HARDWARE/SOFTWARE PLATFORM FOR SELF-AWARE COMPUTE NODES

Markus Happe, Andreas Agne, Christian Plessl, Marco Platzner

University of Paderborn, Germany
email: {markus.happe, agne, christian.plessl, platzner } @uni-paderborn.de

1. INTRODUCTION

Today’s design and operation principles and methods do not
scale well with future reconfigurable computing systems due
to an increased complexity in system architectures and ap-
plications, run-time dynamics and corresponding require-
ments. Hence, novel design and operation principles and
methods are needed that possibly break drastically with the
static ones we have built into our systems and the fixed ab-
straction layers we have cherished over the last decades.
Thus, we propose a HW/SW platform that collects and main-
tains information about its state and progress which enables
the system to reason about its behavior (self-awareness) and
utilizes its knowledge to effectively and autonomously adapt
its behavior to changing requirements (self-expression).

To enable self-awareness, our compute nodes collect in-
formation using a variety of sensors, i.e. performance coun-
ters and thermal diodes, and use internal self-awareness mod-
els that process these information. For self-awareness, on-
line learning is crucial such that the node learns and con-
tinuously updates its models at run-time to react to chang-
ing conditions. To enable self-expression, we break with the
classic design-time abstraction layers of hardware, operating
system and software. In contrast, our system is able to verti-
cally migrate functionalities between the layers at run-time
to exploit trade-offs between abstraction and optimization.

This paper presents a heterogeneous multi-core architec-
ture, that enables self-awareness and self-expression, an op-
erating system for our proposed hardware/software platform
and a novel self-expression method.

2. SELF-AWARE MULTI-CORE ARCHITECTURE

As architecture we propose a heterogeneous multi-core that

consists of processors (that execute software threads) and re-

configurable hardware cores (that execute hardware threads).

As prototyping platform, we use the programming model

and execution environment ReconOS [1]. ReconOS extends

the well-known multithreading approach to reconfigurable

hardware. Here, hardware threads can access the same shared
resources (i.e. shared memory, synchronization and commu-

nication primitives) like the software threads.

CPU core

sw
thread

CPU core
sw
d, thread

interconnect

CPU core

sw
thread

~—

hw hw
thread /thread

reconfigurable
hardware core

monitoring core

hw (senses internal
thread system state)

reconfigurable

hardware core

~

Fig. 1. Proposed heterogeneous multi-core architecture [2].

Figure 1 depicts an example architecture that consists of
three processors and two (reconfigurable) hardware cores.
The system contains a monitoring core that captures core-
specific information. We currently support ring-oscillator
based thermal sensors to capture the on-chip temperature
distribution and performance counters to measure the sys-
tem’s performance.

3. OPERATING SYSTEM

ReconOS extends current operating systems (OS), i.e., Linux
or eCos, to support reconfigurable hardware. In ReconOS,
hardware threads are represented by delegate threads in soft-
ware. Whenever a hardware thread makes an OS call, an
interrupt is generated and the function name and its parame-
ters are forwarded to delegate software thread. The delegate
thread makes the OS call on behalf of the hardware thread
and returns the results to the calling hardware thread.
Figure 2 gives an overview of the ReconOS system where
the software threads interact directly with the OS kernel,
while the hardware threads in the FPGA’s logic are con-
nected through operating system interfaces (OSIFs) and del-
egate threads. The operating system runs on one (main)
processor while the other processors (workers) only execute
software threads. The software on the worker processors are

R . A AR T
§ i Sw Sw delegate delegate i
£\ thread thread thread thread]
8 : ----- t ------- ; -------- ; --------- t ------ | ‘I
(— E
i other libraries (networking |
1)
T=> : POSIX API math, etc.) !
F=a I
£ i | scheduler | mutexes | semaphores |]
[|
© | dynamic memory management drivers E
T, !
[i """"" i"""""""" ‘""':
1
o! main .)
§ E memory ’ peripherals :
i HW HW |
<! thread thread 1
1 1
1 1

Fig. 2. Conceptual overview of the ReconOS system [1].

also represented by delegate threads on the main processor.

In extension to our previous work on ReconOS, we in-
troduce vertical function migration as a novel self-expression
method where the system can migrate threads between the
software, OS and hardware layers at run-time to affect vari-
ous aspects of the system such as performance, power con-
sumption, temperature etc.

4. SELF-EXPRESSION BY THREAD MIGRATION

Migrating a thread from the main processor to a hardware
core affects the performance, overall power consumption
and the thermal profile of the chip. Considering heteroge-
neous processors similar effects can be observed for the mi-
gration between processors. Migrating a thread into the OS
kernel is a special case which can lead to an improved per-
formance if the operating system distinguishes between the
a kernel space and a user space (such as Linux). In contrast
to a user thread, a kernel thread can avoid internal context
switches because it can directly access OS objects which
results in an improved performance. For thread migration
between hardware cores and between the hardware/software
boundary we propose cooperative multitasking [3] where the
threads have well-defined migration points and inform the
OS every time they reach these points. Resuming execution
form these migration points should be possible for both, the
hardware and the software thread.

In [4] we demonstrated that a heterogeneous multi-core
can regulate an application’s performance by adding and re-
moving software and/or hardware threads at run-time for a
particle filter-based video object tracker. The performance
of the application varies when a tracked object moves into
the foreground or the background because this influences
the computational complexity of the histogram calculation.
The system measured the execution time of the individual

threads in order to assess the application’s performance. Ac-
cording to a static internal performance model, the system
adapted the thread partitioning to either meet a user-defined
lower performance bound or to stay within a performance
budget. We currently work on a heterogeneous multi-core
that learns a thermal model at run-time and performs thermal
management autonomously using vertical thread migration.

5. CONCLUSION

To meet the rising dynamics, complexities and requirements
of future computing systems, we propose that future sys-
tems collect and maintain information about their system
state and their progress autonomously. Therefore, we have
proposed a HW/SW platform that consists of heterogeneous
HW/SW cores and a monitoring core which senses the cur-
rent state of each core. To enable self-expression, we break
with the classic design-time abstraction layers of hardware,
operating system and software. In contrast, our proposed
system vertically migrates threads between these layers to
affect various system characteristics, such as application per-
formance, temperature distribution and power consumption.

Acknowledgment

The research leading to these results has received funding
from the European Union 7th Framework Programme un-
der grant agreement n° 257906, from the German Research
Foundation (DFG) as part of the priority program “Depend-
able Embedded Systems” (SPP 1500) and the Collaborative
Research Centre “On-The-Fly Computing” (SFB 901).

6. REFERENCES

[1] E. Liibbers and M. Platzner, “Communication and Syn-
chronization in Multithreaded Reconfigurable Com-
puting Systems,” in Int. Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA’0S).
CSREA Press, 2008.

[2] C. Plessl, M. Platzner, A. Agne, M. Happe, and
E. Liibbers, “Programming Models for Reconfigurable
Heterogeneous Multi-Cores,” Awareness Magazine,
http://www.awareness-mag.eu, 2012.

[3] E. Liibbers and M. Platzner, “Cooperative Multithread-
ing in Dynamically Reconfigurable Systems,” in /IEEE
International Conference on Field Programmable Logic
and Applications (FPL’09). 1EEE, 2009.

[4] M. Happe, E. Liibbers, and M. Platzner, “A Self-
adaptive Heterogeneous Multi-core Architecture for
Embedded Real-time Video Object Tracking,” Journal
on Real-Time Image Processing (JRTIP), 2011.

