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Abstract—In many application domains, data are represented
using large graphs involving millions of vertices and billions of
edges. Graph exploration algorithms, such as breadth-first seah
(BFS), are largely dominated by memory latency and are chal-
lenging to process efficiently. In this paper, we present a recon-
figurable hardware methodology for efficient parallel processing
of large-scale graph exploration problems. Our methodology is
based on a reconfigurable hardware architecture which decouples
computation and communication while keeping multiple memory
requests in flight at any given time, taking advantage of the
hardware capabilities of both FPGAs and the parallel memory
subsystem. To validate our methodology, we provide a detailed
design description of the Breadth-First Search algorithm on an
FPGA-based high performance computing system. Using graph
data based on the power-law graphs found in real-word problems,
we are able to achieve performance results that are superior
to those of high performance multi-core systems in the recent
literature for large graph instances, and a throughput in excess
of 2.5 billion traversed edges per second on RMAT graphs with
16 million vertices and over a billion edges. Using four Virtex-5
LX330 FPGAs based on 65nm technology and running at 75MHz,

our BFS design achieves more than twice the speed of a 32-core
Xeon X7560 based on 45nm technology and running at 2.26GHz.

I. INTRODUCTION

problems are unstructured and highly irregular, requifing-
grained random memory accesses. This often leads to poor
spatial and temporal locality of memory accesses, and hence
suboptimal performance levels on conventional cacheebase
microprocessors. In addition, graph algorithms tend tdaep

the structure of the graph while performing a relatively Bma
amount of computations, leading to execution times doraihat

by memory latency.

Previous work has shown that FPGA-based reconfigurable
computing machines can achieve order of magnitude speed-
ups compared to microprocessors for many important com-
puting applications. However, one limitation of FPGAs that
has prevented widespread usage is the requirement foraregul
or predictable memory access patterns due to the heavily
pipelined circuits in FPGA implementations. Applications
with irregular memory access patterns, such as graph-based
algorithms, achieve much lower memory bandwidth due to
the increased the number of page misses in DRAM memo-
ries. Consequently, this low memory bandwidth incurs many
pipeline stalls, resulting in little acceleration from tREGA,
and possibly even deceleration. In this paper, we present
a novel reconfigurable hardware methodology for efficient
parallel graph exploration. Our approach is evaluated on a

Many real-world problems, such as social networks argh-performance reconfigurable computing platform, gsin

biological interactions, have been represented as Igrgehs
or networksinvolving millions of vertices and billions of
edges. For instance, in bioinformatics protein-proteierac-

tions (PPIs) are commonly represented by graphs, where ver-
tices represent proteins, and edges between proteinsegpre

physical interactions between the corresponding protdihs

case study to compare it with related work. This paper pesid
four key contributions:

« A reconfigurable hardware architecture for efficient par-
allel processing of large-scale graph problems, which de-
couples computation and communication while keeping
multiple memory requests in flight at any given time,

As graph problems grow in size, efficient parallel graph
processing becomes important as computational and memory
requirements increase. .
Unfortunately, traditional software and hardware soluio
that are used to parallelise mainstream parallel applicati
do not necessarily work well for large-scale graphs, due to
a number of properties in graph problems [2]. Graph algo-
rithms have data-driven computations dictated by the xerte
and edge structure of the graph. Often, the data in graph

taking advantage of the high bandwidth of a parallel
memory subsystem.

A detailed description of an efficient hardware solution
to the well-known breadth-first search (BFS) problem
as a case study, to provide a demonstration of our
reconfigurable hardware methodology on a commercial
FPGA-based high performance compute machine.



« An in-depth performance evaluation that considers diffevertex v,. Each newly-discovered vertex is marked by its
ent classes of graphs and analyses scalability, processitigtance fromw,, i.e. the minimum number of edges from
rate, and sensitivity to graph size. to v;. All the vertices with the same distance value belong to

« A performance comparison to related work in graph prdhe same BFS level, with the source vertex being in BFS level
cessing using state-of-the-art CPUs and GPUs, showiigand its neighbours in BFS level 1, and so on.
that our reconfigurable hardware solution is able to not The BFS problem is one of the most common algorithms,
only outperform high performance multi-core systemsnd is a building block for a wide range of higher-level graph
but also to achieve better performance scaling with rexploration algorithms. For example, BFS can be used on a
spect to graph size. given graph to identify all of the connected components, to

determine the graph diameter, or to perform a bipartiteness

test [14]. In [15], BFS has been employed in brain network
The importance of efficient processing of large graph prolnalysis of very sparse brain network data.

lems has been increasing as datasets quickly grow past th#ost parallel BFS algorithms arevel-synchronouseach

compute capacity of current HPC solutions. This has matvatBFS level is processed in parallel while the sequentialramde

a substantial amount of previous work that deals with tha levels is preserved. One common approach to parallglisin

design and optimisation of graph exploration algorithm, ithe BFS algorithm is the quadratic parallelisation or read-

particular BFS designs, either for commodity processofs [dased parallelisation of the BFS algorithm [4]. This applga

[4], [5], [6], [7], [8], or for dedicated hardware [9], [10[11], illustrated in Algorithm 1, is common in BFS implementatson

[12]. for high memory bandwidth machines such as GPUs [4], [5].
Current state-of-the-art solutions for commodity prooess In algorithm 1, the distance arrayistancel], is used: (1) to

are provided by Agarwal et al. for multi-core CPUs [6]determine if a vertex belongs to the current BFS level (lihe 8

and Hong et al. for CPU-GPU hybrid systems [4]. Usin@2) to check if a vertex has been visited (line 10), and (3) to

a 32-core CPU system, Agarwal et al.'s implementation [Bhark vertices for processing in the next BFS level (line 11).

outperformed previous work on BFS implementations fordarg

graph instances. Although, Hong et al's hybrid CPU-GPUp|gorithm 1: Level-synchronous read-based BFS

implementation _[4] provided _comparablg resqlts to Agarwat Input: G(V, E), source vertex,

et al's [6], the size of graph instances, including the ayera oOutput: Array distancél..n] with distancgi]= minimum distancévs,

vertex degree, was limited by the GPU memory size. One way vi)

to allow for the GPU to process larger graph instances is toparallel foreach v; € V' do

use multiple GPUs; however, it is not clear in [4] how the L distancelil «— oo

performance of multiple GPUs would scale in the presende®stancels] «— 0, bfs_level «— 0

Il. RELATED WORK

X t
of high costs of both GPU-GPU data transfer and globél repesonthrue
synchronisation across multiple GPUs. 6 parallel foreach v; € V do

if distancef] = bfs_level then
foreach u; adjacent tov; do
L if distancefj] = oo then

Much previous work on using FPGAs to solve graph prob;-
lems has used low-latency on-chip memory resources to stgre
graph data [13], [9], [10]. However, many real world graphs
are too large to fit into on-chip RAMs of FPGAs, requiring thé'
use of off-chip memories such as DRAM. Due to significant
differences in access times between on-chip memory and 6ff- | bfs_level =bfs_level +1
chip memory, many efficient FPGA-based solutions are nat"™ 4"
suitable for high-latency off-chip storage. In our work, we
present a reconfigurable computing approach to acceleraté primary disadvantage of the read-based method is that
the processing of large-scale graph exploration probldras tthe distance array is repeatedly accessed at each BFS level,
require high-latency off-chip storage. even if only a few vertices belong to that BFS level. In the

Some recent publications have described successful paorst case, the read-based parallel BFS perfotrs? + m)
allelisation strategies of graph problems on reconfigerablork, in particular for graphs with large diameters. Howeve
hardware [11] and [12]. But, to the best of our knowledge, ribis rarely happens with randomly-shaped real-world gsaph
previous FPGA work has tackled large-scale graph exptmratiwhich are governed by the small-world property [16]. Due
algorithms which can compete with other high performande this property, the diameter of the graph is generally smal
multi-core systems, in particular the recent work of Hong e@nd hence, the number of BFS levels is much smaller than
al. [4] and Agarwal et al. [6]. n. In addition, for such graphs, most vertices belong to one
of a few critical BFS levels where the number of these
vertices approaché&s(n). Since the execution time of the BFS

Given a graphG = (V, E) with a setV of n vertices and a algorithm is dominated by these critical levels, reading th
setF of m directed edges, the BFS problem is to traverse tiehole O(n)-sized array will not be wasteful for these critical
vertices of G in breadth-first search order starting at sourdevels. Moreover, the memory access pattern of the distance

distance[j] «— bfs_level + 1
done «— false

IIl. BACKGROUND: THE PARALLEL BFS ALGORITHM



array is sequential, and hence, accessing this array can b2. High coarse-grained parallelism This is achieved by
achieved efficiently on a high memory bandwidth machinestantiating a large number of GPEs in hardware, which
such as GPUs [4]. operate in parallel in a massively multi-threaded machine
fashion. Having a large number of GPEs allows us to take
advantage of the abundant parallelism that is often aJailab
in graph algorithms (see Algorithm 2, line 2).

As we have discussed in Section |, the computational and3. Multiple concurrent memory requests Instead of
memory access requirements of large-scale graph problemsing cache memories to hide memory latency, we adopt a
are significantly different from mainstream parallel apali latency masking threadechnique [17]. The GPEs are directly
tions, requiring new architectural solutions for efficipatrallel connected to a shared off-chip memory system via a memory
graph processing. In this section we propose a reconfigaraliiterconnect network with no memory hierarchy. Each GPE
computing solution for efficient parallel graph exploratiois capable of issuing multiple outstanding memory requests
algorithms. to shared off-chip memory. Given a large number of parallel

Algorithm 2 shows a general template for the graph asPEs, multiple concurrent memory requests can be issued to
gorithms targeted by our reconfigurable hardware solutioparallel memory banks, leading to superior memory access
In terms of algorithm coding, this property translates iato performance. Having said that, we recognise that there are
loop that iterates through all the vertices in the graph.hEacases where an application-specific cache memory (scratch
loop iteration can be performed as a separate kernel bypad) can be used to improve the performance of the memory
processing element (PE). The outer-loop (line 2) reprasesystem.
the coarse-grained parallelism required for our recondigler 4. Trading speed for area Since the execution times
hardware solution, while further fine-grained parallelisray of graph exploration algorithms are dominated by memory

IV. RECONFIGURABLE COMPUTING FOREFFICIENT
PARALLEL GRAPH EXPLORATION

be available within the graph kernel itself (line 3). latency, the processing elements will be idle for most of the
time. In other words, a GPE will spend most of its time waiting
Algorithm 2: Graph traversal algorithm template for memory requests to return from main memory. Hence,
1. INPUT. a graphG(V., ) having a GPE operating at 500MHz or 50MHz will make little
2: for each vertexw of G in paralleldo difference since over 90% of the time the GPE is stalled. So
3:  {perform a graph kerngl by running at slow frequencies, say 75MHz, the design can be
4: end for optimised for area, leading to higher parallelism (i.e.he
5: OUTPUT: statistical data of7(V, E) P ’ 9 9 P -€.neig

number of GPEs) compared to designs targeting higher clock
rates.
5. Decoupling access and execution unit3his improves
the re-usability of the reconfigurable architecture tenaplas
Typically, mapping an algorithm onto a custom hardwarenly the GPEs (execution units) will need to change from one
accelerator requires extracting parallelism from the @llgm graph algorithm to another. It will also benefit the hardware
to take advantage of the hardware resources. In the casesyithesis process while improving the productivity of the
FPGAs, designers usually rely on heavily pipelined destgnstemplate user. For example, a GPE (the execution unit) can be
compensate for the relatively slow operating frequencies generated using a high-level synthesis tool, while the nigmo
these devices. However, the irregular memory access pattgrterconnect network (the access unit) can be obtained from
requirements of large graph problems result in many pigelitibrary of hand-crafted hardware components.
stalls, leading to limited or no FPGA performance speed-ug. ] )
Instead of attempting to increase throughput using pijrgin B- Reconfigurable hardware architecture template
techniques, we aim to tolerate off-chip memory latency. In The overall architecture of the reconfigurable computing
particular, a set of architectural design features andiigcles, solution, as illustrated in Figure 1, resembles a scalable,
not necessarily new ideas, are put together to achieveegfticimany-core style processor architecture, comprisingua-
parallel processing of large graph problems. These femtuteme Management Unit (RMU), multiple Graph Processing
and techniques are described in detail in the following. Elements (GPEs), and a memory interconnect network. The
1. Custom Graph Processing Element Designing GPEs are a collection of replicated and parallel processing
application-specific graph processing elements (GPEd) welements that are application-specific. Each GPE can inde-
result in efficient utilisation of hardware resources intcast pendently execute a graph kernel (see Algorithm 2, line 3).
to a more general-purpose processing element. Given thiéile memory interconnect network links the GPEs to an off-
operations performed in graph algorithms are simple computhip shared memory subsystem via a memory crossbar that
operations (e.g. no floating-point operations) that mapete rprovides a point-to-point connection between each GPE and
atively simple hardware implementations, high-level hgsis all memory banks. The RMU act as a control processor that
tools should be able to generate efficient implementationg|anages the operation of the GPEs, including initialisatio
of an individual GPE, with spatial parallelism provided byask assignment and synchronisation of the GPEs. it also
replicating the GPE many times. provides interfacing to the host CPU processor in the case

A. Parallelisation Strategy



Run-time Management Unit of the BFS algorithm depends on the consensus between all
I i 3 i GPEs, and is reached when there are no marked vertices for
next BFS level (line 10).

GPE GPE GPE GPE
ses Algorithm 3: Read-based BFS algorithm running on the
RMU

1 Partition set of vertice§’ into disjoint setsV;, with |V;| = ‘TV;
2 bfs_level <— 0

A Y A [ [ 3 distance[s] +— 0

Memory Interconnect Network

4 repeat
Y Y Y
Mem Mem Mem Mem Mem 5 done «— true
6 in parallel foreach GPE do
bank bank bank bank | e e e bank ; L Invoke BFS KERNEL (V;, bfs_level)
Multiple memory banks 8 Synchronise all GPEs

9 bfs level = bfs level + 1

Fig. 1. Reconfigurable hardware architecture template foaligh graph 10 until done
exploration algorithms

¢ hiah ; " bl ) i FPGAB' The GPE design: serial execution, parallel access
o erformance reconfigurable systems an - L . . .
'gh P 'u y w Since the execution time of the BFS algorithm is dominated

based coprocessor architecture. Optionally, each GPEaan L .
a private local memory accessible only to itself, and/oreha y memory _Iatenc_y_, the GPE is likely to be idle for mos_t of
the time while waiting for data from memory. So to achieve

shared memories accessible to more than one GPE. :
good performance levels, we must deal with the memory
V. HARDWARE DESIGN OF PARALLELBFS latency bottleneck. Our GPE design approach is based on

In this section, we describe how we parallelised the BR8 serialising execution and processing of data within the
algorithm using our reconfigurable hardware architectene-t GPE. and (ii) parallelising access to off-chip memory. Aaler
plate presented in Section IV-B. We chose to use a refindgplementation of the BFS kernel lead to an area-efficient
version of the Read-based BFS algorithm (Algorithm 1) whicesign, and hence more GPEs can be instantiated on the
is proven to be suitable for: (1) platforms with high memorf{fPGA. In addition, the inner loops in Algorithm 4 (lines 3, 4,
bandwidth, and (2) randomly-shaped real-world graphs go?-and 11) have a data-dependent iteration count, and sotcann
erned by the small-world property [16] as discussed in SactiPe efficiently parallelised through loop unrolling. Pagéfling
lll. As for graph representation, we used the popular CSRemMory accesses is achieved by designing the GPE in such a
(Compressed Sparse Row) format which merges the adjaceW@y that it can sequentially issue multiple outstanding mgm
lists of all vertices into a singl€(m)-sized array, with the requests to a parallel memory subsystem, and use on-chip
beginning location of each vertex's adjacency list storecni RAM resources to store data from memory for subsequent
separateO(n)-sized array. The BFS-level of each vertex i®rocessing. _ . _
stored in a separat@(n)-sized array, thelistancearray. Figure 2 presents a schematic overview of the GPE design

We start by breaking the read-based BFS algorithm inff the BFS kernel (Algorithm 4). The GPE consists of four
two parts: one part running on the run-time management uftifictional units that execute the BFS kernel serially. Ehes

(Algorithm 3), and the other part on the GPEs (Algorithm 4functional units have access to local storage in the form
of dedicated registers that are implemented using dis&ibu

A. The RMU design RAM. A detailed description of each functional unit follows
The RMU design (Algorithm 3) consists of three main steps: 1. Read distance ofv;. This unit reads the distance of a
1. Initialisation of the GPEs. The RMU initialises the given vertexv; stored in thedistance array. If the distance of

GPEs by partitioning the set of vertic&s in disjoint setsV; the v; is equal to the current BFS level (line 2), it means that

(line 1), one per GPE, such that each GPE owns the vertidhe vertexv; belongs to this level, and hence its neighbours

in its partitionV;. EachV; is only explored by its designatedwill be explored in the current iteration (Functional unis

GPE;, but any GPE can mark any vertex in aiy. 4). Otherwise, the GPE processes the ngxfThis process is
2. Concurrent computation on GPEs After the ini- repeated until all vertices belonging ¥ have been processed.

tialisation step, asynchronous execution of the BFS kernel2. Neighbour gathering In this unit, the neighbours of

(Algorithm 4) takes place on each GPE for a given BFS leve] are retrieved from memory and stored in local Neighbour

(line 7). Once aGPE; has explored all the vertices in itsregisters (Vid registers in Algorithm 4). For area-efficiency

V; set, it send a termination signal to the RMU, indicatingeasons, these registers are implemented using distlibute

whether there had been any vertices marked for the next BR8M instead of Slice registers. Instead of issuing one mgmor

level. request, and then waiting for response from memory, the
3. Synchronisation of the GPEs Each GPE waits for all GPE issues multiple non-blocking memory requests in an
GPEs to finish their assigned vertices (line 8). The terronat attempt to take advantage of the capabilities of the paralle



Algorithm 4: BFS kernel executed by each GPE
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Input: V;: set of vertices to be explored by the GPE,

bfs levet current BFS level,

Array distancél..n] with distanc¢i]= minimum distancévs, v;),

R[1..n]: offsets of adjacency lists,

C[1..m]: CSR adjacency lists

Output: Array distance[l..n],

done: set to false if any vertex has been marked for next BFS level
Data: Nid[1..q]: local 32-bit registers to store Neighbour IDs
Bitmask[1..q]: 1-bit array to store visitation status of the vertices

current loaded in théVid registers,
q: number of Nid registers, size oBitmask in bits

foreachv € V; do

end
u <— Nid[i]
end

u < Nid[i]

end

end

end

end
end

if (distanceli] == bfs_levels)then
for (offset«— R[v]; offset < R[v+1]; offset += q) do
foreach i € 0..q do

| Nid[i] < Clof fset +i]

foreach i € 0..q do

bitmask[i] + (distancelu] == o0)
foreach i € 0..q do

if bitmask[i] == 1 then

distance[u] < bfs_level + 1
done < 0

Fig. 2.

RMU interface

GPE Registers

GPE Functional Units

1. Read Distance[v]

dist[v]

.|

P If dist[v] == current_BFS_level

YES

2. Neighbour Gathering

lgp-| Neighbour
Registers

—

Issue multiple non-blocking
memory load requests

‘ Wait for all memory requests

v

3. Status Look-up

GPE Memory Interface Logic

I—--b Status BITMASK

| Issue multiple non-blocking
| memory load requests

‘ Wait for all memory requests

| ;

4. Distance Update

(Algorithm 4)

Graph Processing Element (GPH)esign for the BFS kernel

memory subsystem. Assuming that the requests are destined
for different memory banks, the high off-chip memory latgnc

of single memory request is amortised over multiple memory
requests as they get serviced simultaneously. The maximum
number of non-blocking memory requests is boundedgby
the number of théNeighbourregisters available in the GPE.

If the number of neighbours], (i.e. degree ofy;) is greater
than ¢, then neighbours are read from memory in batches of
sizeq (lines 4-5). After each batch is retrieved from memory,
steps 3 and 4 are executed (Functional unit 3 and 4) before
the next batch of neighbours is read from memory.

3. Status look-up The visitation status of the gathered
neighbours is checked in this step (lines 7-9). Similarly to
the previous step, the distances of the neighbours are read
using up tog multiple non-blocking memory requests. If the
distance has not been set before, then the vertex is marked fo
the next step using abit bitmask

4. Distance update In this step, the distances of the
neighbouring vertices are updated based on the valuesistore
in the bitmaskin the previous step (lines 11-16). Vertices
marked in previous step will have their distance value ugdiat
to the current BFS level plus one (lines 13-14). By updating a
vertex’s distance, the vertex is also marked for the next BFS
iteration.

VI. METHODOLOGY

This section provides details of our experiments. For the
graph data, we used two different classes of graphs: unijorm
random graphs, and scale-free graphs (R-MAT). Uniformly
random graphs are generated witlvertices each with degree
d, where thed neighbours of a vertex are chosen randomly.
The uniformly random graph data are generated u$iig
graph [18], a synthetic graph generator suite. R-MAT graphs
are characterised by their skewed degree distribution and
fractal community. The scale-free graphs are generatewjusi
the Graph500 benchmark suite [19] based on the Recursive-
Matrix (R-MAT) graph model. For the parameters of the R-
MAT graph, we used the default values of the Graph500
benchmark (A=0.57, B=0.19, C=0.19).

Our performance is measured by taking the average execu-
tion time of 64 BFS runs from 64 different source vertices
which are randomly chosen. To avoid trivial searches, all
source vertices must belong to the same connected component
whose size ig)(n). As in previous related work [4], [6], our
BFS performance is reported as the number traversed edges
per second, which is computed by dividing the actual number
of directed edges over the BFS execution time.

Table | provides the configuration details of the machines
used in our experiments and in the previous work [4] and [6].
For the high performance reconfigurable computing system,
we use the Convey HC-1 server [20] which has four user-
programmable Virtex-5 FPGAs, and each FPGA is connected
to a shared memory subsystem via a memory crossbar.

To develop for Convey HC-1, we use the Convey Personality
Development Kit (PDK), which is a set of makefiles to support
simulation and synthesis design flows. Convey provides a



TABLE |

THE SPECIFICATION OF MACHINES USED OUR EXPERIMENTS AND RELAD WORK [4] AND [6]

SC10-EP[6] SC10-EX[6] PACT11-NEH[4] Convey HC-1
Core Architecture|| Intel Nehalem Intel Nehalem Intel Nehalem| Xilinx Virtex-5
Model No. Xeon X5570 Xeon X7560 Xeon X5550 XC5VLX330
Lithography 45 nm 45 nm 45 nm 65 nm
Core frequency 2.93 GHz 2.26 GHz 2.66 GHz 75 MHz
Total Num. of Cores 8 32 8 -
Total Num. of FPGA deviceg - - - 4
Total Num. of threads/PEg 16 64 16 512
Main Memory 48 GB 256 GB 24 GB 16 GB
Maximum memory bandwidth (theoretical 100 GB/ 266 GBI/s 100 GB/s 80 GB/s
TABLE Il
DEVICE UTILISATION ON A VIRTEX-5 LX330 DEVICE
[ Num. of GPEs[ Num. of Neighbour Reg[[ Slice LUTs | BRAM |
128 16 80% 64% 25
128 32 83% 64% ’ Uniform Rand 16 ——
RMAT 16 - PRI s

per Sec
N

wrapper that allows the user to interface the FPGA desigg
with both the host CPU and the memory controllers. OuE
BFS hardware design is expressed in RTL using Verilog HDL§
and was compiled using Xilinx ISE v13.1. Hardware resourceé
utilisation is provided in Table II.

256

128

512
VIl. EXPERIMENTAL RESULTS Number of GPEs
In this section, we validate the effectiveness of our re-
configurable computing methodology that we presented in
Fig. 3. FPGA-accelerated BFS performance: processing rate.

Section IV-B. To begin we measure the performance of our
BFS design on the Convey HC-1 machine (See Table 1),
using both uniformly random and R-MAT graph instances with
different sizes. We then compare our BFS performance gesult
to those of Agarwal et al. [6] and Hong et al. [4].

14 Uniform-Random 16 ——

A. Scalability 8 1] RMAT 16 --eeer

Figures 3 and 4 show the processing rate and scalabilg‘/ 0}
of our BFS design for both uniformly random graphs an

RMAT graphs. The number of graph vertices is set to 16
million vertices with an average vertex degree of 32. The
number of GPEs varies from 32 to 512 in our design. W&
define the efficiency as the ratio of speedupgoBPEs over

32 GPE, divided by the linear or ideal speedyp, In our 82 64
current design we are able to fit up to 128 GPEs per Virtex5

LX330 device, so we used 2 and 4 FPGA devices for 256

GPEs and 512 GPEs respectively. For large uniformly random

graphsl we observe that our design not 0n|y scales well OrFIg 4. FPGA-accelerated BFS performance: speedup over E5GP

one FPGA device giving an efficiency of 92.5-95.5%, but

also on multiple FPGA devices as we are able to reach ) ] . ]
efficiency rates over 98% and over 94% for 2 and 4 FPGRMAT graphs respectively. The number of vertices is varied
devices respectively. Similarly, for large RMAT graphs, W(ﬁ'ror_n 1 million to 16 million, while the average vert_ex degree
see a similar efficiency pattern as to that of uniformly randoVaries from_8 t_o 64. We see that the performance increases as
graphs, albeit with slightly lower efficiency rates: 77-8266 the graph size increases in terms of vertex count and/oageer

a single FPGA device, and 94% and 83% for 2 and 4 Fpa/grtex degree for uniformly random graphs. This is due to the
devices respectively. fact that our architecture does not make use of low-latency,

. o but small capacity, on-chip memories to hide memory latency
B. Graph Size Sensitivity In contrast, the BFS performance of cache-based systems, as
Figures 5 & 6 show the average processing rate obtainedion[6], tends to decrease as the graph size is scaled up due
four Virtex-5 LX330 FPGAs for uniformly random graphs ando the increased rate of last-level cache misses. Similarly

o N MO ®
— T — T

512
Number of GPEs
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Fig. 5. FPGA-accelerated BFS design: performance scalitly mwspect to Fig. 7. Performance comparison of BFS execution on various meshising
graph size in terms of both vertex count and average vertesedd@vg deg) uniformly random graph instances with 16 million vertices ardaverage
for uniformly random graphs. vertex degree (Avg deg) of 8, 16, and 32.

Avg deg=8 A
25 Avg deg=16 —»— a1

2 [7 Avg deg=32 —»—
Avg deg=64 —a— /
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Fig. 6. . FP_GA-acceIerated BFS design: performance scalitig wspect to Fig. 8. Performance comparison of BFS execution on various meslising
graph size in terms of both vertex count and average verteseddgvg deg) gyt graph instances with 16 million vertices and an averagrex degree
for RMAT graphs. (Avg deg) of 8, 16, and 32.

for R-MAT graphs, the performance increases as the gragh

grows in size in general. However, there are few instance§Y Pased on 45nm technology and running at 2.66 GHz
of RMAT graphs where performance decreases as the gr%RMAT graphs. For uniformly random graphs, our FPGA
size is increased. This may be caused by workload imbalarf@Si9n outperforms PACT11-NEH by a factor of 1.4x. With

that can occur in RMAT graphs due to their skewed degr&@Ur Virex-5 FPGAs, we are able to achieve a speedup of 5.4x
distribution. and 3.2x for large instances of uniformly random graphs and

RMAT graphs respectively. For SC10-EX (32 Nehalem cores),
C. Performance Comparison our design is able to outperform this high-end 32-core CPU
Figures 7 & 8 compare our BFS performance to perfowith two Virtex-5 FPGAs by a factor of 1.33x for uniformly
mance values in previous work of Agarwal et al. [6] an#andom graphs, and 1.2x for RMAT graphs. Using all four
Hong et al. [4], which are reported to be the fastest BHSPGAs, our BFS design performed about 2.5x and 2.13x faster

implementations in comparison with other related work [7than SC10-EX for uniformly random and RMAT graphs with
[8], [3], and [21]. The last three sets of bars on the left aftea 16 million vertices and 512 million edges.
figure represent the measured performance of our hardwaré&rom these comparison results, we can say that our FPGA
implementation of 128 GPEs per FPGA device. design outperforms the multi-core CPU implementationg as i
First we compare our performance results to PACT11-NEid able to achieve higher parallelism through 512 custom$GPE
(8 Nehalem cores). Using a single Virtex-5 FPGA deviceompared to 16 and 64 threads for PACT11-NEH and SC10-
based on 65nm technology and operating at 75 MHz, vi#X respectively. In addition, as the average vertex degsee i
are able to match the performance of a 2-socket quad-camereased, the performance gap between HC-1 and the CPUs



increases too. This is mainly due to the increased numbe@n S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallgraph
of random memory accesses issued in the BFS algorithm to
read the distance of neighbouring vertices (see Algorithm 1s,
line 10). By issuing a large number of concurrent memory
requests (up to 512*32=16384 requests), our FPGA desiqg
can cope better with irregular memory accesses. On the oth

hand, the CPU-based systems try to hide memory latency using
cache memories, which is ineffective for random and irragul

memory access patterns.

VIIl. CONCLUSION& FUTURE WORK

(7]

In this paper, we propose a reconfigurable Computin%]

solution for efficient parallel graph exploration algonth.

Using a common graph exploration algorithm, namely the
BFS algorithm, we have shown through experimental stud?]
that our approach is able to outperform the state-of-the-ar
BFS implementations in recent high performance computifitp]
literature by more than 2 times for graphs with millions of
vertices and edges. Future work include investigating ways
to improve the performance by making use of on-chip RAM
resources in FPGAs to reduce off-chip memory traffic, d)}ll]
namic task scheduling to improve workload balance, and ex-

ploring other graph algorithms such &3-connectivityandAll

Pairs Shortest Patfalgorithms. Eventually, we aim integratelt?]
our reconfigurable computing solution onto a heterogeneous

accelerator platform that employs graph algorithms forlimut

subject voxel-based brain network analysis [15].
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