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Abstract—In this paper we present increased adaptivity and
robustness in distributed object tracking by multi-camera net-
works using a socio-economic mechanism for learning the vision
graph. To build-up the vision graph autonomously within a
distributed smart-camera network, we use an ant-colony inspired
mechanism, which exchanges responsibility for tracking objects
using Vickrey auctions. Employing the learnt vision graph allows
the system to optimise its communication continuously. Since
distributed smart camera networks are prone to uncertainties
in individual cameras, such as failures or changes in extrinsic
parameters, the vision graph should be sufficiently robust and
adaptable during runtime to enable seamless tracking and
optimised communication. To better reflect real smart-camera
platforms and networks, we consider that communication and
handover are not instantaneous, and that cameras may be added,
removed or their properties changed during runtime. Using our
dynamic socio-economic approach, the network is able to con-
tinue tracking objects well, despite all these uncertainties, and in
some cases even with improved performance. This demonstrates
the adaptivity and robustness of our approach.

I. INTRODUCTION

The latest advances in video technology and cameras
becoming affordable, allow the deployment of surveillance
systems in new locations. Having a large network of cameras
to observe a certain area raises several interesting problems.
A person responsible for tracking moving objects in such
a large network must be familiar with the topology of the
network as well as the environment in which the cameras are
embedded. In automated multi-camera tracking, knowledge of
the topology is essential to provide good tracking results while
not consuming too much resource. Different approaches have
been proposed to provide the topology of the camera network,
allow a seamless handover, and hence to assist the observer.
This vision graph is usually defined offline either manually or
by calibrating the cameras (semi-)automatically. The majority
of the previously proposed approaches use a central server
entity to calculate the vision graph in order to facilitate the
handover.

When defining the vision graph, and hence the neigh-
bourhood relations, offline or by means of a central server,
three major problems arise. Firstly there is a bottleneck when
communicating with the server. This gets more relevant when
there is higher number of cameras. Secondly the approaches
are not robust to changes within the network. Not only does

each camera rely on all of their neighbouring cameras to be
fully functioning, but also there is the assumption that other
cameras do not change their position or angle. Thirdly, the
central server is a weak point in the network, and its failure
will cause the entire system to be paralysed.

This paper extends our previous work, in which we intro-
duced a socio-economic approach to selecting cameras to track
objects within a decentralised network of smart cameras [1].
The scenarios tested in our previous work contained several
simplifying assumptions, which were not reflective of the real
world. The main contribution of this paper is to demonstrate
how the previous approach can be improved substantially,
especially in terms of adaptivity and robustness, when two
very important assumptions are relaxed. Specifically: (i) we
no longer assume instantaneous handover and instantaneous
communication between cameras, and (ii) we introduce un-
certainties to the network, to better reflect realistic setups.

In this context, we show how the system can automatically
deal with cameras failing as well as being added to the
system during runtime and still maintain high performance.
Furthermore we will show that the system can cope well with
a camera changing its extrinsic parameters while the system
is running.

The rest of the paper is structured as follows. Section II
discusses previous work related to multi-camera tracking and
the generation of vision graphs. Section III briefly recapitulates
our approach to select a camera for continuous tracking in
a distributed fashion, employing a local utility function to
support the decision process and hence generate the vision
graph. Furthermore, the relaxation of different assumptions
as well as the impact on our algorithm will be explained
in this section. In sections IV and V we describe our new
experimental setup as well as our conducted experiments and
summarise our key findings. The final section discusses the
implications of this work and identifies future research areas.

II. BACKGROUND

Camera networks usually have to deal with very limited
resources. On one hand, this is because the hardware itself
only provides limited resources such as CPU and memory, and
on the other hand because object tracking is computationally
expensive and therefore might need a lot of computational



resources. Hence, we do not want to “waste” resources by
tracking the same object with multiple cameras. It is therefore
important to decide which camera should track each object at
a given time.

In this context, detecting and seamlessly tracking objects in
a network of cameras requires cooperation among the different
cameras. Selecting the next camera to continue tracking of
an object and transferring this responsibility as soon as the
object leaves the field of view (FOV) of the current camera,
is referred to as handover [2]. One of the first autonomous
handover approaches for object tracking in smart cameras
was presented by Quaritsch et al. [3]. This approach relies
on a static and a priori known vision graph and does not
consider dynamics of the camera network. This can be an
important issue for the overall performance. Detmold et al.
[4] state the importance of the topology of a camera net-
work for higher-level functions such as multi-camera tracking,
target following or camera placement optimization. Still the
spatial relationships of FOVs of cameras are often defined
manually before the network is operational. In recent years,
(semi-)automated approaches have been proposed to determine
the vision graph (i.e. [5], [6], [7], [8]). These approaches
vary in the topology assumptions (e.g., overlapping or non-
overlapping FOVs), topology modelling and the extraction of
relevant information from individual camera views.

Adding a random camera at a random timestep without
incorporating it into the network manually might not gather
valuable utility for the entire network. Removing a random
camera at a random time can be even worse in case the
network topology is not updated, objects could get lost for
entire sub-networks. Changing the viewpoint or the position
of a camera might make it more valuable to a completely
different area of the network, especially when the old, as
well as the new neighbours are not notified. While adding
a camera to the network might be a minor problem, since it
can only increase the overall utility of the network, removing
and changing positions and viewpoints do affect the network
actively and might occur due to external actions, such as
failures or vandalism.

III. HANDOVER

In [1] we proposed a socio-economic inspired handover
algorithm, which employs self-interested agents in sealed bid
auctions [9] to obtain the rights to track objects. The value
of each object is determined by each camera on its own.
In our simulation we use the inverted euclidian distance
between camera and object as the utility. The trading of an
object provides an implicit snapshot of part of the network
topology. When a successful trade is completed, pheromone
is deposited on the link between the trading cameras. Initially,
a broadcasting strategy is used for communication. Over time,
pheromone trails are built up, which represent the strength
of neighbourhood relationships, an indicator of the likelihood
of a future trade with each camera. These pheromone trails
may then be exploited in order to optimise the trade-off
between tracking performance and communication overhead.

The approach is fully decentralised and requires no a priori
topology information, since this is learnt online.

This dynamic, socio-economic inspired approach is de-
scribed in detail in [1], where we demonstrated its ability both
to learn the vision graph online and to optimise the trade-off
between tracking performance and communication overhead.
However, we also made several simplifying and unrealistic
assumptions about the behaviour of the camera network. In
this paper we relax these assumptions to create a more realistic
setup as follows: (i) we no longer assume instantaneous
handover and instantaneous communication, (ii) we consider
uncertainties regarding the cameras in our networks.

Due to these relaxations, we adapt the camera handover
algorithm from [1] to more explicitly consider these issues.
To deal with non-instantaneous handover and communications,
we have introduced step 1c to our algorithm. Furthermore,
step 1f has been introduced to deal with camera failures. In
1c we introduced durations of auctions, this allows cameras
not having the advertised object within their FOV at the exact
same time to participate in the same auction. This facilitates
dealing with non-overlapping FOVs. To ensure that bids can
be received by the auctioning camera, tb has to be longer
than the duration of an auction ta. In case no bids arrived at
the auctioneering camera and as soon as the timespan tb has
elapsed, the object is advertised to all cameras using broadcast
communication.

To calculate the utility obtained by a camera from its set of
owned objects, we used the same utility function as described
in [1].

As the vision graph is built up dynamically during runtime,
we exploit this knowledge by means of one of a number of
communication policies, as described in [1]. These policies
specify firstly whether the camera advertises objects actively
at every time step or passively when the object is about
to leave the FOV and secondly the probability of camera i
communicating with camera x. This probability is based on
the pheromone level on the relevant link and is then used in
step 1a of algorithm 1. These policies are typically able to
substantially reduce communication within the network, while
incurring only small penalty to the tracking performance.

Besides our socio-economic inspired communication poli-
cies, for comparison we also tested a static communication
policy, which uses a predefined vision graph. The static
communication only advertises objects to its known neigh-
bours with a probability of Pstatic = 1. The predefined
vision graph represents a vision graph generated manually
or semi-automatically before the camera network is online.
Furthermore, the predefined vision graph does not employ our
ant-inspired approach and therefore does not have the concept
of link strength.

IV. EXPERIMENTAL SETUP

Since we are interested in performing repeatable experi-
ments to investigate adaptivity and robustness issues, we used
a simulation environment with different scripted experimental
setups of artificial smart-camera networks. The simulation tool



Algorithm 1 Robust camera handover algorithm
1) Object trading by camera i:

a) Advertise owned objects to each other camera x
with probability P (i, x).

b) For each received advertised object j, respond with
a bid at value ui(j) if this is greater than zero.

c) After receiving the first bid, wait for ta time
steps to receive more bids from other cameras.

d) Accept received bids for each object k for which
ui(k) is less than the highest received bid. For each
accepted bid:
i) Remove k from Oi.

ii) Respond to the camera making the highest bid,
informing it of the required payment, the value
of the second highest received bid.

iii) Increment the camera’s utility by the value of
the second highest bid.

e) For each object l for which the bid sent was
accepted, add l to Oi and deduct the payment
amount from the camera’s utility.

f) If no bids have been received after tb time steps,
advertise owned objects to every other camera
x with probability P (i, x) = 1 and go to step
1b.

2) Vision graph update: Update τix for all x according to
equation described in [1].

3) Tracking decisions of camera i: Select which objects in
Oi to track in order to maximise Ui(Oi).

4) Repeat at regular intervals.

used is that used to generate experimental results in [1]. In
the following subsection, new properties of the simulation tool
with particular relevance to this paper will be presented. In the
second part of this section, the different experimental scenarios
will be described.

A. Simulation Environment

As in our previous description of our simulation envi-
ronment we keep a constant number of objects within our
scenario. Therfore, if not otherwise specified, objects to be
tracked can move in a straight line until they reach the border
of the environment and bounce back randomly and continue
in that direction until another boundary is reached. Again
each camera is controlled independently, by an autonomous
software agent capable of communicating with other such
agents via message passing. At this stage, we assume perfect
tracking (i.e. every object within the FOV of a camera is
properly detected, identified, and tracked). To calculate the
visibility of an object, we used the inverse Euclidean distance
between the camera and the object and the simulated position
of the object within the FOV of the camera.

We introduced two main extensions to our simulator: (i) the
path of objects can be defined within the simulation description
and (ii) events can be defined in the simulation description to

occur at a certain timestep of the simulation. These events are
related to cameras and have three different types: add, remove,
and change. These events occur at a certain timestep where add
relates to adding a camera at a certain position with predefined
parameters to the environment, remove represents removing an
existing camera from the environment and change indicates a
change of the parameters of an existing camera during runtime
respectively.

B. Experimental Scenarios

For our experiments we considered three general scenarios
and executed these scenarios with a variety of objects, paths
and events. The different scenarios are illustrated in figure 1.
For the first and second scenarios we defined paths for the
object to traverse along. These paths are illustrated as blue
lines. For scenario three, the objects move in a straight line
in a random direction. For each scenario we defined different
experiments using our events. We performed each experiment
with and without a predefined vision graph to show the
robustness of our approach.

For our three distinctive scenarios we conducted experi-
ments where we added a camera during runtime, removed an
camera from the test environment and changed the extrinsic
parameters of a camera. In table I an overview of the con-
ducted experiments is given.

Scenario 1 Scenario 2

Scenario 3

Fig. 1. Three sample experimental setups we used to evaluate our approach.
The arrows in scenarios 1 and 2 indicates a path alongside objects traversed
during the experimental run. Numbers in brackets indicate cameras not being
in the initial network but were added or moved to the illustrated location
dynamically.

In our experiments we illustrate the effects of camera-based
events using our four different communication approaches:
broadcasting, SMOOTH, STEP, as described in [1], and the
static communication approach, when applied to both the
active and passive schedules. In the case of our dynamically



TABLE I
OVERVIEW OF THE PERFORMED EXPERIMENTS USING THE DIFFERENT

SCENARIOS. SCENARIOS 1 AND 2 HAVE FIXED PATHS WHILE IN SCENARIO
3 THE OBJECTS MOVE IN A STRAIGHT PATH UNTIL THEY REACH THE

BORDER OF THE SIMULATION ENVIRONMENT FROM WHERE THEY BOUNCE
BACK IN A RANDOM DIRECTION. SCENARIOS 1 AND 2 CONTAIN 4

OBJECTS WHILE IN SCENARIO 3 22 OBJECTS ARE MOVING WITHIN THE
SIMULATION ENVIRONMENT. FURTHERMORE, ALL PERFORMED ACTIONS

OCCURRED IN TIMESTEP 518 WHERE NO OBJECT WAS VISIBLE BY THE
AFFECTED CAMERA(S).

Nr. Scenario Action
1 Scenario 1 Add Camera (6)

2 Scenario 1 Remove Camera 3

3 Scenario 1 Change Position 3 to (7)

4 Scenario 2 Add Camera (4)

5 Scenario 2 Remove Camera 2

6 Scenario 2 Change Orientation of Camera 2 by -55 degree

7 Scenario 3 Remove Cameras 1, 2, 3, 4, 5

built vision graph, for consistency all parameters were set to
be the same as in [1]. For the new aspects of our algorithm,
we used ta = 3 and tb = 6 timesteps as the duration for
auctions and time-out in case of broadcasting, SMOOTH and
STEP communication approaches.

To determine the visibility of an object, we calculate the
inverse Euclidean distance between the camera and the object
and the simulated position of within the FOV. At this stage,
we assume perfect tracking (i.e. every object within the FOV
is properly detected and identified).

V. RESULTS

We conducted multiple experiments in each scenario. In
each simulation run, the total cumulative utility across all
cameras was recorded (the social welfare) as a measure of
tracking performance. The number of messages sent between
cameras was also measured. We compared the robustness we
compare our results with a static communication policy based
on an a priori known vision graph. For scenario 1 and 2 the a
priori vision graphs have only been defined for cameras with
an overlapping FOV but for scenario 3 non-overlapping FOVs
were also considered as long as the FOVs of the cameras were
neighbouring each other. Due to a lack of space we cannot
report exhaustively on the results from each experiment here,
however some key results are highlighted.

The results of experiment 1 are shown in Figure 2 where
we added a new camera during runtime. The occurrence of
the event is indicated with a red vertical line again at time
step 518. The increased accumulated utility using the active
SMOOTH and STEP approach is apparent. Since the camera was
placed at a location which was already covered by a different
camera, the improvement was rather small.

Figure 3 shows results for experiment number 3 employing
our active approach. We changed the position of a single
camera within the environment to show the ability of our
approach to deal with changes of the extrinsic parameters of
cameras. The vertical line shows the time at which the event
happened. The drop in utility gain for the static approach after
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Fig. 2. Cumulative sum of the entire network utility over time for a
typical simulation run of experiment 4 comparing our active socio-economic
approaches with a static handover. The red vertical line indicates the timestep
when the event occured. The simulation ran for 1000 timesteps.
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Fig. 3. Cumulative sum of the entire network utility over time for a typical
simulation run of experiment 3 (Scenario 1 with change event) and using our
passive approaches. The vertical line indicates the timestep when the event
occurred. The simulation ran for 1000 timesteps. We changed the position of
a single camera within the environment to show the ability of our approach
to deal with changes of the extrinsic parameters of cameras.

the event occurred is apparent, demonstrating its inability to
adapt to the change. While the static approach loses overall
utility, the SMOOTH and STEP policies are able to keep a high
utility after the event, indicating their robustness to change.

Figure 4 illustrates the results of scenario 2 with a camera
failure event (experiment 5), when passive approaches were
used. Here the drop of the accumulated utility is obvious for
the static approach, while the socio-economic approaches are
able to relearn the vision graph online and continue tracking
the object within the entire network.

To compare the adaptivity and robustness of the different
variants of the socio-economic approach with the static one,
we accumulated the total social welfare not only for each
single step but also for the entire simulation run. We plotted
the results of the accumulated social welfare against the
total accumulated number of exchanged messages for each
experiment. The upper plot in figure 5 shows the performance
of the different communication strategies in scenario 1 without
any events. The lower illustration plots the results of the
same experimental setup but this time having a change event
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Fig. 4. Cumulative sum of the entire network utility over time for a typical
simulation run of Scenario 2 with an error event (experiment 5) and using
our active approaches. The red vertical line indicates the timestep when the
event occured. The simulation lasted for 1000 timesteps.
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Fig. 5. Overall utility of Scenario 1 calculated over 1000 time steps. Mean
and standard deviation have been calculated over 30 runs. The upper graph
shows the results for an experiment with no events while the lower graph
shows the result for an experiment where the position of a camera was changed
after 518 time steps.

after 518 timesteps (experiment 3). While the active approach
using static communication performs almost as well as the
passive approach in a setting without any changes, the drop
of performance for the static approaches is obvious when the
change is present; they are not as robust to the change.

In Figure 6 we compare the performance of the different
approaches when adding or removing cameras from the net-
work during runtime. All three illustrations show results of
scenario 2. The top figure shows the results for an experiment
where no events occur, while the middle figure shows the
results where a camera has been added to the network during

runtime (experiment 4). Even in the presence of a very simple
dynamic such as this, the drops in performance of the static
approaches are about 10% while the dynamic socio-economic
approaches maintain their high performance after the events.
The bottom plot in figure 6 illustrates the performance when
a camera is removed from the network during runtime (exper-
iment 5). While the utility drops for the static communication
approaches by about 20%, the socio-economic approaches are
able to maintain a high overall cumulative utility, due to their
ability to relearn the changed vision graph online.
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Fig. 6. Overall utility of Scenario 2 calculated over 1000 time steps.
Communication and utility are shown on the x and y axes respectively,
normalised by the maximum obtained values; active broadcast always obtains
a utility of 1 with a communication overhead of 1. Mean and standard
deviation are shown, calculated over 30 runs. The upper graph shows the
results for an experiment without any events. The middle graph shows the
result for an experiment where a camera has been added to the scenario after
518 time steps. The lower plot shows the result for an experiment where a
camera was removed after 518 time steps.

Figure 7 shows the performance of experiment 7 where
we used scenario 3. In the upper graph no events occur but
the lower figure illustrates the same scenario when multiple
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Fig. 7. Overall utility of Scenario 3 calculated over 1000 time steps. Mean
and standard deviation have been calculated over 30 runs. The upper graph
shows the results for an experiment with no events while the lower graph
shows the result for a experiment 7 where multiple cameras were removed
after 518 time steps.

cameras fail after 518 timesteps. In this scenario, the socio-
economic approaches generally achieve a substantially higher
tracking performance than the static approaches, though they
also require more communication. Due to the randomness of
the scenarios, the drop in performance of the static approaches
is rather low, indicating that the relative robustness of the
approaches varies with the scenario’s properties.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated the adaptivity and robustness
of distributed smart-camera networks which use an improved
version of the socio-economic algorithm presented in [1].
The approach relies on self-interested, autonomous cameras
which trade tracking responsibilities for objects using Vickrey
auctions.

The main contribution of this paper concentrated on relaxing
several simplifying assumptions, which were not reflective of
the real world. We showed how to improve the our previous
approach substantially, expecially in terms of robustness and
adaptivity. Therefor we relaxed the assumptions of instanta-
neous handover, instantanious communication between cam-
eras, and introduced events to simulate uncertainties in our net-
work. The cameras learn neighbourhood relationships online,
clustering into groups to reduce communication within the
network. Our improved fully decentralised approach increases
the adaptivity and robustness of the camera network when
compared to a static approach based based an a priori known
vision graph, while not requiring a centralised component.

It improves the adaptivity by enabling the network to take
advantage of new cameras, which may be added during
runtime. Similarly, it improves the robustness by enabling the
network to relearn the vision graph after a camera fails.

We showed that different variants of our approach are able
to retain or even increase their utility after change events occur.
For example, when comparing cumulative network utility with
overall communication overhead, the technique maintains a
steady performance despite the presence of uncertainties. Con-
versely, the utility in all scenarios using a static communication
approach dropped by 10-20% depending on the event.

There is still a lot of room for future work. A first area is
to perform a quantitative analysis of robustness properties on
a wider range of scenarios and uncertainties. We would like
to understand more deeply the types of uncertainties which
can and cannot be dealt with by our algorithm, and how its
parameter settings affect this. Another direction is to reconfig-
ure networks based on the knowledge of the vision graph if
resources are going to be depleted. Finally, we are currently
working on combining long-term reconfiguration algorithms
with our novel approach to allow dynamic reconfiguration
based on the trading of tracking responsibilities.
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