Efficient Communication for FPGA Clusters

Stewart Denholm, Kuen Hung Tsoi, Peter Pietzuch, and Wayne Luk

Department of Computing, Imperial College London, UK
{swd10,khtsoi,prp,wl}@doc.ic.ac.uk

Abstract. Efficient communication between nodes is critical for achiev-
ing high performance in a computer cluster. Based on a dedicated inter-
accelerator network, we enhance this communication with advanced net-
working functions, such as broadcasting and priority routing. This work
enables decoupling user applications from physical network implemen-
tations, improving overall communication efficiency and modularity. A
performance model is introduced taking into account application and
platform specific parameters. Experiments are performed for various net-
work configurations and application patterns. The results show up to a
55% reduction of communication time when employing our approach.

1 Introduction

Modern High Performance Computing (HPC) systems include heterogeneous
hardware accelerators such as Field Programmable Gate Arrays (FPGAs.) There
is usually no direct connection between these hardware accelerators and the
cluster network. Gigabit Ethernet and the InfiniBand [I] network are two com-
monly employed communication technologies in HPC systems, as suggested by
the Top500 supercomputer list [2]. Their involvement introduces significant over-
head due to the data movement between the accelerators and the host memory.
To address this, HPC systems with heterogeneous accelerators are starting
to incorporate direct inter-accelerator communications through dedicated con-
nections. Figure [illustrates the idea of this inter-accelerator networking; the
long, thick arrow shows a point-to-point (P2P) link. Similar configurations can
be seen in existing FPGA based HPC systems [3,[6,[5]. Previous experiments
indicate this helps improve the performance and scalability in applications [4].

Heterogeneous Node Heterogeneous Node

RAM —={ cpu[<"] RAM

PCle
pcle 4 PCle

Accelerator 1/O Chip 1/O Chip Accelerator
RAM RAM
P2P serial T

FPGA connection | [ppg [7]1 Data

‘ Ethernet
‘ JouRyg

PCle

Fig. 1. Data transfer between accelerators in a heterogeneous cluster

0.C.S. Choy et al. (Eds.): ARC 2012, LNCS 7199, pp. 335 2012.
© Springer-Verlag Berlin Heidelberg 2012

336 S. Denholm et al.

The main objective of this work is to provide an efficient inter-FPGA com-
munication framework without the need for centralised switching facilities. This
can be achieved by supporting concurrent multi-destination addressing and by
reducing redundant network traffic. The challenge lies in application-specific cus-
tomisations, requiring the use of low level networking hardware. A parametrised
user interface must be provided, as well as a model predicting performance gains.

The major contributions of this work include:

- A framework to support broadcasting and priority routing in an inter-FPGA
P2P network. The data format, connection schemes, routing algorithms and
architecture parameters can be customised for specific applications.

- A performance model for exploring the effects of various networking features
and configurations. It provides an upper bound for expected performance
and guides the decision making in each development stage by considering
the customisable parameters.

- Experiments designed for measuring and evaluating the communication per-
formance of the broadcast design. Results show an overall performance im-
provement of up to 55%, agreeing with the performance model estimation.

Various heterogeneous clusters equipped with FPGA-based accelerators have
been reported in the last few years. The following presents several examples,
and describes the differences between our work and that of others.

In the sprit cluster [6], there are 64 Xilinx ML410 evaluation boards connected
via SATA cables, each channel of which provides up to 2.5Gbps bandwidth. The
PowerPCs in the Virtex-4 FPGAs are used as the main controllers in the clus-
ter. Previous experiments compare communication performance against physical
factors, but it is unclear how the network is utilised at the application level.

The Axel cluster [4] utilises a 2D torus network via direct inter-FPGA con-
nections. Networking functions are implemented in the FPGA fabric, avoiding
software overhead in previous contributions. However, this work lacks advanced
networking functions, such as broadcasting and priority routing.

The Maxeler platform includes a 10Gbps interface. Based on the original
MaxRing technology [5], a CH2 connectivity expansion card is used to provide
multiple channels with 10Gbps bandwidth. With this card, multiple nodes can
be connected to form a larger ring, but other topolgies are not supported. Vendor
specific APIs are used to control the data flow in the user application.

2 Broadcast Design

Without broadcasting, the user must send the same packet to each destina-
tion. This raises many issues. First, additional logic is needed to implement the
multiple transmissions. Second, redundant packets occupy routing and queue-
ing resources on all intermediate nodes. Third, addressing all the FPGAs in an
application requires knowing the transmission path to each one; embedding this
information in the application reduces the flexibility and scalability of the design.

Our broadcasting function addresses these issues without adversely affecting
application performance. When encountering a broadcast packet, a router auto-
matically duplicates it into the queues of all available outputs, storing a local

Efficient Communication for FPGA Clusters 337

copy if the packet originated at another node. Previously seen packets are dis-
carded automatically. Following this cascading transmission method, packets are
delivered to all participating accelerators regardless of the connection topology.

The implementation and performance evaluation of the framework is based on
the network shown in Figure[2] but can be adapted to other topologies without
any low level modifications. Each of the 16 compute nodes contain an AXM-
XRC-5T2 board from Alpha-Data, interfaced to the host system through the
PCle bus. As suggested by Figure [l the PCle bus and Ethernet do not provide
an efficient path for inter-FPGA communication. In the proposed framework,
the RocketIO GTP serial communication resources in the Xilinx Virtex-5 FPGA
are utilised as the main data communication channel. With the XRM-HSSDC2A
1/0 connectivity card, each FPGA accelerator is capable of sending and receiving
data through four independent ports in full-duplex. Single channel InfiniBand
cables, rated for 2.5Gbps, connect the accelerators to form a 2D torus. This
hardware configuration is similar to the cluster in [3].

D) —G)—(a)/ | Compute Node 8 [pcre cpy] -|
North

o XC5VLX33(;T} < [Port 0}
Q

%
=

- B

=¥ =

5 7 8 w & =
i elzllz][z] 2] 0] 2P = East 2
S22 < 2 <

9 10—H(11 12 || 0| ea]|eal] e e I--:Wesl_:
\\E(é&lg&n EPonz %
||g1aleallalla &

allallalla |

o~
\] J
13 14 15 16/ -‘South

Fig. 2. A 2D torus network utilising P2P FPGA serial communication

3 Performance Model

Table [l lists the parameters captured by our performance model. The platform
specific parameters can be obtained from actual measurement and profiling on
the target platform, or from the data specifications of the hardware components.
The application specific parameters are obtained by extracting and abstracting
the communication pattern of the target algorithm.

For a 1-to-all communication, the data from a single node must be sent to all
other nodes to complete the process. The simplest model for the time T to send
a packet from one node to another is:

Tpkt:p/Bh TL:Tl—FTT—‘erkt, T:(k‘—l)XTL—‘rQXTa

where Tjr is the time for transmitting a packet out of a hub, and 77, is the time
for the packet to pass through a link. In a broadcasting scenario, the maximum
number of links, IAc, is used since that path will take the longest time to transmit.
The value is dependent on the application and network topology. In our 16-node,
2D torus network, k = 4 when the application is broadcasting to all nodes. The
above analysis is modified as follows to represent 1-to-all communication:

Tp = [d/p] x (Tr +Ta) + (k- 1) x Ty + T, (1)

338 S. Denholm et al.

Table 1. Parameters for network performance modelling

symbol unit meaning typical value
platform parameters

P bits size of a packet 16 - 528
q max. packets in a queue 64

P error rate in link transmission 5%
B; Mbps bandwidth of physical link 1600
T; us FPGA link transmission latency 0

Ty us FPGA packet routing latency 0.57
Ta ps application to routing logic latency 0.13

application parameters

d bits total data size to be transferred N/A
A 57! average packet rate N/A
k number of links along a path N/A
k average links per path N/A
k maximum links per path N/A

When a unicast packet is created, it will, on average, occupy k number of
slots in the queues along the path. For the duration of T”, there will be T” x \
unicast packets created. For a cluster with N FPGA nodes and each node with
four output queues, the network loading can be approximated as:

Ty = Tpre X (T' x A x k)/N/4 (2)

When there is an error detected during packet transmission, the packet is au-
tomatically retransmitted within the link layer. Thus the effects of transmission
errors in each node are independent and localised. The new link latency is:

Ty = (Te +Tg) x (1 +p). 3)

This new T can be used in a more accurate approximation of the 1-to-all com-
munication performance as:

Ti—to—au = [d/p] X (T} +Ta) + (k — 1) x T} + T, (4)

4 Results

Our design is implemented within the CusComNet [4] framework on Xilinx
Virtex-5 LX330T FPGAs. The throughput and latency of broadcast transmis-
sions are measured and compared to CusComNet’s unicast transmissions to
multiple destinations. The InfiniBand cable line speed is set to 2Gbps due to
observed instabilities above this value. Packet buffer sizes are set to 64 packets,
each packet having a payload of 64 bytes. The 16-node cluster translates to ad-
dress widths of 4 bits. The maximum number of packet identifiers is set to 8192
to ensure no two en-route packets will have the same identifier.

Our experiments are not designed to show the benefit of broadcast over mul-
tiple unicasts, but instead seek to determine the efficiency of the broadcast pro-
tocol, and whether the customisations have any detrimental effect.

Efficient Communication for FPGA Clusters 339

1800 T T T T T
1600
1400 |
1200 |
1000 |
800
600
400

communication time (us)

<

measured performance ——
200 %x;x?‘ modelled performance - 1
‘modified model -

0 . .
0 100000 200000 300000 400000 500000 600000
data size (Kb)

Fig. 3. Comparing measured and estimated performance in a 4-node network

Based on the model from Section B we measure the performance of 1-to-
all broadcasting in a 4-node network comparing the communication times for
various data sizes. k is set to 2 according to the network topology. The other
platform specific parameters set to their typical values. Figure Bl compares the
model to the observed results. The divergence may be due to the difference
between the estimated T} and the actual link transmission time. Adding 0.5us
overhead to the Tp value, shown by the smooth line, matches the measured
performance. We thus conclude, the model accurately represents of the system.

Figure shows our implementation’s improvement over multiple unicasts
increases with data size, plateauing at around a 53% reduction in transmission
time. As data sizes increase, packet buffers saturate and we can better compare
the routing and packet handling of broadcast and unicast. Improvements are due
to two factors: reduced buffer occupancy due to de-duplication of packets; and
the use of the cascading packet routing algorithm. The latter provides benefit as
the shortest path may not be the fastest due to packet congestion.

The question still remains as to whether these improvements are due to the
efficient operation of the design or the inherent improvement of broadcast over
multiple unicasts. Figure shows the percentage speedup of our broadcast

60 ‘ ‘ ‘ ‘ ‘ 60 ‘ ‘ ‘ ‘ ‘
s i i .
c %,,xx*‘”‘w*w = S
S 40 o S 40|
8 ol 8
£ o~ £
2 30 7 & 30
8 g
= / s
£ 20 7 £ 20
S s 5
g 10 1 S 10r
3 8 Nodes —— B 8 Nodes ——
[+ 0 . . . 4 Nodes - o o . . . 4 Nodes -
0 100 200 300 400 500 0 100 200 300 400 500
Data Transmitted (Kbits) Data Transmitted (Kbits)
(a) Using the first unicast method (b) Using the second unicast method

Fig. 4. Reduction in transmission time for broadcasting when implemented within
CusComNet

340 S. Denholm et al.

implementation over a second unicast methodology, giving a similar result to
Figure about a 50 — 55% speedup. The difference in speedup is most likely
due to the first methodology’s ability to utilise multiple output ports, thereby
performing some operations in parallel and making use of additional buffer space.
When applied to different packet buffer depths in a 4-node cluster, Figure
shows our broadcast protocol’s benefit is reduced when the packet buffers are
not saturated. With larger data volumes, broadcast’s reduction in total time
versus multiple unicasts converges to around 50%. These results show our im-
plementation does not have a negative impact on communication performance,
and improves overall transmission times by 50 — 55% for large data volumes.

60

8 Packet Buffers ——
10 - 16 Packet Buffers - 1
32 Packet Buffers -

&2
s e .
o ok R
L R j
g 50 % i o ereat RIS
[o e
c e o™
S 40 fK r
@ 30
[|
= |
£ 20 ? F
c
S a
B
=3
o
[9}
o

)) 64 Packet Buffers =
0 100 200 300 400 500
Data Transmitted (Kbits)

Fig. 5. Reduction in transmission time for broadcasting when using packet buffers of
different sizes; using the first unicast methodology

5 Conclusion

This paper presents our customisable broadcasting framework. We outline the
broadcast operation and develop a model to analyse its performance. Experi-
ments show our broadcast implementation achieves up to a 55% reduction in
transmission time when implemented within the CusComNet framework. We
show our work benefits communications regardless of cluster size or packet buffer
depths. We demonstrate a cascading broadcast routing algorithm that transmits
data along all possible paths, and can therefore work with any network topology.

Acknowledgements. The support of Imperial College London Research Ex-
cellence Award, UK Engineering and Physical Sciences Research Council, Al-
pha Data, Maxeler, nVidia and Xilinx is gratefully acknowledged. The research
leading to these results has received funding from the European Union Seventh
Framework Programme under grant agreement number 248976 and 257906.

References

1. InfiniBand architecture specification release 1.2.1. White Paper (2010)

2. TOP 500 supercomputer sites (2010), http://www.top500.0rg/lists/2011/06

3. Baxter, R., et al.: Maxwell - a 64 FPGA supercomputer. In: Proc. Conference on
Adaptive Hardware and Systems (AHS), pp. 287-294 (2007)

http://www.top500.org/lists/2011/06

Efficient Communication for FPGA Clusters 341

4. Denholm, S., Tsoi, K.H., Pietzuch, P., Luk, W.: CusComNet: A customisable
network for reconfigurable heterogeneous clusters. In: Proc. IEEE Int. Conf. on
Application-specific Systems, Architectures and Processors, ASAP (2011)

5. Lindtjrn, O., Clapp, R.G., Pell, O., Mencer, O., Flynn, M.J.: Surviving the end of
scaling of traditional micro processors in HPC. IEEE HOT CHIPS 22 (2010)

6. Sass, R., et al.: Reconfigurable computing cluster (RCC) project: Investigating the
feasibility of FPGA-based petascale computing. In: Proc. IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 127-140 (2007)

	Efficient Communication for FPGA Clusters
	Introduction
	Broadcast Design
	Performance Model
	Results
	Conclusion
	References

