
TOWARDS SELF-ADAPTATION IN RECONFIGURABLE NETWORK NODES

Ariane Keller, Daniel Borkmann, Stephan Neuhaus

Communication Systems Group
ETH Zurich

Gloriastrasse 35, 8092 Zurich
email: first.last@tik.ee.ethz.ch

1. INTRODUCTION

Today, computing nodes are everywhere, either visible as
laptops and mobile phones or invisible as embedded devices
in trains, home appliances or in the backbone of the Internet.
The management of those devices becomes more and more
difficult as the number of devices and the complexity of the
applications increase. In order to cope with this complexity
the idea of nodes with self-*1 features emerged.

In order to support self-* applications, Field Programm-
able Gate Arrays (FPGAs) are used as a basis to build (par-
tially) reconfigurable hardware platforms. However, in or-
der to use those platforms optimally, the software also needs
to be redesigned. In previous work we developed the Au-
tonomic Network Architecture (ANA) [1] which addresses
the most important problems in the networking area: scal-
ability, maintainability, and security. We also introduced
a node architecture for ANA that is based on partially re-
configurable FPGAs and uses ReconOS [2] as its operating
system [3]. The largest remaining challenge is to provide a
self-aware algorithm that decides which protocols should be
implemented in hardware and which in software.

In this paper we first briefly review the architecture of
networking nodes (Section 2), and then tackle this prob-
lem by (i) establishing a reasonable adaptation frequency
and classifying hardware/software mapping algorithms in
the context of networking (Section 3), (ii) developing mech-
anisms to algorithmically recognize periodic traffic patterns
that can be used as input to a mapping algorithm (Section 4);
and (iii) developing a simulator for networked hardware/soft-
ware systems that gives insights into the impact of different
parameters (Section 5). The results will be used for further
investigation in a self-aware hardware/software mapping al-
gorithm for networking applications.

The research leading to these results has received funding from the
European Union Seventh Framework Programme under grant agreement
no 257906.

1Where “*” can be a word such as healing, configuring, adaptation, etc.

2. NETWORKING NODE

For the rest of this paper, we assume that network nodes
have the architecture shown in Figure 1; we describe this ar-
chitecture as well as a prototype implementation more fully
in previous work [3]. The whole system is implemented on
an FPGA: the operating system runs on a CPU that is con-
figured into the FPGA, and a configurable number of hard-
ware slots are connected to the CPU over a shared bus in-
terface. Networking blocks executing in hardware are con-
figured into those slots, and all slots are connected with a
dedicated interconnect that offers line rate communication.
In hardware, packets are processed in a pipelined fashion.
The hardware/software interface is implemented as a com-
bination of shared memory and interrupts.

HW
slot

HW
slot

HW
slotPHY

line rate interconnect
FPGA

hw/sw interface

OS SW 
block

SW 
block…

executed on CPU

Fig. 1. Simplified node architecture.

3. ADAPTATION FREQUENCY

For the development of an adaptive system, it is crucial to
determine an adequate adaptation interval. The underly-
ing hardware limits the the maximum reconfiguration fre-
quency, and hence the minimum time between reconfigura-
tions, which can be computed as follows: if m is the time
required to transmit sensor data to the reconfiguration ap-
plication, c the time to compute the next hardware/software
mapping, si the state relocation time in block i, ri the recon-
figuration time for block i, and n the number of blocks, the



total adaptation overhead A is then given by
A = m + c +

∑n
i=1(si + ri).

Adaptation overhead should be a small fraction of over-
all processing time so that the system spends most time pro-
cessing traffic. We suggest limiting the adaptation overhead
to 1% of the overall processing time. Applying these guide-
lines to the architecture we presented in [3], we obtain a
maximum adaptation frequency of one adaptation per sec-
ond. On end nodes, where traffic is user-dependent, this
maximum frequency should be used so that the node re-
mains responsive to traffic peaks. However, on nodes pro-
cessing aggregated traffic (e.g., routers), a lower adaptation
frequency should be used, in order to cope with seasonal ef-
fects [4] or trends [5]. This adaptation frequency could be
set to one per hour.

4. ADAPTATION STRATEGIES

Regardless of the adaptation frequency, different strategies
can be applied for the actual adaptation algorithm. Those
strategies determine whether the actual traffic and/or learned
traffic characteristics are taken into account and determine
the actual optimization goal.

4.1. Traffic Dependent/Independent Algorithms

Traffic independent algorithms derive a mapping based only
on the static properties of the required networking blocks.
Such properties include the required FPGA area and mem-
ory footprint or the expected average benefit of a hardware
implementation. The mapping only changes when new pro-
tocols are loaded. Traffic dependent algorithms take the
actual traffic into account, e.g., by measurement of the num-
ber of packets and bytes processed by each block, the num-
ber of packets and bytes to be transmitted from hardware to
software, and the utilization or energy consumption of the
networking blocks.

4.2. Reactive versus Proactive Algorithms

A reactive algorithm makes an observation in time slot
t − 1, calculates an optimal mapping for this traffic distri-
bution and uses this mapping in time slot t. This approach is
especially useful for traffic changes introduced by a single
user where the protocol and traffic mixes depend on user be-
havior, and which usually contain long periods of inactivity.
However, we might also observe peaks in aggregated traffic,
e.g., for protocols that are rarely used such as IPSec in the
MAWI network [6].

A proactive algorithm changes the hardware/software
mapping before the traffic mix changes. This requires knowl-
edge from past traffic mix changes that can be applied to the
current situation. On end nodes this might be a regular pat-
tern for checking emails or storing a backup to a server. On

intermediate nodes this might be the variation of network
traffic that occurs on a daily basis.

We can distinguish between algorithms that know the pe-
riod and algorithms that learn the period. Algorithms that
know the period could assume for example that tomorrow’s
traffic will be much like today’s. This approach is particu-
larly useful for aggregated traffic.

End nodes may require a more sophisticated technique
such as the partial autocorrelation function (PACF). For a
given lag `, the PACF is the correlation of the traffic at time
t−` with the traffic at time t, considering possible linear de-
pendencies due to lesser lags; the significance level of this
autocorrelation, i.e., the probability that the observed corre-
lation will be this large by chance, can also be computed.

In Figure 2, a repetitive pattern is clearly visible for email
traffic on an end node. In periodic signals, the PACF will be
significant at lags that are multiples of the period: in the
PACF for this traffic trace, shown in Figure 2, the correla-
tions are higher then the dashed line at lags 60, 120, 180,
and 240 seconds (p = 10−4), suggesting a period of one
minute. Not surprisingly, the email client on the end node
checks for new emails every minute.

There are also significant (p = 0.05) negative autocor-
relations just before and after these large peaks. This means
that traffic just before and just after a peak is likely to be
much less, and resources required for handling the periodic
traffic can be freed up immediately after the peak.

In a similar analysis for a protocol without periodic traf-
fic, the PACF did not show any significant periods.

−
0.

2
0.

0
0.

2
0.

4

P
ar

tia
l A

C
F

PACF, 10s Intervals

60 120 180 240

Fig. 2. Partial autocorrelation of IMAP traffic, x is lag,
dashed line is significance level 10−4.

4.3. Optimization Goals

Regardless of its type, an algorithm will optimize the map-
ping for a certain goal. Typical goals are maximizing through-
put, minimizing energy, or providing sustainability (e.g., by
avoiding mappings that could damage the FPGA over time).
For the throughput optimization goal we can distinguish two
classes of algorithms.



Maximisation of hardware benefits algorithms put tho-
se blocks into hardware that offer the largest benefit of exe-
cution in hardware when compared to execution in software.
It is assumed that the algorithm has access to information on
how long it takes to process a packet of a given size in soft-
ware and in hardware. For a traffic-independent mapping,
the blocks with the largest differences are put in hardware;
for a traffic dependent mapping, the differences are multi-
plied by the number and length of the actual packets.

Protocol graph partitioning algorithms minimize the
overhead introduced by transmitting packets between hard-
ware and software. Therefore, they only map connected sub-
graphs of the original protocol graph to hardware. One of
those blocks is the block that is physically connected to the
network interface. The subgraph mapped to hardware can
be selected based on several criteria. For example, we could
choose the subgraph with the aggregated largest difference
in execution time, or the one that minimizes the load on the
hardware/software boundary. Different hardware subgraphs
might introduce different loads due to the following reasons:

• one block is a firewall or an intrusion prevention sys-
tem that drops packets on purpose;

• one block offers routing, sending packets from the re-
ceive code path to the transmit code path;

• the packets are dropped due to buffer overflows and
hence this subgraph needs more resources.

5. EVALUATION

In order to experiment with different parameters of the un-
derlying hardware we have developed a simulator that can
process network traces and execute different algorithms on
these traces.

5.1. Simulator

The simulator models the whole system consisting of soft-
ware and hardware parts. Therefore it needs to simulate real
hardware parallelism. We have implemented the simulator
in SystemC [7] which is a set of C++ classes and macros
that allows the simulation of concurrent processes.

Our simulator models the system described in Section 2,
and consists of the following building blocks:

• a CPU, shared among all blocks executed in software;
• several hardware processing units, each capable of host-

ing a networking block;
• an interconnect between the hardware units, offering

line rate communication;
• a communication bus between hardware and software

with limited bandwidth;
• a monitoring framework that collects the number of

packets and bytes transmitted between the blocks;
• a hardware reconfiguration interface.

The simulator differs from the actual system as follows:

• Instead of receiving real network packets from a phys-
ical device, the simulator reads a captured packet trace.
For each packet the following information is stored:
packet id, arrival time, packet length, protocols. For
the packet trace generation we use packet traces cap-
tured by libpcap [8] or netsniff [9] that were converted
with the help of the pcap decoder provided by yaf [10].

• Since the packets only contain protocol information
but not the actual data, the blocks only specify a pro-
cessing time per packet (to simulate header process-
ing), a processing time per byte (to simulate payload
processing), a reply rate (to simulate reliable traffic)
and a drop rate (to simulate firewalls etc.).

• The monitoring framework can only obtain packet and
byte counters but no physical parameters such as FPGA
temperature or energy consumption.

• The reconfiguration overhead is not modelled.

5.2. Results

We have implemented four different mapping algorithms in
the simulator that was configured with three hardware slots.
To obtain a realistic protocol mix, packet length and packet
interarrival times, we captured a packet trace on a notebook
in a university network and included all packets that were ei-
ther broadcast packets or packets addressed to the collecting
node into the trace.

We have evaluated the following four algorithms:
• SW only: put only those elements in hardware that

do not have a software implementation. Put the others
into software.

• Maximum Benefit: put those elements into hardware
that benefit most from a hardware implementation (de-
pending on the number of packets and bytes processed).

• Minimum Bandwidth: minimize the number of pack-
ets to be sent from hardware to software.

• Hardware Cluster: put those blocks in hardware that
offer the best hardware benefit and that are connected
(in order to avoid sending packets unnecessarily be-
tween hardware and software).

We evaluated those algorithms in the following systems:
• Exp A. Ethernet is implemented in hardware only,

ARP, IPv4, and icmp are implemented in hardware
and in software, all the other protocols are implemented
in software only. There is no cost associated with
sending packets from hardware to software.

• Exp B. Additionally, TCP, UDP and tls get a hardware
implementation. There is no cost accociated with send-
ing packets from hardware to software.

• Exp C. Same as B, but now there is a cost for send-
ing packets between hardware and software, which is
proportional to the packet length.

Figure 3 shows one particular hardware/software map-
ping of the Maximum Benefit algorithm for the Exp B sce-



nario. Nodes represent protocol blocks and edges represent
the number of packets sent between the blocks. The colored
nodes represent the nodes to be mapped to hardware.

ethernet

ARP

79

IPv4

3698

TCP

3682

UDP

16

tls

23

http

3630

unusual protocols

29 16

http over tls

23

Fig. 3. One particular hardware/software mapping of the
Maximum Benefit algorithm for the Exp B scenario.

Table 1 shows the results of the four algorithms in the
three different scenarios. However, instead of looking at the
individual results, we focus on the differences between the
algorithms in the different scenarios.

For the SW Only and the Minimum Bandwidth algo-
rithm, the performance does only depend slightly on the
scenario. For the Maximum Benefit and the Hardware Clus-
ter algorithm, the performance increases significantly, when
more protocols have a hardware implementation. As ex-
pected, the Maximum Benefit algorithm offers the best per-
formance. When we introduce a cost for crossing the hard-
ware/software boundary the performance decreases again;
however, it decreases less for the Hardware Cluster algo-
rithm so that this algorithm offers now the best performance.

It is also interesting to see that the Hardware Cluster al-
gorithm requires about half the number of reconfigurations
than the Maximum Benefit algorithm. This is especially in-
teresting since in the actual hardware, reconfiguration re-
quires time, in which a slot cannot process packets.

From those results we learn that finding the most effi-
cient algorithm heavily depends on the actual parameters
and in a real live scenario probably a combination of the
different algorithms is required.

6. CONCLUSION AND FUTURE WORK

We have presented an application for self-awareness in re-
configurable computing systems, namely the mapping of net-
work protocols to either hardware or software. To this end
an adaptation algorithm is required that takes both network

Table 1. Performance Comparison
Exp A Exp B Exp C

SW Only Algorithm
different configurations 1 1 1
reconfigurations 0 0 0
packet drop rate 32.9 % 32.9 33.5%
Maximum Benefit Algorithm
different configurations 3 9 9
reconfigurations 41 2266 2271
packet drop rate 32.9% 2.7% 12.1%
Minimum Bandwidth Algorithm
different configurations 2 2 2
reconfigurations 1 1 1
packet drop rate 32.9% 32.9% 33.5%
Hardware Cluster Algorithm
different configurations 3 4 4
reconfigurations 39 1006 1006
packet drop rate 33.7% 4.8% 11.1%

traffic characteristics as well as hardware characteristics into
account. We have presented a first classification of such al-
gorithms and developed a simulator that can be used to ob-
tain initial performance results. As a next step we will de-
velop new algorithms for the hardware/software mapping.

7. REFERENCES

[1] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid, A. Keller,
and M. May, “The autonomic network architecture (ANA),”
Selected Areas in Communications, IEEE Journal on, vol. 28,
no. 1, pp. 4 –14, Jan. 2010.

[2] E. Lübbers and M. Platzner, “ReconOS: An RTOS supporting
hard- and software threads,” IEEE Int. Conf. on Field Pro-
grammable Logic and Applications, 2007.

[3] A. Keller, B. Plattner, E. Lübbers, M. Platzner, and C. Plessl,
“Reconfigurable nodes for future networks,” in GLOBECOM
Workshops (GC Wkshps), 2010 IEEE, dec. 2010, pp. 357 –
361.

[4] K. Thompson, G. J. Miller, and R. Wilder, “Wide-area in-
ternet traffic patterns and characteristics,” IEEE Network,
vol. 11, pp. 10–23, 1997.

[5] S. McCreary and kc claffy, “Trends in wide area ip traffic pat-
terns - a view from ames internet exchange,” in ITC Specialist
Seminar, Monterey, CA, Sep 2000.

[6] “MAWI Working Group Traffic Archive,”
http://mawi.wide.ad.jp/mawi/ (Dec 11).

[7] “SystemC,” http://www.systemc.org (Dec 11).

[8] “tcpdump and libpcap,” http://www.tcpdump.org/ (Aug 12).

[9] “netsniff-ng,” http://www.netsniff-ng.org (Aug 12).

[10] C. M. Inacio and B. Trammell, “Yaf: yet another flowmeter,”
in Proceedings of LISA’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 1–16.


