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Abstract—Energy harvesting systems provide a promising transferred on the networks.
alternative to battery-powered systems and create an oppeunity The design criteria for systems using energy harvesting
for architecture and design method innovation for the expldta-  ggrces are fundamentally different from those using abatt

tion of ambient energy source. In this paper, we propose a two - . 4
stage optimization approach to develop power adaptive comgi- The battery-based system benefits from a relatively prabliet

ing systems which can efficiently use energy harvested fronolar ~ Metric of energy residual, suffices to characterize theggner
source. At design time, an SPMD (single process, multiple d& availability, and is seemingly an unbounded power supply.

computation structure with mqltiple parallel processing units is For an energy harvesting system, rather than a limited gnerg
generated, and a convex optimizer runs at run-time to decide supply, it has a limit on the power at which the energy can be

how many processing units can operate simultaneously sulije - .
to the instant power supplied from the harvester. The approah used, and the power supply from energy harvesters variés wit

is evaluated on three embedded applications. The results ev  time. Although power regulators aim to stabilise and delare
that the proposed approach can develop and manage a computgin constant power supply, there is an upper bound for the &ahsi
system for each application to adjust its power consumptiowith  power delivered to the computational electronics.

respect to the power supply while maximizing speed. Compate | contrast to low-power circuit design principles, it is

to static systems without adaptability, our power adaptivecom- . . -
puting system improves the harvested energy utilization éiciency desirable that the computational load in an energy harvest-

up to 28.8%. These computation systems can be applied toiNg System consumes energy at an appropriate rate that is
distributed monitor networks to improve computation capability ~compatible with the harvester, in which the computational
at nodes. In our experiments, the throughput per watt in a no@ performance is maximized while the power consumption of
with a ARM9 processor can be improved 19 times by adding the the computational load is not greater than the power supplie
developed adaptive computing system to the node. from the harvester. Therefore, an intelligent control oé th
computational load that adapts the computation performanc
to the transient power constraints from the energy harvéste

Traditional battery-powered systems work under limitetequired.
energy supply. For applications that require long working This paper presents a two-stage design optimization ap-
duration, such as distributed sensing or distributed noonitproach to achieve optimized utilization of harvested eperg
systems, supply of reliable energy becomes a critical anncespecifically, at design-time, given the characteristicsthodf
and much effort has been devoted to energy efficient or lo&elar energy harvester, an SPMD (single process, multiple
power system design [1]. With advances in energy harvedita) structure of the computational load is determined for
ing technologies, it is possible to implement a self-powerean application, maximizing the computation speed on a targe
system that harvests ambient energy from the environménardware platform. The parallel computation structure@ios
[2], [3], [4]. Particularly, harvesters provide a spectrioh multiple homogeneous processing units (PUs), each with an
power delivery subject to various environmental condiiand enable control signal. When the system energy is sufficient,
systematic volumetric, including solar [2], electromatimg3], all PUs are enabled and the computation system runs at
mechanical piezoelectric vibration [4] and so on. Such gyerthe highest speed; otherwise some of the PUs are disabled
harvesting systems provide a promising alternative toebatt correspondingly. This can be realized usitlgck gating [6]
powered systems and create an opportunity for architectieehnique and can adjust the system power consumption.
and design method innovation for the exploitation of ambieAt run-time, a convex optimization model is presented to
energy source. intelligently determine which PUs are enabled at the same ti

In this paper, we propose an approach to develop powetock gating schemes), subject to the existing state of energy
adaptive computing systems which can efficiently use energgrvester. The convex model is customized for each specific
harvested from solar source (15mW/ciB]). These systems application, resulting in fast and globally optimal soturs.
can be applied to distributed monitor networks to providéhe contributions of this paper are:
computation capability at sensory nodes. In this way, cttig « a two-stage optimization approach for designing power
raw data are preprocessed and only desired information is adaptive systems;

I. INTRODUCTION



o a custom convex model used at run-time to determimgcle, while [14] aims at reducing the difference of dutylegc
clock gating schemes, adjusting system power consungi-different time slots.
tion to instant power supplied from a solar harvester; and The idea of power adaptive computing and power elasticity
« evaluation of the approach on a platform with a ARMSvere presented in [15], [16]. In particular, [16] propossthg
processor and an FPGA for three embedded applicationsgthods of discrete event control, soft arbitration andcoon
results show that our power adaptive system can improsency management to adapt to power constraints. Stochastic
harvested energy utility efficiency up to 28.8%, compareghalysis methods have been used to characterize the behavio
to static designs without adaptability; and the computingf multi-core system in power-latency tradeoffs [17].
system can provide the ARM processor with improve- |n this paper, we use the clock gating technique [6], [18],
ments in FLOPS/W up to 19 times. which disables a clock line and the functional units driven
The rest of this paper is arranged as follows. Section by this clock line in circuits, to reduce the system power
introduces related work. Section Il describes the energpnsumption. The computing system developed in this paper
harvesting system. Section IV presents the proposed tagestcontains multiple parallel processing units (PUs). Disapl
design optimization approach. Experimental results aosvsh some of the PUs corresponds to reducing the capacitive load
in Section V and are followed by the conclusion Section VIC. We use a customized non-linear convex model to determine
on-line the number of PUs to be enabled, given the harvest-
Il. RELATED WORK ing system energy availability and computation tasks. This
Harvesting energy from environments to power electronfiynamic management can adjust the number of active PUs
devices has been a hot research topic. Especially in theidonXecuted in a clock cycle, and thus modulates the peak power
of sensor networks, design methodologies, including poweensumption more effectively. The non-linear convex model
transfer [7], energy prediction [8], [9], energy storagg [8], leads to more energy efficient clock gating schemes, cordpare
and power management [2], [10], [11], [12], [13], [14], havé0 a linear model as shown in Section V, at the cost of longer
recently been investigated. solution time. We implement the computing system on an
In this paper, we focus on power management techniqUeBGA-based platform because hardware execution is more
previously used in energy harvesting systems. As mentior@ergy efficient. Exploitation of FPGAs in energy harvegtin
earlier, power management in the energy harvesting syste$g§sor networks has been previously carried out in [19].
aims at controlling power consumption subject to varying
power supply to improve power efficiency. A well known [1l. POWER ADAPTIVE SYSTEM

dynamic power consumption model for CMOS circuits is Fig. 1 shows a typical energy harvesting system. In this

Power — 1 O XV2xF 1) paper, we focus on designing the adaptive computing system
’ and developing a run-time power management method.

whereC is the load capacitanc®; is the supply voltage and In this paper, the energy source is solar energy. Apparently
F is the switching frequency. Therefore, by changifigl’ the function of the energy harvester is to transfer ambient
and F, one could adjust the system power consumption. power (light) to the electrical power to supply the whole

Dynamic voltage scaling (DVS) is used in [10], [11] tosystem. Fig. 2 shows the variation and density of harvested
improve energy efficiency. DVS technique drives procestmnrssolar energy over a week in October 2010. The power varies
work at full speed when the energy is sufficient in the harvedd a time scale of minutes. Battery and ultra-large capegito
ing system; otherwise slows down the processors, by adustare two options for the energy storage. In this work, we agsum
supply voltage and frequency. Ligt al. [10] schedule tasks that the energy storage only provides adequate energy to
in terms of system energy and task priority. Zhaagl. [11] maintain the estimator and control system, when the hardest
formulate the process of selecting voltages and frequsiacid power is less than the least working power requirement of the
use enumeration with respect to the system charactertsticsomputing system.
find the appropriate solution. In energy harvesting systems The estimation method uses the length of experiments days,
however, voltages are subject to instability in spite of thgampled time, and change rate of weather and weight factor.
existence of power/voltage regulators (introducing add#l Here we use the technique [2], [9] based on the history aeerag
overheads), and scaling of voltages may be restricted data and previous data values to estimate current outpigt. It
practice. sensitive to the sampling frequency. Here we sampled every 5

Another widely used technique is duty cycling [2], [12]minutes in the day [9].
[13], [14]. Duty cycling changes operational frequency of The power adaptive computing system is shown in Fig. 3.
system componentd,e. the ratio between the componeniThe computing system executes in SPMD structure. All pro-
active time period and the system time period. Reducing dutgssing units (PUs) have the same functionality, work on
cycle corresponds to decreasihgin (1). Works in [2], [12], different data sets and have enable control sigriata]. The
[13], [14] formulate the duty cycle control problem usingstructure of each processing unit, the number of processing
linear program (LP), and solve the LPs periodically at runiits and associated local memory size are customized for a
time. Authors of [2], [12], [13] try to maximize average dutyspecific application. The local controller communicatethwi
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Time
load is determined. In the second stage, a clock gating sehem

Fig. 2. Solar energy within a week in October 2010 [20]. is determined dynamically subject to supplied power.

A. Design-time optimization

the system controller in Fig. 1, enables/disables PUs iedep _The task in this stage is to design a parallel computing
dently, and manages data transfer_s between global memogdesiem for an application, given a programmable hardware
and local memories. The dynamic power consumption @iatform. The target applications contain loop structusith
this computing system linearly varies with the number Qf,ential for parallelization. The objective is to minimithe
working PUs, under the same system voltage supply and clagfgiem execution time, while design time is not crucial at
frequency. Therefore, clock-gating some of the PUs alldwes tyiq stage. To this end, we apply several design optimigatio
system to adapt itself to the supplied power and thus to be U§gchniques and explore design space to determine an SPMD
in an energy harvesting system. _ o _computation structure as shown in Fig. 3. We adopt the

The §ystem controller conta|n§ a run-time optimizer, Wh"?@pproach [21] to automate the design space exploration at
determines the proper clock gating scheme for the computlggmp"e time with exploitation of data reuse, loop pipeligi

system at run-time. The optimizer actually solves a convexq |oop parallelization. Unlike [21], the design optintioa
optimization problem which will be presented in the nexﬁroblem is the following:

section.
The system works as follows. The sensed data are first .
stored in the global memories. The system controller sends min  T(p, k, )
messages to the energy estimator and run-time optimizer to SUJECt t0 Rypern (7, K, i1) < Resyam (P1)

bring them into work. The estimator estimates the supply
power, and the optimizer determines a proper clock gating
scheme based on the estimation. Then the system controliérere the execution time moddl, the memory resource
sends control signals to the local controller of the comipuita  utilization modelR,,.., and the computational resource uti-
system, including starting operation signal, input dat@pee- lization modelR.,.,, are formalized in [21]7 is a data reuse
ters (such as image size), and clock gating sigriadaj. The variable vector determining the local memory space for each
local controller then triggers data transfers and comfortat processing unitk = (k1,ko,...,kn) is a loop parallelization
When the computational system completes its job, the logalriable vector indicatingt; iterations of loop! in a N-
controller sends a finish signal back to the system controllevel nested loop structure are executed in parallel @nid
and the latter handles results. After that, the system obetr the number of clock cycles of the loop pipelining initiation
starts the power estimation and run-time optimization @gainterval; Res ., and Res..m, are the availability of memory
The whole process is repeated. It is assumed that the powssources and computational resources in hardware.
stable time interval is greater than the time required by theln the computation system generated®y each processing
computation system for processing one data set. In the xontgnit (PU) is customized with respect to arithmetic operaio
of this paper, solar energy is sampled every 5 minutes, whitesolved in the application and processes data in pipeline
processing one data set for the applications completesnwitlind there arcﬂf\il k; homogeneous PUs in total. Note that the
a few seconds. customization and parallelism are determined simultasigpu
leading to more efficient designs [21].

Each processing unit just performs arithmetic computation

To develop and manage the above described power adaptinel could contain adders/subtracters, multipliers or @rayp
system, we propose a two-stage design optimization approaors for the target embedded applications. Each processiiig
In the first stage, a parallel computation structure of thekwoonly accesses its own local memory.

Rcomp(ﬁa k7 ”) < Rescomp

IV. POWER OPTIMIZATION APPROACH



After the parallel computation structure is determine@ thThe occupancy of the memory and computational resources
design can be synthesized, placed and routed, and mapkeeps constant and thus the resource constrairf ican be
onto a programmable hardware. This whole process could takenoved. In addition, the pipelined operation of each PU is
several hours to complete. also fixed and thus the execution time model can be refined.

This stage decides the computation structure with the peBsed on these discussions, a simplified optimization probl
speed. However, this peak speed may not always be achievables customized fronP; and is shown below:
due to the changing power supplier in the energy harvesting
environment. Therefore, in the next section, clock gating )
schemes are dynamically determined corresponding to the ™" (v = 1) x t 4 Tin(m) + Teomp(m) + Tour (m)
supplied power. subject to max (T3, (m), Teomp(m), Tout(m)) <t
Pc(m) S Ps (PQ)

B. Run-time optimization
1<m<K

To enable run-time power optimization, two key facili- o .
ties are needed: a) a system power model and b) a fast Lxm™ xv =<1

optimizer. The system power model estimates the systeMeore, — [L/m] is the number of loop strips (each strip
power consumption with different clock gating schemes &vhi.qntainsm loop iterations executing in parallel), is the
the optimizer selects the most power-efficient clock gatingia| number of iterations of the parallelized loogs, is the
scheme. In this paper, we present an empirical power moﬂ%tantly supplied powerk = HzN—1 k, is the total number
for each application; the power model is simple and accurgig pys determined at design-time. The execution time is
enough to make sure the computation system works safly, gjiged into three parts: the time for inputting data frorlgal

the system power consumption is not greater than the subpligemories to local memorie®;, (m), the computation time
power during a fixed period. Meanwhile, we customize thPcomp(m) taken by each PU, and the time for outputting
optimization problemP; for each application to derive a qg,its from local memories to global memori@s,;(m).

simplified optimization problem, leading to a fast solution These three stages are pipelined in the final system, regulti
1) Power model: For the parallel computation structurey, ihe objective function.

derived in the previous section, the system power cons@mpti  Gjyen a specific application, this optimization problem is
variation with different clock gating schemes can be ex®€s jnsiantiated and application-specific customization igied

in a model as below: out. Section V shows some examples.
Po(m) = Peonst +m X Ppu, (2)  This customized optimization model can be transformed
into a convex model, and has fewer variables and simpler
where P, is the constant part of the system power cortonstraints compared t#;, leading to an optimal and fast
sumption when experimenting with different clock gatingolution. For the tested applications, the model can beesolv
schemespP,, is the power consumption of a PU when it ish a few milliseconds on a PC. The solution & tells us
enabled, andn is the number of PUs enabled. that m PUs can be enabled, such that the system speed is

In our work, for each application, we experiment with thenaximized while the system power consumption is not greater
parallel computation structure on several different clgakng  than the supplied power.

schemes to measure the system power consumption, and then

fit the power values to the power model (2) to obtain the V. EXPERIMENTAL RESULTS

parameters’,,s: and P,,. The instantiated power model is As mentioned in Section |, one of the potential applications
then used in the optimization problem described below.  of the power adaptive system developed in this paper is a

Usually, the power values estimated by model (2) sometimesmnitor network, where each node contains the power adaptiv
may be smaller than the real values that may cause problesystem as well as an energy harvester. Each node not just
where power consumption is greater than power supply. Fheoellects data, but also processes the data and sends desired
fore, in practice, a fine tuning value is addedRg,,s; in (2) information to the network. In this paper, we develop power
to guarantee safe operations. adaptive systems for three applications: matrix multgtiimn,

2) Customized optimization model: The optimization k-means clustering and Sobel edge detection algorithm, fol-
modelP; formulates the design space of combined optimizéswing the proposed two-stage optimization approach. &hes
tion techniques, determines the whole system structure, applications are capable of processing input data and gener
thus has high complexity and needs from a few minutes teduced data sets. For example, in a monitor system, the
few tens of minutes to solve on a PC [21]. This optimizatioBobel edge detection can be used to extract edges of subjects
time is higher than the energy sample time interval, which is images, then the--means clustering algorithm classifies
5 minutes in this paper. Therefore, mod@| is not suitable subjects in terms of their edge properties, and finally tha da
to be applied to run-time optimization in the context of thisf interested subjects are transferred to the network.
paper. In our experiments, the power adaptive system is evaluated

Note that, however, at run-time the system structure is nmh a hardware platform shown in Fig. 4. The power estima-
changed and only the system clock gating scheme varigs. and system controller are on a ARM926EJ-S processor



i of one row of matrixA and matrixB and generates one row

94 iterations of the outermost loop of MAT are executed in
Energy SDRAMs SDRAMs
Harvester | 94 PUs in parallel, where one PU performs the multiplication

> ARM | data of matrix C; the innermost loop of MAT is fully pipelined
FPGA . . .
Inputdata _{,,| processor | | and a FIFO is needed for each PU to input mafBixn the
from sensor control

column order. To buffer one row ofl, one 32 Kbits RAM
block is needed and thus each PU uses two RAM blocks as
input data buffers to pipeline data input and computatidnis T
design can obtain the final matrtX; 9240124 in 0.36 seconds

running at 160 MHz and having 64MByte SDRAMs, whil at 100 MHz clock frequency, including the data transfer time

the computation system is mapped onto a Virtex5-330t FP ﬁngeen the-glotaal an? Jscaé m-emorlest.h FPGA Id
with 192 DSP blocks and 324 RAM blocks on-chip. In nce we impiement the design on the , We cou

practice, other hardware platforms are equally applicalble measure th_e power consumption of _the computation sys_tem.

this experiment, we only implement a stand alone systet%),(loe”mentlng with seyeral clock gating schemes, the éaiin

although it can be applied to a network. The real solar enerf.)ﬁwer model for MAT is

data from ORNL website [20] during day time from 6 am to P.(m) = 4.56 + 0.027m. (4)

6 pm in October are used as the harvested power. The data _ _

are scaled down as harvested in a 10emlOcm solar cell Fig. 5 (a) shows the power estimated by this model and the

panel to power the systems presented in this paper. Alltesifiorresponding measured power for MAT with different clock

shown in this section are obtained on the hardware platforfiting schemes. The maximum relative error of the estimatio

after synthesis, placement and routing, and mapping omrto tA 2.18%. . S

hardware. The real power consumption values are obtained byrOr the run-time optimization model, the three parts of the

measuring the Vo|tage and current of the power source. execution time in the number of clock CyCleS are refined as
The measured peak power consumption of the ARM pr8€low:

Fig. 4. Experimental hardware platform.

cessor is about 2.4_W during vyork and is about 1.9 W when Ty (m) = m x numCol )
idle. The computation system is implemented on the FPGA )

with six clock regions; the clock tree in a region is disabled Teomp(m) = lengthPipe x numCol (6)
when all PUs in the region do not work, reducing dynamic Tout(m) = m x numCol (7

power consumption. For each application, the power adaptiv . .
. . where numCol is the number of columns of the matrix

system developed following our approach is compared to tvgl%d lengthPipe is the scheduled length of pipelining the

representative designs, statically determined at desiges- g p 9 PP 9

with all PUs always enabled, to show how the adaptabili&m:"rm.OSt loop. Brlr_lg|_ng _these functions into_proble®
. . - ) Nstantiates the optimization problem for MAT. Moreover,
improves the harvested energy utility efficiency:

since the structure of the PU is fixeldngth Pipe is known
Energy utility efficiency= E./E,, (3) atthis stage; it is about 1024 clock cycles for pipelining th
innermost loop of MAT. This value is much larger than the
where E; is the generated energy ard. is the consumed upper bound ofin that is K = 94. Therefore, the run-time
energy by the computation system. Moreover, to demonstraigtimization problem for MAT is simplified as:
the advantage of our run-time optimization approach, it is

compared to another approach which uses the linear power min. v X Teomp(m) + Tin(m) + Tour(m) — (8)
model (2) to determine the clock gating scheme. The optimiza subject to P.(m) < P; 9)
tion problemP; instantiated for the tested applications can be 1<m<94 (10)

solved within 0.3 seconds on the ARM processor using OPT++
optimization library [22], which is negligible compared tioe
energy sample time interval. This is a geometric programming model, and can be trans-
a) Matrix multiplication: (MAT) in a key arithmetic formed into a convex model, quickly converging to a globally
operation in many application algorithms. Two input masic optimal solutionm, given the supplied poweP,. The run-
A and B are multiplied to generate one output mat€ix the time optimizer running on the ARM processor can solve this
whole process runs in a 3-level loop nest. In our experimeiiptimization problem in less then 0.3 seconds.
we test the multiplication of two 1024x1024 matrices and Fig. 6 shows the variation of power from the solar harvester
each matrix entry is a single precision floating-point numbeusing the dot line. With this power supply, the power adaptiv
Matrices A, B andC are stored in three SDRAMs separatelysystem for MAT adjusts its power consumption by clock gating
At design-time, a performance-optimized design of thigs shown in Fig. 7. Note that when the supplied power is
MAT, determined by the optimization problef on the target less than the lowest working power of the adaptive system,
FPGA, isk; = 94,ks = 1,ks = 1, 7 = 1 and data of matrix the system stands idle. The idle power could be provided
A are buffered in on-chip RAMs to be reused. In this desighy a battery, which can be charged by the harvester when

numCol x m~t xv™1 <1 (12)
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Fig. 6. Power variation of MAT.Ps: the supplied powerP.: the power Fig. 7. Throughput and clock gating scheme variation of MAT.
consumption of the adaptive systeR.q4: the power consumption of the
system with 94 PUs always enableB.¢4: the power consumption of the
system with 64 PUs always enabled. . .
a 3-level loop nest. The entries of the vectors are single

precision floating-point numbers.

power is residual. When the supplied power is greater than th The design-time optimization problef maps the cluster-
lowest power requirement and keeps increasing, the congputind operations in 96 PUs on the FPGA and each PU executes
system starts running and speed increases until all PUs #réull pipeline. The number of PUs is limited by the availabl
enabled as shown in Fig. 7. This dynamic performance c&fGA on-chip DSP blocks. The parallel computation struetur
improve power efficiency. In Fig. 6 the power consumption df Similar to the one of MAT. The trained power model is
anoth_er two_design_s are glso shown. These_ two (_jesigns do not P.(m) = 4.49 + 0.030m. (12)
exploit run-time optimization and operate with a fixed numbe
of PUs; one has 94 PUs and another has 64 PUs. Compdragl 5 (b) shows the power estimated by this model and the
to these two designs, our adaptive design improves the gnecgrresponding measured power férmeans with different
utility efficiency by about 16.19% and 8.58%, respectivelglock gating schemes. The maximum relative error of the
These are shown by the areas outlined by the circle liestimation is 2.32%.
(adaptive design), the dashed line (94 PUs) and the sokd lin The run-time optimization model can similarly be obtained.
(64 PUs). Similar results are shown in Figs. 8 and 9. The energy utility

b) K-means clustering algorithm: classifies a multi- efficiency improvements are 28.8% and 9.63%, respectively,
dimensional vector set intb sets, where the closest vectors itompared to two designs without run-time clock gating.
terms of the Euclidean distance belong to the same set [23]. ¢) Sobel edge detection algorithm: detects object edges
The algorithm is a heuristic algorithm and usually runsaterin images [24]. Two3 x 3 mask windows move over an
tively to reach to the final clusters. This algorithm is conmiyo image pixel by pixel to calculate the gradients of each pixel
used for border detection and object recognition. In thia both row and column directions. The algorithm contains 4-
experiment, we implement the algorithm for partitioning® level nested loops. In this experiment, the image size is CIF
64-dimensional vectors into 128 clusters, using 10 hearisR88 x 352 pixels, and each pixel is represented by an 8-bit
iterations; each iteration performs clustering operatiaithin integer. The integer arithmetic operations in the edgectiete
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algorithm are realized using logic circuits rather than DSP
blocks. compared to the processor.

L . . We also compare two different approaches to determine
The design-time determined parallel structure kis = . .
. the clock gating scheme. In this paper, we use a convex
143, ko = k3 = k4 = 1 andii = 1, where 143 rows of L . . . )
; . : optimization problem as described in Section IV-B to find
pixels are processed in parallel and the innermost two loo . . : .
e global optimal clock gating scheme, given the supplied

are fully pipelined. The degree of parallelism is limited thy . .
on-chip RAM resources. Since the PU structure is reIativePower' Alternatively, we can use the linear power model ¢2) t

. o R . determinem as P,—P.,.st)/ Py |. However, this approach
;lmple with just logic circuits, the power model for this s may lead to a dLe(sign Whicth){JslésJ more power thanpt%e convex
is '

optimization problem for the same speed. Table | compares
P.(m) = 4.52 4 0.17[m/24]. (13) the average power efficiency of the adaptive systems for the
three benchmarks, using these two approaches. The supplied
where 24 is the number of PUs in each clock region. Thﬁ)wer varies from 6 W to 10 W with a 0.1 W increment.
maximum relative error of this estimation is 0.86%, as showfye can see that on average for MAT and Sobel the convex
in Fig. 5 (c). model can lead to designs with 1% higher power efficiency
The working status of the adaptive system for Sobel edggorresponding to 0.08 MFLOPS/W and 0.01 Mbits/W) than
detection is shown in Figs. 10 and 11, using the same powge linear power model approach. The advantage of using
supply. Unlike the previous applications, the variatioh$h® the linear power model to determine is the optimization
system power consumption and speed are not significant fgsponse time (time for a division and a subtraction), while
most of the clock gating schemes. As a result, the energiyutilthe convex optimization problem needs to solve a system of
efficiency of the adaptive system is similar to one of theglesi equations. If an adaptive system requires quick responee ti
with 143 PUs always enabled, and is 6.86% improvemeghich cannot be met by the convex optimization problem, the
compared to one of the design with 72 PUs. linear power model approach is more promising. Nevertiseles
In addition, to demonstrate how the power adaptive Corthe convex optimization is more general, because the power

puting systems improve the throughput/watt for the ARMonsumption model of a system may not have the linearity.
processor, we experiment with two cases: running the three

applications on the processor alone and running them on the VI. CONCLUSION

processor plus the FPGA shown in Fig. 4. The results areln this paper, we propose a two-stage optimization approach
shown in Table I. It is shown that the computing systenfer designing power adaptive computing systems applied to
provide up to 19 times improvement in MFLOPS/W whernergy harvesting environments. The purpose is to provide



TABLE |

POWER EFFICIENCY COMPARISONTHE ARM PROCESSOR PERFORMANCE  [8] J. Recas Piomo, C. Bergonzini, D. Atienza, and T. SimuRbpsing,
IS USED AS THE BASE LINE “Prediction and management in energy harvested wirelesosaodes,”

in Proceedings of the conference on Wreless Communications, Vehicular
Technology, Information Theory and Aerospace & Electronic Systems

_ ARM A ARM + Adaptive computing Technology, vol. 1, 2009, pp. 6-10.
Application Linear power model| ~ Convex model [9] M. Ali, B. Al-Hashimi, J. Recas, and D. Atienza, “Evalimt and design
MAT 0.78 MFLOPS/W | 14.65 MFLOPS/W | 14.73 MFLOPS/W exploration of solar harvested-energy prediction algamit in DATE,
(1x) (18.8%) (18.9%) 2010, pp. 142-147. )
k-means | 0.62 MFLOPS/W | 11.79 MFLOPS/W | 11.79 MFLOPS/W (10] S. Liu, Q. Qiu, and Q. Wu, “Energy aware dynamic voltaged a
frequency selection for real-time systems with energy ésting,” in
(1x) (19.0¥) (19.0¥) DATE, 2008, pp. 236-241.
Sobel 0.13 Mbits/W 1.27 Mbits/W 1.28 Mbits/W [11] B. Zhang, R. Simon, and H. Aydin, “Energy management tiore-
(1x) (9.8x) (9.8x) critical energy harvesting wireless sensor networks, Siabilization,

Safety, and Security of Distributed Systems, ser. Lecture Notes in
Computer Science, S. Dolev, J. Cobb, M. Fischer, and M. Y.
Springer Berlin / Heidelberg, 2010, vol. 6366, pp. 236-251.

computation capability to nodes in distributed sensor neta;  [12] C. Moser, L. Thiele, D. Brunelli, and L. Benini, “Adapé power

The power adaptive computation system contains multiple, management in energy harvesting systemsDAE, 2007, pp. 1-6.
. . . . ] ——, “Robust and low complexity rate control for solar vpered
parallel processing units, each enabled/disabled indigly. sensors,” inDATE, 2008, pp. 230-235.

A run-time optimizer solves a convex model to decide hoW4] D. Noh, L. Wang, Y. Yang, H. Le, and T. Abdelzaher, “Minim vari-

; ; ance energy allocation for a solar-powered sensor systeijstributed
many processing units can be enabled, such that the system Computing in Sensor Systems, ser. Lecture Notes in Computer Science.

power consumption is not greater than .the power_supply fr_om Springer Berlin / Heidelberg, 2009, vol. 5516, pp. 44-57.
the harvester and the system computation speed is maximiZ&® A. Yakovlev, “Energy-modulated computing,” BATE1L, Irvited Paper

; ; in Special Day on Intelligent Energy Management, 2011. [Online].
We develop the power adaptive computation systems for three Available: http://async.org.uk/tech-reports/NCL-EE®ISD-TR-2010-

applications following the proposed approach on a platform 167 pdt
with a ARM9 processor and an FPGA, and evaluate tliEs] F. Xia, A. Mokhov, Y. Zhou, Y. Chen, I. Mitrani, D. Shan®. Sokolov,

; and A. Yakovlev, “Towards power elastic systems throughcoomency
systems with harvested solar energy data. The developed management,” irech report. Microdlectronic System Design Group,

power adaptive system can improve harVGSte.d energy Uti_"ty School of EECE, Newcastle University, 2010. [Online]. Available:
efficiency up to 28.8%, compared to some static designs with- hitp://async.org.uk/tech-reports/NCL-EECE-MSD-TR@L55. pdf

out adaptability; and can provide up to 19 times improvemert?] Y. Chen, I. Mitrani, D. Shang, F. Xia, and A. Yakovlev, tihastic
analysis of power, latency and the degree of concurrency,EEE

in FLOPS/W to_ the ARM processor. o International Symposium on Circuits and Systems, 2010, pp. 4129-4132.
Future work includes investigating the efficiency of the erii8] A. Strollo, E. Napoli, and D. De Caro, “New clock-gatiechniques for

; ; ; ; low-power flip-flops,” inProceedings of the International Symposium on
ergy estimator, studying the detailed behavior of the caaypu o Electronics and Design. 2000, pp. 114-119.

tion system and sensed data, integrating other dynamicrpoy@; a. Nahapetian, P. Lombardo, A. Acquaviva, L. Benini,daM. Sar-
optimization techniques into the approach, and extendieg t rafzadeh, “Dynamic reconfiguration in sensor networks wétienerative

; ; energy sources,” iDATE, 2007, pp. 1054-1059.
deSIQn approach to other energy harvestlng sources and[zb? “Oak Ridge National Laboratory (ORNL) RSR web site,'0(® Oct.).

work at the network level. [Online]. Available: http://www.nrel.gov/midc/orntsr/
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