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Abstract—In many application domains, data are represented
using large graphs involving millions of vertices and billions of
edges. Graph exploration algorithms, such as breadth-first search
(BFS), are largely dominated by memory latency and are chal-
lenging to process efficiently. In this paper, we present a recon-
figurable hardware methodology for efficient parallel processing
of large-scale graph exploration problems. Our methodology is
based on a reconfigurable hardware architecture which decouples
computation and communication while keeping multiple memory
requests in flight at any given time, taking advantage of the
hardware capabilities of both FPGAs and the parallel memory
subsystem. To validate our methodology, we provide a detailed
design description of the Breadth-First Search algorithm on an
FPGA-based high performance computing system. Using graph
data based on the power-law graphs found in real-word problems,
we are able to achieve performance results that are superior
to those of high performance multi-core systems in the recent
literature for large graph instances, and a throughput in excess
of 2.5 billion traversed edges per second on RMAT graphs with
16 million vertices and over a billion edges. Using four Virtex-5
LX330 FPGAs based on 65nm technology and running at 75MHz,
our BFS design achieves more than twice the speed of a 32-core
Xeon X7560 based on 45nm technology and running at 2.26GHz.

I. I NTRODUCTION

Many real-world problems, such as social networks and
biological interactions, have been represented as largegraphs
or networks involving millions of vertices and billions of
edges. For instance, in bioinformatics protein-protein interac-
tions (PPIs) are commonly represented by graphs, where ver-
tices represent proteins, and edges between proteins represent
physical interactions between the corresponding proteins[1].
As graph problems grow in size, efficient parallel graph
processing becomes important as computational and memory
requirements increase.

Unfortunately, traditional software and hardware solutions
that are used to parallelise mainstream parallel applications
do not necessarily work well for large-scale graphs, due to
a number of properties in graph problems [2]. Graph algo-
rithms have data-driven computations dictated by the vertex
and edge structure of the graph. Often, the data in graph

problems are unstructured and highly irregular, requiringfine-
grained random memory accesses. This often leads to poor
spatial and temporal locality of memory accesses, and hence,
suboptimal performance levels on conventional cache-based
microprocessors. In addition, graph algorithms tend to explore
the structure of the graph while performing a relatively small
amount of computations, leading to execution times dominated
by memory latency.

Previous work has shown that FPGA-based reconfigurable
computing machines can achieve order of magnitude speed-
ups compared to microprocessors for many important com-
puting applications. However, one limitation of FPGAs that
has prevented widespread usage is the requirement for regular
or predictable memory access patterns due to the heavily
pipelined circuits in FPGA implementations. Applications
with irregular memory access patterns, such as graph-based
algorithms, achieve much lower memory bandwidth due to
the increased the number of page misses in DRAM memo-
ries. Consequently, this low memory bandwidth incurs many
pipeline stalls, resulting in little acceleration from theFPGA,
and possibly even deceleration. In this paper, we present
a novel reconfigurable hardware methodology for efficient
parallel graph exploration. Our approach is evaluated on a
high-performance reconfigurable computing platform, using a
case study to compare it with related work. This paper provides
four key contributions:

• A reconfigurable hardware architecture for efficient par-
allel processing of large-scale graph problems, which de-
couples computation and communication while keeping
multiple memory requests in flight at any given time,
taking advantage of the high bandwidth of a parallel
memory subsystem.

• A detailed description of an efficient hardware solution
to the well-known breadth-first search (BFS) problem
as a case study, to provide a demonstration of our
reconfigurable hardware methodology on a commercial
FPGA-based high performance compute machine.



• An in-depth performance evaluation that considers differ-
ent classes of graphs and analyses scalability, processing
rate, and sensitivity to graph size.

• A performance comparison to related work in graph pro-
cessing using state-of-the-art CPUs and GPUs, showing
that our reconfigurable hardware solution is able to not
only outperform high performance multi-core systems,
but also to achieve better performance scaling with re-
spect to graph size.

II. RELATED WORK

The importance of efficient processing of large graph prob-
lems has been increasing as datasets quickly grow past the
compute capacity of current HPC solutions. This has motivated
a substantial amount of previous work that deals with the
design and optimisation of graph exploration algorithm, in
particular BFS designs, either for commodity processors [3],
[4], [5], [6], [7], [8], or for dedicated hardware [9], [10],[11],
[12].

Current state-of-the-art solutions for commodity processors
are provided by Agarwal et al. for multi-core CPUs [6],
and Hong et al. for CPU-GPU hybrid systems [4]. Using
a 32-core CPU system, Agarwal et al.’s implementation [6]
outperformed previous work on BFS implementations for large
graph instances. Although, Hong et al’s hybrid CPU-GPU
implementation [4] provided comparable results to Agarwal
et al’s [6], the size of graph instances, including the average
vertex degree, was limited by the GPU memory size. One way
to allow for the GPU to process larger graph instances is to
use multiple GPUs; however, it is not clear in [4] how the
performance of multiple GPUs would scale in the presence
of high costs of both GPU-GPU data transfer and global
synchronisation across multiple GPUs.

Much previous work on using FPGAs to solve graph prob-
lems has used low-latency on-chip memory resources to store
graph data [13], [9], [10]. However, many real world graphs
are too large to fit into on-chip RAMs of FPGAs, requiring the
use of off-chip memories such as DRAM. Due to significant
differences in access times between on-chip memory and off-
chip memory, many efficient FPGA-based solutions are not
suitable for high-latency off-chip storage. In our work, we
present a reconfigurable computing approach to accelerate
the processing of large-scale graph exploration problems that
require high-latency off-chip storage.

Some recent publications have described successful par-
allelisation strategies of graph problems on reconfigurable
hardware [11] and [12]. But, to the best of our knowledge, no
previous FPGA work has tackled large-scale graph exploration
algorithms which can compete with other high performance
multi-core systems, in particular the recent work of Hong et
al. [4] and Agarwal et al. [6].

III. B ACKGROUND: THE PARALLEL BFS ALGORITHM

Given a graphG = (V,E) with a setV of n vertices and a
setE of m directed edges, the BFS problem is to traverse the
vertices ofG in breadth-first search order starting at source

vertex vs. Each newly-discovered vertexvi is marked by its
distance fromvs, i.e. the minimum number of edges fromvs
to vi. All the vertices with the same distance value belong to
the same BFS level, with the source vertex being in BFS level
0, and its neighbours in BFS level 1, and so on.

The BFS problem is one of the most common algorithms,
and is a building block for a wide range of higher-level graph
exploration algorithms. For example, BFS can be used on a
given graph to identify all of the connected components, to
determine the graph diameter, or to perform a bipartiteness
test [14]. In [15], BFS has been employed in brain network
analysis of very sparse brain network data.

Most parallel BFS algorithms arelevel-synchronous: each
BFS level is processed in parallel while the sequential ordering
of levels is preserved. One common approach to parallelising
the BFS algorithm is the quadratic parallelisation or read-
based parallelisation of the BFS algorithm [4]. This approach,
illustrated in Algorithm 1, is common in BFS implementations
for high memory bandwidth machines such as GPUs [4], [5].
In algorithm 1, the distance array,distance[], is used: (1) to
determine if a vertex belongs to the current BFS level (line 8),
(2) to check if a vertex has been visited (line 10), and (3) to
mark vertices for processing in the next BFS level (line 11).

Algorithm 1: Level-synchronous read-based BFS
Input : G(V,E), source vertexvs
Output : Array distance[1..n] with distance[i]= minimum distance(vs,

vi)

1 parallel foreach vi ∈ V do
2 distance[i]←−∞

3 distance[s]←− 0, bfs level←− 0
4 repeat
5 done←− true
6 parallel foreach vi ∈ V do
7 if distance[i] = bfs level then
8 foreach uj adjacent tovi do
9 if distance[j] = ∞ then

10 distance[j]←− bfs level + 1
11 done←− false

12 bfs level = bfs level+ 1
13 until done

A primary disadvantage of the read-based method is that
the distance array is repeatedly accessed at each BFS level,
even if only a few vertices belong to that BFS level. In the
worst case, the read-based parallel BFS performsO(n2 +m)
work, in particular for graphs with large diameters. However,
this rarely happens with randomly-shaped real-world graphs
which are governed by the small-world property [16]. Due
to this property, the diameter of the graph is generally small,
and hence, the number of BFS levels is much smaller than
n. In addition, for such graphs, most vertices belong to one
of a few critical BFS levels where the number of these
vertices approachesO(n). Since the execution time of the BFS
algorithm is dominated by these critical levels, reading the
wholeO(n)-sized array will not be wasteful for these critical
levels. Moreover, the memory access pattern of the distance



array is sequential, and hence, accessing this array can be
achieved efficiently on a high memory bandwidth machine
such as GPUs [4].

IV. RECONFIGURABLECOMPUTING FOREFFICIENT

PARALLEL GRAPH EXPLORATION

As we have discussed in Section I, the computational and
memory access requirements of large-scale graph problems
are significantly different from mainstream parallel applica-
tions, requiring new architectural solutions for efficientparallel
graph processing. In this section we propose a reconfigurable
computing solution for efficient parallel graph exploration
algorithms.

Algorithm 2 shows a general template for the graph al-
gorithms targeted by our reconfigurable hardware solution.
In terms of algorithm coding, this property translates intoa
loop that iterates through all the vertices in the graph. Each
loop iteration can be performed as a separate kernel by a
processing element (PE). The outer-loop (line 2) represents
the coarse-grained parallelism required for our reconfigurable
hardware solution, while further fine-grained parallelismmay
be available within the graph kernel itself (line 3).

Algorithm 2: Graph traversal algorithm template
1: INPUT: a graphG(V,E)
2: for each vertexv of G in paralleldo
3: {perform a graph kernel}
4: end for
5: OUTPUT: statistical data ofG(V,E)

A. Parallelisation Strategy

Typically, mapping an algorithm onto a custom hardware
accelerator requires extracting parallelism from the algorithm
to take advantage of the hardware resources. In the case of
FPGAs, designers usually rely on heavily pipelined designsto
compensate for the relatively slow operating frequencies on
these devices. However, the irregular memory access pattern
requirements of large graph problems result in many pipeline
stalls, leading to limited or no FPGA performance speed-up.
Instead of attempting to increase throughput using pipelining
techniques, we aim to tolerate off-chip memory latency. In
particular, a set of architectural design features and techniques,
not necessarily new ideas, are put together to achieve efficient
parallel processing of large graph problems. These features
and techniques are described in detail in the following.

1. Custom Graph Processing Element. Designing
application-specific graph processing elements (GPEs) will
result in efficient utilisation of hardware resources in contrast
to a more general-purpose processing element. Given that
operations performed in graph algorithms are simple compute
operations (e.g. no floating-point operations) that map to rel-
atively simple hardware implementations, high-level synthesis
tools should be able to generate efficient implementations
of an individual GPE, with spatial parallelism provided by
replicating the GPE many times.

2. High coarse-grained parallelism. This is achieved by
instantiating a large number of GPEs in hardware, which
operate in parallel in a massively multi-threaded machine
fashion. Having a large number of GPEs allows us to take
advantage of the abundant parallelism that is often available
in graph algorithms (see Algorithm 2, line 2).

3. Multiple concurrent memory requests. Instead of
using cache memories to hide memory latency, we adopt a
latency masking threadstechnique [17]. The GPEs are directly
connected to a shared off-chip memory system via a memory
interconnect network with no memory hierarchy. Each GPE
is capable of issuing multiple outstanding memory requests
to shared off-chip memory. Given a large number of parallel
GPEs, multiple concurrent memory requests can be issued to
parallel memory banks, leading to superior memory access
performance. Having said that, we recognise that there are
cases where an application-specific cache memory (scratch
pad) can be used to improve the performance of the memory
system.

4. Trading speed for area. Since the execution times
of graph exploration algorithms are dominated by memory
latency, the processing elements will be idle for most of the
time. In other words, a GPE will spend most of its time waiting
for memory requests to return from main memory. Hence,
having a GPE operating at 500MHz or 50MHz will make little
difference since over 90% of the time the GPE is stalled. So
by running at slow frequencies, say 75MHz, the design can be
optimised for area, leading to higher parallelism (i.e. higher
number of GPEs) compared to designs targeting higher clock
rates.

5. Decoupling access and execution units. This improves
the re-usability of the reconfigurable architecture template, as
only the GPEs (execution units) will need to change from one
graph algorithm to another. It will also benefit the hardware
synthesis process while improving the productivity of the
template user. For example, a GPE (the execution unit) can be
generated using a high-level synthesis tool, while the memory
interconnect network (the access unit) can be obtained froma
library of hand-crafted hardware components.

B. Reconfigurable hardware architecture template

The overall architecture of the reconfigurable computing
solution, as illustrated in Figure 1, resembles a scalable,
many-core style processor architecture, comprising aRun-
time Management Unit (RMU) , multiple Graph Processing
Elements (GPEs), and a memory interconnect network. The
GPEs are a collection of replicated and parallel processing
elements that are application-specific. Each GPE can inde-
pendently execute a graph kernel (see Algorithm 2, line 3).
The memory interconnect network links the GPEs to an off-
chip shared memory subsystem via a memory crossbar that
provides a point-to-point connection between each GPE and
all memory banks. The RMU act as a control processor that
manages the operation of the GPEs, including initialisation,
task assignment and synchronisation of the GPEs. it also
provides interfacing to the host CPU processor in the case



Fig. 1. Reconfigurable hardware architecture template for parallel graph
exploration algorithms

of high performance reconfigurable systems with an FPGA-
based coprocessor architecture. Optionally, each GPE can have
a private local memory accessible only to itself, and/or have
shared memories accessible to more than one GPE.

V. HARDWARE DESIGN OF PARALLELBFS

In this section, we describe how we parallelised the BFS
algorithm using our reconfigurable hardware architecture tem-
plate presented in Section IV-B. We chose to use a refined
version of the Read-based BFS algorithm (Algorithm 1) which
is proven to be suitable for: (1) platforms with high memory
bandwidth, and (2) randomly-shaped real-world graphs gov-
erned by the small-world property [16] as discussed in Section
III. As for graph representation, we used the popular CSR
(Compressed Sparse Row) format which merges the adjacency
lists of all vertices into a singleO(m)-sized array, with the
beginning location of each vertex’s adjacency list stored in a
separateO(n)-sized array. The BFS-level of each vertex is
stored in a separateO(n)-sized array, thedistancearray.

We start by breaking the read-based BFS algorithm into
two parts: one part running on the run-time management unit
(Algorithm 3), and the other part on the GPEs (Algorithm 4).

A. The RMU design

The RMU design (Algorithm 3) consists of three main steps:
1. Initialisation of the GPEs. The RMU initialises the

GPEs by partitioning the set of verticesV in disjoint setsVi

(line 1), one per GPE, such that each GPE owns the vertices
in its partitionVi. EachVi is only explored by its designated
GPEi, but any GPE can mark any vertex in anyVi.

2. Concurrent computation on GPEs. After the ini-
tialisation step, asynchronous execution of the BFS kernel
(Algorithm 4) takes place on each GPE for a given BFS level
(line 7). Once aGPEi has explored all the vertices in its
Vi set, it send a termination signal to the RMU, indicating
whether there had been any vertices marked for the next BFS
level.

3. Synchronisation of the GPEs. Each GPE waits for all
GPEs to finish their assigned vertices (line 8). The termination

of the BFS algorithm depends on the consensus between all
GPEs, and is reached when there are no marked vertices for
next BFS level (line 10).

Algorithm 3: Read-based BFS algorithm running on the
RMU

1 Partition set of verticesV into disjoint setsVi, with |Vi| =
|V |
np

2 bfs level←− 0
3 distance[s]←− 0
4 repeat
5 done←− true
6 in parallel foreach GPE do
7 Invoke BFS KERNEL (Vi, bfs level)

8 Synchronise all GPEs
9 bfs level = bfs level + 1

10 until done

B. The GPE design: serial execution, parallel access

Since the execution time of the BFS algorithm is dominated
by memory latency, the GPE is likely to be idle for most of
the time while waiting for data from memory. So to achieve
good performance levels, we must deal with the memory
latency bottleneck. Our GPE design approach is based on
(i) serialising execution and processing of data within the
GPE, and (ii) parallelising access to off-chip memory. A serial
implementation of the BFS kernel lead to an area-efficient
design, and hence more GPEs can be instantiated on the
FPGA. In addition, the inner loops in Algorithm 4 (lines 3, 4,
7, and 11) have a data-dependent iteration count, and so cannot
be efficiently parallelised through loop unrolling. Parallelising
memory accesses is achieved by designing the GPE in such a
way that it can sequentially issue multiple outstanding memory
requests to a parallel memory subsystem, and use on-chip
RAM resources to store data from memory for subsequent
processing.

Figure 2 presents a schematic overview of the GPE design
for the BFS kernel (Algorithm 4). The GPE consists of four
functional units that execute the BFS kernel serially. These
functional units have access to local storage in the form
of dedicated registers that are implemented using distributed
RAM. A detailed description of each functional unit follows:

1. Read distance ofvi. This unit reads the distance of a
given vertexvi stored in thedistance array. If the distance of
the vi is equal to the current BFS level (line 2), it means that
the vertexvi belongs to this level, and hence its neighbours
will be explored in the current iteration (Functional units2-
4). Otherwise, the GPE processes the nextvi. This process is
repeated until all vertices belonging toVi have been processed.

2. Neighbour gathering. In this unit, the neighbours of
vi are retrieved from memory and stored in local Neighbour
registers (Nid registers in Algorithm 4). For area-efficiency
reasons, these registers are implemented using distributed
RAM instead of Slice registers. Instead of issuing one memory
request, and then waiting for response from memory, the
GPE issues multiple non-blocking memory requests in an
attempt to take advantage of the capabilities of the parallel



Algorithm 4: BFS kernel executed by each GPE
Input : Vi: set of vertices to be explored by the GPE,
Array distance[1..n] with distance[i]= minimum distance(vs, vi),
bfs level: current BFS level,
R[1..n]: offsets of adjacency lists,
C[1..m]: CSR adjacency lists
Output : Array distance[1..n],
done: set to false if any vertex has been marked for next BFS level
Data: Nid[1..q]: local 32-bit registers to store Neighbour IDs
Bitmask[1..q]: 1-bit array to store visitation status of the vertices
current loaded in theNid registers,
q: number ofNid registers, size ofBitmask in bits

1 foreach v ∈ Vi do
2 if (distance[i] == bfs levels)then
3 for (offset← R[v]; offset< R[v+1]; offset += q) do
4 foreach i ∈ 0..q do
5 Nid[i]← C[offset+ i]
6 end
7 foreach i ∈ 0..q do
8 u← Nid[i]
9 bitmask[i]← (distance[u] ==∞)

10 end
11 foreach i ∈ 0..q do
12 u← Nid[i]
13 if bitmask[i] == 1 then
14 distance[u]← bfs level+ 1
15 done← 0
16 end
17 end
18 end
19 end
20 end

Fig. 2. Graph Processing Element (GPE)design for the BFS kernel
(Algorithm 4)

memory subsystem. Assuming that the requests are destined
for different memory banks, the high off-chip memory latency
of single memory request is amortised over multiple memory
requests as they get serviced simultaneously. The maximum
number of non-blocking memory requests is bounded byq,
the number of theNeighbourregisters available in the GPE.
If the number of neighbours,d, (i.e. degree ofvi) is greater
than q, then neighbours are read from memory in batches of
sizeq (lines 4-5). After each batch is retrieved from memory,
steps 3 and 4 are executed (Functional unit 3 and 4) before
the next batch of neighbours is read from memory.

3. Status look-up. The visitation status of the gathered
neighbours is checked in this step (lines 7-9). Similarly to
the previous step, the distances of the neighbours are read
using up toq multiple non-blocking memory requests. If the
distance has not been set before, then the vertex is marked for
the next step using aq-bit bitmask.

4. Distance update. In this step, the distances of the
neighbouring vertices are updated based on the values stored
in the bitmask in the previous step (lines 11-16). Vertices
marked in previous step will have their distance value updated
to the current BFS level plus one (lines 13-14). By updating a
vertex’s distance, the vertex is also marked for the next BFS
iteration.

VI. M ETHODOLOGY

This section provides details of our experiments. For the
graph data, we used two different classes of graphs: uniformly
random graphs, and scale-free graphs (R-MAT). Uniformly
random graphs are generated withn vertices each with degree
d, where thed neighbours of a vertex are chosen randomly.
The uniformly random graph data are generated usingGT-
graph [18], a synthetic graph generator suite. R-MAT graphs
are characterised by their skewed degree distribution and
fractal community. The scale-free graphs are generated using
the Graph500 benchmark suite [19] based on the Recursive-
Matrix (R-MAT) graph model. For the parameters of the R-
MAT graph, we used the default values of the Graph500
benchmark (A=0.57, B=0.19, C=0.19).

Our performance is measured by taking the average execu-
tion time of 64 BFS runs from 64 different source vertices
which are randomly chosen. To avoid trivial searches, all
source vertices must belong to the same connected component
whose size isO(n). As in previous related work [4], [6], our
BFS performance is reported as the number traversed edges
per second, which is computed by dividing the actual number
of directed edges over the BFS execution time.

Table I provides the configuration details of the machines
used in our experiments and in the previous work [4] and [6].
For the high performance reconfigurable computing system,
we use the Convey HC-1 server [20] which has four user-
programmable Virtex-5 FPGAs, and each FPGA is connected
to a shared memory subsystem via a memory crossbar.

To develop for Convey HC-1, we use the Convey Personality
Development Kit (PDK), which is a set of makefiles to support
simulation and synthesis design flows. Convey provides a



TABLE I
THE SPECIFICATION OF MACHINES USED OUR EXPERIMENTS AND RELATED WORK [4] AND [6]

SC10-EP[6] SC10-EX[6] PACT11-NEH[4] Convey HC-1
Core Architecture Intel Nehalem Intel Nehalem Intel Nehalem Xilinx Virtex-5

Model No. Xeon X5570 Xeon X7560 Xeon X5550 XC5VLX330
Lithography 45 nm 45 nm 45 nm 65 nm

Core frequency 2.93 GHz 2.26 GHz 2.66 GHz 75 MHz
Total Num. of Cores 8 32 8 -

Total Num. of FPGA devices - - - 4
Total Num. of threads/PEs 16 64 16 512

Main Memory 48 GB 256 GB 24 GB 16 GB
Maximum memory bandwidth (theoretical) 100 GB/ 266 GB/s 100 GB/s 80 GB/s

TABLE II
DEVICE UTILISATION ON A V IRTEX-5 LX330 DEVICE

Num. of GPEs Num. of Neighbour Reg Slice LUTs BRAM

128 16 80% 64%
128 32 83% 64%

wrapper that allows the user to interface the FPGA design
with both the host CPU and the memory controllers. Our
BFS hardware design is expressed in RTL using Verilog HDL,
and was compiled using Xilinx ISE v13.1. Hardware resource
utilisation is provided in Table II.

VII. E XPERIMENTAL RESULTS

In this section, we validate the effectiveness of our re-
configurable computing methodology that we presented in
Section IV-B. To begin we measure the performance of our
BFS design on the Convey HC-1 machine (See Table I),
using both uniformly random and R-MAT graph instances with
different sizes. We then compare our BFS performance results
to those of Agarwal et al. [6] and Hong et al. [4].

A. Scalability

Figures 3 and 4 show the processing rate and scalability
of our BFS design for both uniformly random graphs and
RMAT graphs. The number of graph vertices is set to 16
million vertices with an average vertex degree of 32. The
number of GPEs varies from 32 to 512 in our design. We
define the efficiency as the ratio of speedup ofg GPEs over
32 GPE, divided by the linear or ideal speedup,g

32
. In our

current design we are able to fit up to 128 GPEs per Virtex5
LX330 device, so we used 2 and 4 FPGA devices for 256
GPEs and 512 GPEs respectively. For large uniformly random
graphs, we observe that our design not only scales well on
one FPGA device giving an efficiency of 92.5-95.5%, but
also on multiple FPGA devices as we are able to reach
efficiency rates over 98% and over 94% for 2 and 4 FPGA
devices respectively. Similarly, for large RMAT graphs, we
see a similar efficiency pattern as to that of uniformly random
graphs, albeit with slightly lower efficiency rates: 77-82%for
a single FPGA device, and 94% and 83% for 2 and 4 FPGA
devices respectively.

B. Graph Size Sensitivity

Figures 5 & 6 show the average processing rate obtained on
four Virtex-5 LX330 FPGAs for uniformly random graphs and
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RMAT graphs respectively. The number of vertices is varied
from 1 million to 16 million, while the average vertex degree
varies from 8 to 64. We see that the performance increases as
the graph size increases in terms of vertex count and/or average
vertex degree for uniformly random graphs. This is due to the
fact that our architecture does not make use of low-latency,
but small capacity, on-chip memories to hide memory latency.
In contrast, the BFS performance of cache-based systems, as
in [6], tends to decrease as the graph size is scaled up due
to the increased rate of last-level cache misses. Similarly,
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for uniformly random graphs.
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Fig. 6. FPGA-accelerated BFS design: performance scaling with respect to
graph size in terms of both vertex count and average vertex degree (Avg deg)
for RMAT graphs.

for R-MAT graphs, the performance increases as the graph
grows in size in general. However, there are few instances
of RMAT graphs where performance decreases as the graph
size is increased. This may be caused by workload imbalance
that can occur in RMAT graphs due to their skewed degree
distribution.

C. Performance Comparison

Figures 7 & 8 compare our BFS performance to perfor-
mance values in previous work of Agarwal et al. [6] and
Hong et al. [4], which are reported to be the fastest BFS
implementations in comparison with other related work [7],
[8], [3], and [21]. The last three sets of bars on the left of each
figure represent the measured performance of our hardware
implementation of 128 GPEs per FPGA device.

First we compare our performance results to PACT11-NEH
(8 Nehalem cores). Using a single Virtex-5 FPGA device
based on 65nm technology and operating at 75 MHz, we
are able to match the performance of a 2-socket quad-core
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Fig. 8. Performance comparison of BFS execution on various machines using
RMAT graph instances with 16 million vertices and an average vertex degree
(Avg deg) of 8, 16, and 32.

CPU based on 45nm technology and running at 2.66 GHz
for RMAT graphs. For uniformly random graphs, our FPGA
design outperforms PACT11-NEH by a factor of 1.4x. With
Four Virtex-5 FPGAs, we are able to achieve a speedup of 5.4x
and 3.2x for large instances of uniformly random graphs and
RMAT graphs respectively. For SC10-EX (32 Nehalem cores),
our design is able to outperform this high-end 32-core CPU
with two Virtex-5 FPGAs by a factor of 1.33x for uniformly
random graphs, and 1.2x for RMAT graphs. Using all four
FPGAs, our BFS design performed about 2.5x and 2.13x faster
than SC10-EX for uniformly random and RMAT graphs with
16 million vertices and 512 million edges.

From these comparison results, we can say that our FPGA
design outperforms the multi-core CPU implementations as it
is able to achieve higher parallelism through 512 custom GPEs
compared to 16 and 64 threads for PACT11-NEH and SC10-
EX respectively. In addition, as the average vertex degree is
increased, the performance gap between HC-1 and the CPUs



increases too. This is mainly due to the increased number
of random memory accesses issued in the BFS algorithm to
read the distance of neighbouring vertices (see Algorithm 1,
line 10). By issuing a large number of concurrent memory
requests (up to 512*32=16384 requests), our FPGA design
can cope better with irregular memory accesses. On the other
hand, the CPU-based systems try to hide memory latency using
cache memories, which is ineffective for random and irregular
memory access patterns.

VIII. C ONCLUSION & FUTURE WORK

In this paper, we propose a reconfigurable computing
solution for efficient parallel graph exploration algorithms.
Using a common graph exploration algorithm, namely the
BFS algorithm, we have shown through experimental study
that our approach is able to outperform the state-of-the-art
BFS implementations in recent high performance computing
literature by more than 2 times for graphs with millions of
vertices and edges. Future work include investigating ways
to improve the performance by making use of on-chip RAM
resources in FPGAs to reduce off-chip memory traffic, dy-
namic task scheduling to improve workload balance, and ex-
ploring other graph algorithms such asST-connectivity, andAll
Pairs Shortest Pathalgorithms. Eventually, we aim integrate
our reconfigurable computing solution onto a heterogeneous
accelerator platform that employs graph algorithms for mutli-
subject voxel-based brain network analysis [15].
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