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Abstract—In this work we propose a computational scheme
inspired by the workings of human cognition. We embed some
fundamental aspects of the human cognitive system into this
scheme in order to obtain a minimization of computational
resources and the evolution of a dynamic knowledge network
over time, and apply it to computer networks. Such algorithm
is capable of generating suitable strategies to explore huge
graphs like the Internet that are too large and too dynamic
to be ever perfectly known. The developed algorithm equips
each node with a local information about possible hubs which
are present in its environment. Such information can be used
by a node to change its connections whenever its fitness is not
satisfying some given requirements. Eventually, we compare
our algorithm with a randomized approach within an ecological
scenario for the ICT domain, where a network of nodes carries
a certain set of objects, and each node retrieves a subset at
a certain time, constrained with limited resources in terms
of energy and bandwidth. We show that a cognitive-inspired
approach improves the overall networks topology better than
a randomized algorithm.

Keywords-complex networks; cognitive modelling; self-
awareness systems;

I. INTRODUCTION

Among the capabilities of the human cognitive system
that is attracting most computer scientists, there is the
ability of humans to develop local algorithms able to ex-
ploit what might be called “collective human computation”.
As collective human computation, we refer to the natural
synchronization between the cognitive elaborations made
by a person which is immersed into group dynamics. In
such a condition, human beings analyze only some relevant
information coming from the group, giving to the group only
some relevant contributions for the general problem which
is faced. In this way, the group can be described as more
than just the sum of its single components [9].

When being faced with insufficient data or insufficient
time for rational processing, humans have developed strate-
gies that allow to take decisions in these situations. In
general, such an effect has been well described in the cogni-
tive heuristics program proposed by Goldstein and Gigeren-
zer, which suggest starting from fundamental psychological
mechanisms in order to design models of heuristics [8].

Only some relevant information are extracted from the
environment while the rest is interpolated for building our

knowledge. Among others, Milgram et al. have shown exper-
imentally how humans are able to adopt effective strategies
to solve very complex problems, exploiting optimally their
partial knowledge of their environment [4, 13].

This kind of human distributed computing has been stud-
ied deeply only from the perspective of disciplines such as
social cognition and social psychology, while it is not yet
well known in other domains.

The social cognition domain studies human cognition
as characterized by the use of “fast and frugal” solutions,
that are specialized for a social context in which we live
using a bounded rationality and limited computational re-
sources [17]. Therefore, the aim of our work is to assemble
a working computational scheme inspired by the operating
principles of human cognition, based on general assumptions
about cognitive high-level functions.

This approach promises to embed some fundamental
aspects of the human cognitive system in a computational
model in order to obtain a minimization of computational
resources needed for the task and the evolution of a dynamic
knowledge network capable of generating strategies suitable
for networks like the Internet, which are too large and too
dynamic to ever be fully/perfectly known [12].

The fundamental aspects on which we focused our mod-
eling, involves the spread of information through a human
network, and the knowledge representation arising from the
dynamics of short-term memory (STM) and long-term mem-
ory (LTM). The passage of information between STM and
LTM occurs through a simple cognitive heuristic approach,
which compatibly with their computational capacity reduces
the dimensionality of the information required to represent
the environment in a dynamic manner.

In our previous work [12], we applied such an ap-
proach to the community detection problem, which can be
considered as a task of great importance in many disci-
plines [1, 3, 16, 18, 20], where systems can be represented as
graphs. The first version of the algorithm was characterized
by a two step procedure (e.g. discovering and elaboration
phases), in which the effect of the nodes’ connectivity on
the information spreading was exploited by nodes to assess
a first approximation of the topology of the network. In this
work, we present a second version of the algorithm in which



the third phase was added in order to refine the topology
detection by a cognitive inspired strategy which embeds the
cognitive dissonance theory [5].

In general, as the Internet nowadays, human social net-
works have to be considered as a continuum of nested
communities whose boundaries are somewhat arbitrary [10].

Here, we propose such a tool for detecting communities
in complex networks using a local algorithm, applied as
a cellular automaton. In this approximation, a node is just
modeled as a memory and a set of links to other nodes. The
information about neighbouring nodes is propagated using
a standard diffusion process, and elaborated locally using a
non-linear competition process among the information. This
process can be considered an implementation of the “take the
best” heuristic [7], which relies on the assumption that the
most relevant or easily detectable information gives an accu-
rate estimate of the frequency of the related event/contents in
the population. The result of the algorithm equips each node
with information about possible hubs or super-nodes present
in its environment, and such information can be used by the
node to rewire its connections whenever its fitness does not
satisfy some given requirements.

In real-world applications, such a process can be engi-
neered within the ICT domain. Consider for instance re-
silience and scalability effects in service ecosystems. There,
one important factor is to decentralize services. This can be
done with the help of creating overlay networks on top of
large-scale ones such as the Internet. An adaptive, intelligent
or even resource-optimizing algorithm plays a crucial role
for the (self-)maintenance of such systems.

In that way, we could tackle the first steps to create an in-
telligent, semi-structured peer-to-peer overlay network from
an unstructured one, e.g. like a self-optimizing FastTrack
[11] network. FastTrack itself uses a semi-structured overlay
network with a mix of designated super-nodes and normal
nodes. The latter have to connect to one of the super-nodes
in order to minimize redundant communication overhead.
There, participating nodes could retrieve content at a cer-
tain time with given resource constraints (e.g. bandwidth,
energy, latency), detect super-nodes automatically during an
operation, and thus change their connections (and therefore
the overlay topology) for better conditions.

The rest of this paper is structured as follows: section 2
describes the scenario and section 3 the cognitive-inspired
algorithm. In section 4, we evaluate our cognitive-inspired
algorithm with a randomized algorithm. Eventually, in sec-
tion 5 we conclude our findings.

II. SCENARIO

As a first step towards such a real-world self-optimizing
peer-to-peer network, we consider the following simplified
approach: given N individuals (nodes), labeled from 1 to
N , where each individual hosts exactly one item. There are
I items distributed over individuals. Also, we label items

from 1 to I , where I ≤ N , thus two or more individuals
can host same items. Each individual has a pre-defined
maximum number of links, where it can connect to other
nodes. As a simplification, we can denote a link between
two individuals as “wired”. During the initial state, not all
links are wired. Hence, some individuals still have free
capacities in our network topology. For each node from
1 to N , the free link capacities are uniformly distributed
within a given interval [a, b]. Now, each individual acts
greedy and wants to collect up to a maximum number of
unique items Icurr ≤ Imax from other individuals, where
Imax ≤ I and Icurr defines the actual number of items that
have been collected. However, in collecting, an individual is
constrained by a given budget/energy Ccurr = Cmax it can
spend. While exploring its ith-degree neighbors (i > 0), it
has to pay for the number of hops if it has enough budget
left, so that Ccurr ← Ccurr − i. Note that an individual
does not have a global knowledge of the topology. After this
process has been completed by each node, a given fitness
function f can be calculated. f is then used in order to find
“weak nodes”. Candidates must give up one of their links
and create a new one to a more “promising” node, e.g. to
a super-node/hub. Hence, in each round of this process, the
topology will be partially changed by a set of weak nodes
and a minor randomly selected component of the system.

In this paper, we are evaluating our network’s behaviour
from two perspectives: (i) f1 : maximizing a node’s Icurr,
that is, each node shall collect as many unique items as pos-
sible, so that Imax−Icurr → 0 while complying to its energy
constraint, (ii) f2 : minimizing a node’s Cmax−Ccurr → 0
while having Icurr = Imax items collected. In this case,
the pre-defined energy Cmax is sufficiently large (no energy
constraint) to collect Imax items, so that the system’s focus
is to minimize its overall energy. In each round in (i) and
(ii), Icurr and Ccurr are reset and f reevaluated. We claim
that by carefully choosing weak nodes and promising nodes
for rewiring links, we can optimize f over time. Hence,
instead of just randomly selecting individuals, we give each
of them a bounded memory that provides knowledge about
its surrounding for a better decision making as provided in
the next section. Thus, we make nodes self-aware of their
own “world”.

III. ALGORITHM

We create a local algorithm where an individual is simply
modeled as a memory and a set of connections to other
individuals. The “learning” (nonlinear) phase is modeled
after competitions found in the chemical/ecological world,
where resources compete against each other in order to not
fall into oblivion.

We consider an unweighted undirected network with the
adjacency matrix A: the adjacency matrix of a finite graph
G on n vertices is the n×n matrix where the non-diagonal



entry Aij represents the presence (Aij = 1) or the absence
(Aij = 0) of a link between the vertices i and j.

Then each vertex i in the graph is characterized by a
state vector Si that represents its knowledge of the others.
In our model, we consider S as a probability distribution,
in particular S(k)

i is the probability that individual i belongs
to the community k.

Then S
(k)
i is normalized using the index k. Considering

S = S(t) the state matrix of the network at time t, with
Sik = S

(k)
i . At time t = 0 each node only knows about

itself so Sij(0) = 1 if i = j and 0 otherwise. As mentioned
before, the competition phase is modeled analogous to
a chemical/ecological concept. Our algorithm is inspired
by the concept of diffusion and competitive interaction in
network structure introduced by Nicosia et al. [15].

If two populations x and y are in competition for a
given resource, their total abundance is limited [14]. After
normalization, we can assume that x+ y = 1, i.e., where x
and y are the frequency of the two species, and y = 1− x.
The reproductive step is given by x′ = f(x), which we
assume to be represented by a power x′ = xα. For instance,
α = 2 models the birth of individuals of a new gener-
ation after binary encounters of individuals belonging to
the old generation, with non-overlapping generations (eggs
laying) [2].

After normalization we obtain:

x′ =
xα

xα + yα
=

xα

xα + (1− x)α
. (1)

Introducing z = (1/x)− 1 (0 ≤ z <∞), we get the map

z(t+ 1) = zα(t), (2)

whose fixed points (for α > 1) are 0 and ∞ (stable
attractors) and 1 (unstable), which separates the basins of the
two attractors. Thus, the initial value of x, x0, determines
the asymptotic value, for 0 ≤ x < 1/2, x(t→∞) = 0, and
for 1/2 < x < 1, x(t→∞) = 1.

The dynamics of the network are given by an alternation
of communication and elaboration phases. In the communi-
cation phase, there is a diffusion of information in which
each node has a memory factor m; in this way, in each
time step nodes update the previous information with new
information. Due to this parameter, we can introduce some
limitations into the algorithm as in the human cognitive
system such as the mechanism of oblivion and the timing
effects: the most recent information has more relevance than
previous information [6, 19].

We assume that nodes talk with each other and we sup-
pose that nodes with high connectivity degree have greater
influence in the process of information’s diffusion. This is
due to the fact that during a conversation it is more likely
to know a vertex with high degree instead of one that has
few links. For this reason, the information dynamics is a
function of the adjacency matrix A.

Then, in the communication phase, the state of the system
evolves as

S

(
t+

1

2

)
= mS(t) + (1−m)AS(t). (3)

The competition phase is modeled analogously to a com-
petitive interaction between the nodes in the network [15]. In
this way the dynamic of the model is given by the sequence
S(t)→ S(t+ 1

2 )→ S(t+ 1):

Sik

(
t+

1

2

)
= mSik(t) + (1−m)

∑
j

AijSjk(t),

Sik(t+ 1) =
Sαik(t+ 1

2 )∑
j S

α
ij(t+ 1

2 )
.

(4)

The node’s memory is assumed to be large enough to
contain all information about other nodes, and the model is
characterized by two free parameters: the memory m and the
coefficient α. As Figure 1 shows, this model is correlated to
the values of parameters, and it is able to discover different
final structures and results. In Figure 1 (a), an example of
a hierarchical network in form of an adjacency matrix A
is represented, where a three-levelled matrix is composed
by 4 blocks of 2 sub-communities of 8 nodes each, with
a link probability that is respectively of 0.98 inside sub-
community, 0.3 in the first level of nested blocks, and 0.03
among blocks. The white points indicate the presence of a
link between the node i and the node j, Aij = 1. In Figure 1
(b), the asymptotic configuration of the matrix S using m =
0.7 and α = 1.4 is shown, while in Figure 1 (c) with m =
0.27 and α = 1.25. Finally, in Figure 1 (d), the dynamic
evolution of the entropy of information, E corresponding
to the case (c), defined as E(S) = −

∑
i P

(S)
i log(P

(S)
i ), is

represented, where P (S)
i =

∑
i Sij . The entropy E reaches

the maximum only for the flat distribution, where each node
knows only itself, and reaches a minimum (zero) when all
nodes know the same label (i.e. all state vectors are the
same and contain just one element different from zero). If
the population is evenly distributed among n clusters, the
entropy is E = log(n). The value of Entropy E(t) allows
us to discover the structure of the network, where different
levels of the hierarchical structure are identified by plateaus
as shown in Figure 1 (d).

Now the question is: is it possible to design the algorithm
independently from the parameters?

In order to solve this task, we explore a “cognitive algo-
rithm”. We first define the concept of cognitive dissonance
between adjacent agents. Cognitive dissonance has been
defined within the field of social psychology from Leon
Festinger [5], in order to explain the natural tendency of
people to reduce conflicting cognitions creating a consistent
belief system, or alternatively by reducing the importance
of any source of dissonant elements (e.g. sometimes friends
or neighbors). The theory shows a good predictive power,
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Figure 1. (a) Hierarchical three-level network with 4 principal communities. (b) Final configuration of state matrix S with m = 0.7 and α = 1.4. (c)
Final configuration of state matrix S with m = 0.27 and α = 1.25: the final mono-cluster is identified by the major hub in the network. (d) Entropy of
information for the whole network during time regarding the case (c).

shedding light on otherwise apparently irrational or destruc-
tive behavior, and can be reduced in our work as described
in the following equation:

Dij =
|Si − Sj |

2
, (5)

that is the difference between the absolute values of the state
vectors between i and j. Then, we define the local entropy
for each node at time t, considering the state matrix S:

Eti = −
∑

Sti logSti . (6)

In Figure 1 (d), we show the global entropy of infor-
mation of the network during the time. The three plateaus
correspond to three different levels: if we evaluate the
first derivative of the entropy we can identify three peaks,
while in the second derivative, we observe three changes of
sign. For this reason, we evaluate the first and the second
derivative of the local entropy for each node. Analogously
for the entropy defined above, it is possible to introduce the
concept of local entropy for each node in order to study the
local view of agents. Similar as we can observe in Figure 1
(d), it is possible to detect different plateaus corresponding
to the different network sub-clusters that the single node
discovers during time. We observed that we can use a fixed
value of the parameter m, while we have to change the
value of α in order to find the community and in particular
the hubs that labels each community. For this reason, we
simulate an exploration phase of the network several times
in which the nodes save their state vector Sti , in a temporary
memory box, when they observe a change in sign of the
second derivative. If the following condition is satisfied

sign

(
δ2Et−1i

δt2

)
6= sign

(
δ2Eti
δt2

)
, (7)

the state vector Sti is stored into the temporary long term
memory together with the value of the first derivative of
the local entropy and the entropy. When a node meets
an impasse (e.g. its state vector entropy and its cognitive

dissonance do not evolve anymore) its α is changed by the
following mechanism, if∣∣∣∣Et−1i +Dt−1

i

Ki

∣∣∣∣− ∣∣∣∣Eti +Dt
i

Ki

∣∣∣∣ < ε, (8)

where Ki is the connectivity degree of the node i. Then, a
counter τ is increased by 1 (τi ← τi+1), and if τi becomes
greater than a given threshold (say τ∗), the parameter α is
updated in the following way:

αi = 1.5|ησ|+ 1, (9)

where η is a random Gaussian variable with mean 1 and
standard deviation σ. After a typical period of a fixed length
(∆T ), the process is stopped for all nodes and a node’s long
term memory is updated with a new sample respectively
experience. The long term memory is characterized by a
bound threshold B1 (here B1 = 5) in order to mimic the
ecological limits of such cognitive functions (i.e. bounded
rationality). After the node has saved its state vector when
the sign of its second entropy derivative changed (eq. 7),
it proceeds in structuring its long term memory. First, its
first derivatives are decreasingly sorted, and then the first
B1 time positions are recorded. Later, such B1 element
vectors are descendingly sorted with respect to the entropy.
Finally, using the time positions, the correspondent state
vectors is analyzed and larger elements for each state vector
are assumed as potential hubs and therefore stored into the
long term memory. At this stage, the long term memory of
each node is composed by a list of B1 sets of potential
hubs, ordered following the procedure from the more local
to the more global one. Moreover, the long term memory is
bounded by another threshold (B2), which represents the
long term memory buffer, i.e. the maximum number of
the B1 sets it can consider/contain, so that the long term
memory is represented by a (B1, B2) matrix. Finally, each
node summarizes its knowledge of the network building
a hub list obtained by analyzing the frequency in which
each hub appears within the long term memory, which is
subsequently ordered from the most represented (i.e. the
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Figure 2. (a) Fitness function that shows the mean number of retrieved items per node. The fitness of the randomized algorithm is represented as the
dashed line, our approach as the solid line. (b) Mean energy usage per node of the randomized algorithm (dashed) and our approach (solid).

hub with a larger frequency) to the least represented one.
The knowledge of the network (i.e. the hub list) is used by
weak nodes in order to increase the fitness.

The nodes’ fitness is computed in a general and conser-
vative way following the ratio presented in section II. In the
first scenario, the nodes are sorted with respect to the number
of objects they collected trough their neighbors, while in the
second scenario, they are sorted with respect to the amount
of energy they spent to collect the maximum number of
items. After this phase, the last 9% of the nodes (e.g. the
weakest nodes) are chosen for the cognitive rewiring, and in
addition 3% of the nodes are chosen for a random rewiring.

Whenever a node does not have a “sufficient” fitness, it
eliminates a portion of unnecessary links (i.e. those links
which point to nodes detected as non-hubs, in this work
just 1 link) and proceeds to try to establish new connections
using the hub list it has. Starting from the most relevant hub
(i.e. the first from the list) and continuing towards the last
one, the rewiring node tries to build new links. Finally, if
no hubs have available links, because they have reached the
maximum number of connections, the rewiring node adopts
a random strategy and establishes a link towards the first
available node it finds.

IV. EVALUATION

We compared our model from section III with a ran-
domized algorithm. For comparability reasons between the
algorithms, they are kept similar, apart that the randomized
algorithm is memoryless and therefore nodes have no knowl-
edge about its surrounding and potential hubs they might
connect to. Consequently, the randomized algorithm selects
the nodes that have to rewire using the same method as the
cognitive algorithm does; but where the cognitive algorithm
prefers to connect to a hub, the randomized one chooses a
random node.

For the evaluation, we used the two scenarios described in
section II in order to test our algorithms. The initial network
topology consists of N = 200 with a mean connectivity per
node of 4. A total of I = 50 unique items is distributed

among the nodes, where each node needs to retrieve Imax =
45 objects from its neighbors. We used this setting in order
to analyze a network on a larger scale. Further, we also tested
the algorithm for smaller networks, and the results imply a
similar behaviour as presented here. We run the simulation
50 times on our Matlab cluster with different random seeds.
Figure 2 shows an initial result for the first scenario and
Figure 3 for the second. Both figures show values of the
median run regarding final results of fitness and energy.

In the first scenario, the number of retrievable items
shall be maximized. Therefore, the “weakest” nodes are
determined by the sum of collected items. In Figure 2, it
is shown that both approaches improve the initial topology
significantly at the beginning. After having reached a plateau
of 36 items, the randomized approach begins to oscillate,
whereas the cognitive approach can exploit its knowledge of
potential hubs and steadily micro-optimizes the topology up
to more than a mean of 1.1 items by not having significant
differences in their energy usage. We can also observe that
the cognitive approach is less prone to oscillations.

The second scenario shown in Figure 3 shows the energy
dynamics of both approaches. Each node has unlimited
energy available, so that it is able to retrieve all necessary
45 items. The weakest nodes are now defined as nodes who
consume the most energy of all. Hence, those are candidates
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for rewiring in order to minimize the system’s energy. The
behaviours of both approaches are quite similar as in the
fitness optimization from Figure 2. The initial topology
improvement significantly reduces the energy consumption
of the system. However, oscillation effects occur more often
than in the first scenario. Our cognitive approach reduces
the mean energy consumption of the nodes of more than
4.1 hops per node compared to the randomized algorithm.

V. CONCLUSION

In this work, we described how we optimize a topol-
ogy by the means of a cognitive-inspired algorithm. The
resulting online optimization problem was tackled with a
cognitive model that enables a node to be self-aware about
its surrounding community and eventually to detect and
distinguish between hubs and non-hubs. This knowledge
was exploited by a node to gain a more effective rewiring
to other nodes than by random selection. We showed the
effectiveness of our approach in two scenarios, in each
comparing the achieved results to a randomized algorithm
using the same network conditions. In the first scenario, the
goal was to find a topology in which a maximum number
of unique items can be retrieved for the system under a
given energy constraint that was spent for “hopping”. In the
second one, we removed the energy constraint, so that nodes
had enough energy for retrieving all items in each round,
with the focus on decreasing the system’s overall energy. In
both scenarios, the cognitive-inspired algorithm performed
significantly better than the random one.

Despite the fact that the algorithm uses global information
for the selection of rewiring nodes, the approach shows
first steps towards a pure self-organizing network since only
local information is used for the hub detection. Overall, we
showed first steps that information generated by a cognitive-
inspired algorithm can be exploited in order to optimize
network topologies. As future work, we plan to (i) deploy the
algorithm on a wide range of large scale network topologies,
(ii) localize the decision making of a node when to rewire
or not, and (iii) further elaborate the used scenario by
introducing more dynamics into items and nodes. We think
that our algorithm is generic enough that it could also be
used as a foundation in a wide area of applications beyond
the scenario proposed here.
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