synthesis, placement and routing, and mapping onto the
hardware. The real power consumption values are obtained by
measuring the voltage and current of the power source.

The measured peak power consumption of the ARM pro-
cessor is about 2.4 W during work and is about 1.9 W when
idle. The computation system is implemented on the FPGA
with six clock regions; the clock tree in a region is disabled
when all PUs in the region do not work, reducing dynamic
power consumption. For each application, the power adaptive
system developed following our approach is compared to two
representative designs, statically determined at design-time,
with all PUs always enabled, to show how the adaptability
improves the harvested energy utility efficiency:

Energy utility efficiency= Ec/Es, (3)

whereEs is the generated energy andEc is the consumed
energy by the computation system. Moreover, to demonstrate
the advantage of our run-time optimization approach, it is
compared to another approach which uses the linear power
model (2) to determine the clock gating scheme. The optimiza-
tion problemP2 instantiated for the tested applications can be
solved within 0.3 seconds on the ARM processor using OPT++
optimization library [22], which is negligible compared tothe
energy sample time interval.

a) Matrix multiplication: (MAT) in a key arithmetic
operation in many application algorithms. Two input matrices
A andB are multiplied to generate one output matrixC; the
whole process runs in a 3-level loop nest. In our experiment,
we test the multiplication of two 1024x1024 matrices and
each matrix entry is a single precision floating-point number.
MatricesA, B andC are stored in three SDRAMs separately.

At design-time, a performance-optimized design of this
MAT, determined by the optimization problemP1 on the target
FPGA, isk1 = 94, k2 = 1, k3 = 1, ii = 1 and data of matrix
A are buffered in on-chip RAMs to be reused. In this design,

94 iterations of the outermost loop of MAT are executed in
94 PUs in parallel, where one PU performs the multiplication
of one row of matrixA and matrixB and generates one row
of matrix C; the innermost loop of MAT is fully pipelined
and a FIFO is needed for each PU to input matrixB in the
column order. To buffer one row ofA, one 32 Kbits RAM
block is needed and thus each PU uses two RAM blocks as
input data buffers to pipeline data input and computation. This
design can obtain the final matrixC1024×0124 in 0.36 seconds
at 100 MHz clock frequency, including the data transfer time
between the global and local memories.

Once we implement the design on the FPGA, we could
measure the power consumption of the computation system.
Experimenting with several clock gating schemes, the trained
power model for MAT is

Pc(m) = 4.56 + 0.027m. (4)

Fig. 5 (a) shows the power estimated by this model and the
corresponding measured power for MAT with different clock
gating schemes. The maximum relative error of the estimation
is 2.18%.

For the run-time optimization model, the three parts of the
execution time in the number of clock cycles are refined as
below:

Tin(m) = m× numCol (5)

Tcomp(m) = lengthP ipe× numCol (6)

Tout(m) = m× numCol (7)

where numCol is the number of columns of the matrix
and lengthP ipe is the scheduled length of pipelining the
innermost loop. Bringing these functions into problemP2

instantiates the optimization problem for MAT. Moreover,
since the structure of the PU is fixed,lengthP ipe is known
at this stage; it is about 1024 clock cycles for pipelining the
innermost loop of MAT. This value is much larger than the
upper bound ofm that is K = 94. Therefore, the run-time
optimization problem for MAT is simplified as:

min v × Tcomp(m) + Tin(m) + Tout(m) (8)

subject to Pc(m) ≤ Ps (9)

1 ≤ m ≤ 94 (10)

numCol×m−1 × v−1 ≤ 1 (11)

This is a geometric programming model, and can be trans-
formed into a convex model, quickly converging to a globally
optimal solutionm, given the supplied powerPs. The run-
time optimizer running on the ARM processor can solve this
optimization problem in less then 0.3 seconds.

Fig. 6 shows the variation of power from the solar harvester
using the dot line. With this power supply, the power adaptive
system for MAT adjusts its power consumption by clock gating
as shown in Fig. 7. Note that when the supplied power is
less than the lowest working power of the adaptive system,
the system stands idle. The idle power could be provided
by a battery, which can be charged by the harvester when
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Fig. 5. Estimated power vs measured power for three different computational tasks.
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Fig. 6. Power variation of MAT.Ps: the supplied power.Pc: the power
consumption of the adaptive system.Pc94: the power consumption of the
system with 94 PUs always enabled.Pc64: the power consumption of the
system with 64 PUs always enabled.

power is residual. When the supplied power is greater than the
lowest power requirement and keeps increasing, the computing
system starts running and speed increases until all PUs are
enabled as shown in Fig. 7. This dynamic performance can
improve power efficiency. In Fig. 6 the power consumption of
another two designs are also shown. These two designs do not
exploit run-time optimization and operate with a fixed number
of PUs; one has 94 PUs and another has 64 PUs. Compared
to these two designs, our adaptive design improves the energy
utility efficiency by about 16.19% and 8.58%, respectively.
These are shown by the areas outlined by the circle line
(adaptive design), the dashed line (94 PUs) and the solid line
(64 PUs).

b) K-means clustering algorithm: classifies a multi-
dimensional vector set intok sets, where the closest vectors in
terms of the Euclidean distance belong to the same set [23].
The algorithm is a heuristic algorithm and usually runs itera-
tively to reach to the final clusters. This algorithm is commonly
used for border detection and object recognition. In this
experiment, we implement the algorithm for partitioning105

64-dimensional vectors into 128 clusters, using 10 heuristic
iterations; each iteration performs clustering operations within
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Fig. 7. Throughput and clock gating scheme variation of MAT.

a 3-level loop nest. The entries of the vectors are single
precision floating-point numbers.

The design-time optimization problemP1 maps the cluster-
ing operations in 96 PUs on the FPGA and each PU executes
in full pipeline. The number of PUs is limited by the available
FPGA on-chip DSP blocks. The parallel computation structure
is similar to the one of MAT. The trained power model is

Pc(m) = 4.49 + 0.030m. (12)

Fig. 5 (b) shows the power estimated by this model and the
corresponding measured power fork-means with different
clock gating schemes. The maximum relative error of the
estimation is 2.32%.

The run-time optimization model can similarly be obtained.
Similar results are shown in Figs. 8 and 9. The energy utility
efficiency improvements are 28.8% and 9.63%, respectively,
compared to two designs without run-time clock gating.

c) Sobel edge detection algorithm: detects object edges
in images [24]. Two3 × 3 mask windows move over an
image pixel by pixel to calculate the gradients of each pixel
in both row and column directions. The algorithm contains 4-
level nested loops. In this experiment, the image size is CIF
288 × 352 pixels, and each pixel is represented by an 8-bit
integer. The integer arithmetic operations in the edge detection
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Fig. 9. Throughput and clock gating scheme variation ofk-means clustering.

algorithm are realized using logic circuits rather than DSP
blocks.

The design-time determined parallel structure isk1 =
143, k2 = k3 = k4 = 1 and ii = 1, where 143 rows of
pixels are processed in parallel and the innermost two loops
are fully pipelined. The degree of parallelism is limited bythe
on-chip RAM resources. Since the PU structure is relatively
simple with just logic circuits, the power model for this design
is

Pc(m) = 4.52 + 0.17⌈m/24⌉. (13)

where 24 is the number of PUs in each clock region. The
maximum relative error of this estimation is 0.86%, as shown
in Fig. 5 (c).

The working status of the adaptive system for Sobel edge
detection is shown in Figs. 10 and 11, using the same power
supply. Unlike the previous applications, the variations of the
system power consumption and speed are not significant for
most of the clock gating schemes. As a result, the energy utility
efficiency of the adaptive system is similar to one of the design
with 143 PUs always enabled, and is 6.86% improvement
compared to one of the design with 72 PUs.

In addition, to demonstrate how the power adaptive com-
puting systems improve the throughput/watt for the ARM
processor, we experiment with two cases: running the three
applications on the processor alone and running them on the
processor plus the FPGA shown in Fig. 4. The results are
shown in Table I. It is shown that the computing systems
provide up to 19 times improvement in MFLOPS/W when
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compared to the processor.
We also compare two different approaches to determine

the clock gating scheme. In this paper, we use a convex
optimization problem as described in Section IV-B to find
the global optimal clock gating scheme, given the supplied
power. Alternatively, we can use the linear power model (2) to
determinem as⌊(Ps−Pconst)/Ppu⌋. However, this approach
may lead to a design, which uses more power than the convex
optimization problem for the same speed. Table I compares
the average power efficiency of the adaptive systems for the
three benchmarks, using these two approaches. The supplied
power varies from 6 W to 10 W with a 0.1 W increment.
We can see that on average for MAT and Sobel the convex
model can lead to designs with 1% higher power efficiency
(corresponding to 0.08 MFLOPS/W and 0.01 Mbits/W) than
the linear power model approach. The advantage of using
the linear power model to determinem is the optimization
response time (time for a division and a subtraction), while
the convex optimization problem needs to solve a system of
equations. If an adaptive system requires quick response time
which cannot be met by the convex optimization problem, the
linear power model approach is more promising. Nevertheless,
the convex optimization is more general, because the power
consumption model of a system may not have the linearity.

VI. CONCLUSION

In this paper, we propose a two-stage optimization approach
for designing power adaptive computing systems applied to
energy harvesting environments. The purpose is to provide



TABLE I
POWER EFFICIENCY COMPARISON. THE ARM PROCESSOR PERFORMANCE

IS USED AS THE BASE LINE.

ARM ARM + Adaptive computing

Application Linear power model Convex model

MAT 0.78 MFLOPS/W 14.65 MFLOPS/W 14.73 MFLOPS/W

(1x) (18.8x) (18.9x)

k-means 0.62 MFLOPS/W 11.79 MFLOPS/W 11.79 MFLOPS/W

(1x) (19.0x) (19.0x)

Sobel 0.13 Mbits/W 1.27 Mbits/W 1.28 Mbits/W

(1x) (9.8x) (9.8x)

computation capability to nodes in distributed sensor networks.
The power adaptive computation system contains multiple
parallel processing units, each enabled/disabled independently.
A run-time optimizer solves a convex model to decide how
many processing units can be enabled, such that the system
power consumption is not greater than the power supply from
the harvester and the system computation speed is maximized.
We develop the power adaptive computation systems for three
applications following the proposed approach on a platform
with a ARM9 processor and an FPGA, and evaluate the
systems with harvested solar energy data. The developed
power adaptive system can improve harvested energy utility
efficiency up to 28.8%, compared to some static designs with-
out adaptability; and can provide up to 19 times improvements
in FLOPS/W to the ARM processor.

Future work includes investigating the efficiency of the en-
ergy estimator, studying the detailed behavior of the computa-
tion system and sensed data, integrating other dynamic power
optimization techniques into the approach, and extending the
design approach to other energy harvesting sources and to
work at the network level.
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