Pragma based parallelization - Trading hardware efficiency for ease of use?

Tobias Kenter, Henning Schmitz, Christian Plessl
Paderborn Center for Parallel Computing
University of Paderborn
Paderborn, Germany
kenter@uni-paderborn.de

Abstract—One major obstacle for a wide spread FPGA usage
in general-purpose computing is the development tool flow that
requires much higher effort than for pure software solutions.
Convey Computer promises a solution to this problem for
their HC-1 platform, where the FPGAs are configured to run
as a vector processor and the software source code can be
annotated with pragmas that guide an automated vectorization
process. We investigate this approach for a stereo matching
algorithm that has abundant parallelism and a number of
different computational patterns. We note that for this case
study the automated vectorization in its current state doesn’t
hold its productivity promise. However, we also show that
using the Vector Personality can yield a significant speedups
compared to CPU implementations in two of three investigated
phases of the algorithm. Those speedups don’t match custom
FPGA implementations, but can come with much reduced
development effort.

Keywords-Parallel architectures; Reconfigurable architec-
tures; Performance analysis; Stereo image processing

I. INTRODUCTION

FPGAs can offer huge gains in performance and energy
efficiency over general-purpose CPUs, given the right kind
of problem. The means to achieve the performance gains
can generally be grouped into three categories. Firstly and
foremost one can make use of parallelism at various levels,
for example by processing many compute elements in a deep
pipeline, where at each pipeline stage one element is in
process, or computing them simultaneously by replicating
identical functional units or pipelines. Secondly, latencies
can be reduced by using datatypes specific to the given
problems and by generating specific circuits for operations
that need to be executed with many individual instructions
on a general-purpose CPU. Thirdly, applications that are
memory bound on a CPU can be accelerated by higher raw
bandwidth to external DRAM or by explicitly designing
clever data prefetch or reuse strategies, also making use
of the FPGA’s huge bandwidth to the internal block RAM
resources.

Despite their potential performance gains and energy
savings, FPGAs are not a widely utilized platform in many
applicable fields of computing. Probably prime among the
obstacles hindering their wider adoption is the development
effort involved in accelerating applications on FPGAs. The
programmer not only has to identify performance critical

978-1-4673-2921-7/12/$31.00 ©2012 IEEE

parts of his code and identify which parts of it can be
parallelized in some form. He also needs to rewrite the
identified kernels with unfamiliar programming languages
like VHDL and Verilog, has to think in different, hardware
centric programming models and needs to utilize unfamiliar
tool-flows e.g. for synthesis and debugging, that also have
way longer runtimes than those of CPU tool-flows.

Another aspect when porting applications to an FPGA
platform is that usually there exist large code parts that
are best suited for a CPU, either because they are very
sequential, control intense or because they are simply not
runtime critical, so it is not worth porting them and letting
them use valuable FPGA resources. This requires the pro-
grammer to also perform a hardware/software partitioning
and orchestrate control and data between CPU and FPGA.
When considering ongoing development or updates for ap-
plications, it is an extra burden to maintain different code
versions for CPU and FPGA implementations.

A new generation of tools now promises a way around
these problems by offering a pragma based parallelization
like with OpenMP, but targeting FPGA [5] or GPU [4]
platforms. The first commercially available FPGA platform
with this kind of tool-flow is the Convey HC-1 hybrid core
computer. After the programmer annotates his C/C++ or
Fortran source with pragmas indicating e.g. desired parts for
parallelization, data movements or independence of memory
accesses, the compiler handles the hardware/software par-
titioning and generation of accelerator code automatically,
which promises a considerably higher development produc-
tivity.

The contribution of this paper is an evaluation of this
productivity promise, as well as an analysis of the tradeoffs
in terms of performance and hardware usage that come with
this approach. For this purpose, we compare pragma based
parallelizations with OpenMP and the Convey vectorizing
compiler, as well as an assembler based Convey imple-
mentation and theoretical performance limits. As a case
study, we utilize an implementation of a stereo-matching
algorithm, which on the one hand offers significant data
level parallelism that can be exploited, but on the other hand
contains different memory access patterns, dependencies and
some control flow among its kernels.

The remainder of this paper is structured as follows: in

Section II we give a brief overview of the related work.
In Section IIl we present more aspects and details of the
Convey hardware platform, its configurations and tool-flow.
Next, in Section IV we present the stereo matching algorithm
utilized as case study. In Section V, we discuss for the
three main phases of the algorithm, their parallelization
using the Convey vectorizing compiler, optimizations of the
kernels in assembler for the vector instruction set and aspects
of parallelization with OpenMP. Here we also cover the
achieved performance, before we draw our conclusions in
Section VL.

II. RELATED WORK

The fundamentals of the Convey HC-1 system architecture
and its capability to implement instruction set extensions and
custom personalities have been described in the works of
Brewer [5] and Bakos [3]. The work by Augustin et al. [2]
studies the suitability of the Convey HC-1 for kernels from
linear algebra and compares the performance to CPUs and
GPUs. Their work also uses the Vector Personality and com-
piler infrastructure, as well as the work by Meyer et al. [9].
They port a stencil computation application to the Vector
Personality and compare both results and development flow
with an OpenMP parallelization. Distinctive features of our
work are the comparison to theoretical peak performance
and the more diverse kernels of our application. Also in our
case study, we discover serious gaps between what can be
achieved using the Convey vectorizing compilers and what
is possible by making best use of the vector instruction
set. Maleki et al. [7] have investigated those effects for
compilers targeting vector extensions for current general
purpose CPUs.

III. CONVEY HC-1 HARDWARE AND TOOL-FLOW

In this section, we introduce the Convey HC-1 hardware
platform, give a brief overview of the different ways to
configure its FPGAs, specifically with the Vector Personality
and introduce the basic tool flow to target the Vector
Personality.

A. Hardware Platform

A schematic overview of the Convey HC-1 architecture
[5] is presented in Figure 1. At its heart, the Convey HC-1 is
a dual socket server system, where one socket is populated
with a Intel Xeon CPU while the other socket is connected
to a stacked coprocessor board. The two boards communi-
cate using the Intel Front-Side Bus (FSB) protocol. Both
processing units have their own dedicated physical memory,
which can be transparently accessed by the other unit
through a common cache-coherent virtual address space. The
coprocessor consists of multiple individually programmable
FPGAs. One FPGA, the Application Engine Hub (AEH)
implements the infrastructure that is shared by all copro-
cessor configurations. These functions include the physical

Chipset Host Memory
FSB

Coprocessor
\/ Application Engines
"]

c

62 S§o|S§—|§x|Em

=TI Host So|lEol|Eo0l|l=E o0

Ty T l|lsd|lo|lw

© 2 | Interface C -SAES SHES -SHIES -5

) 85|85|585|58

5 < |<T <<

Memory Controller

Controller 1
Controller 2
Controller 3
Controller 4
Controller 5
Controller 6
Controller 7

(=]
=
2
2
1=
Q
o

Memory
Memory
Memory
Memory
Memory

=
S
E
[}
=

Memory
Memory

= T e D T

DIMM Modules

Figure 1. Coprocessor Architecture

FSB interface and cache coherency protocol, configuration
and execution management for user programmable FPGAs
and command dispatch logic that relays commands received
from the host processor to the application-specific logic on
the coprocessor. For implementing the application-specific
functionality, four high-density Xilinx Virtex-5L.X330 FP-
GAs, denoted as Application Engines (AE), are available.

A distinctive feature of the HC-1 architecture is the
availability of a fast multi channel memory interface which
provides the application engines with access to 8 indepen-
dent memory banks through 8 dedicated memory controllers
with an aggregated bandwidth of 80 GB/s. Each memory
controller accesses two DIMM memory modules. In total 16
DIMMSs can be installed resulting in a maximum of 128 GB
coprocessor memory. Besides standard memory modules
(Std RAM) Convey also offers custom-made scatter-gather
modules (SG RAM) which allow accessing memory effi-
ciently in 8-byte data blocks while standard modules are
optimized for 64-byte blocks.

The application engines can be configured with so called
Personalities, that need to implement interfaces to the AEH
and the memory controllers and contain the user logic for
any specific task. Users can create their own specialized
personalities or use those provided by Convey, which exist
for a number of specific tasks like graph traversal or local
alignment, and as the general purpose Vector Personality.

B. Vector Personality

The Vector Personality provides the functionality of a
vector processor that executes programs implementing its
vector instruction set, in one variant optimized for single

precision floating point and in one supporting also double
precision floating point operations. Both also support integer
operations. The vector instructions are implemented for up
to 1024 elements. A total of 64 vector registers are available
and can each store such a set of 1024 elements. Compared
to a general-purpose CPU, the total size of this register file
is huge and given the right problem and implementation
can make up for the non-existing cache in this architecture.
Besides the usual element-wise arithmetic vector operations,
the vector instruction set contains memory instructions that
distinguish it from typical vector instruction set extensions
for CPUs. It can load and store vectors where the elements
are individually indexed and do not need to be aligned in a
continuous memory location. It also supports the generation
of vector masks to handle diverging control flow, however
currently those masks can only be applied to memory
instructions.

C. Vectorizing Compiler

For programming the Vector Personality, Convey offers a
vectorizing compiler for the source languages C, C++ and
Fortran. There are two versions of the vectorizer component
of the compiler, which we both tested. The two vectorizers
differ a bit in what source code constructs actually work
for automated vectorization and how the generated assembly
code looks. Most of the presented results are obtained using
the older internal vectorizer.

The programmer can specify via pragmas, which func-
tions are to be executed on the Vector Personality and which
loops are to be vectorized. This workflow is supposed to be
very similar to OpenMP programming, solving productivity
issues by having only a single source code to maintain,
which can still be compiled also without the Convey tools.
The vectorizing compiler tries to generate code according
to the pragmas, using the x86 instruction set for the host
CPU and the vector instruction set for the FPGAs, and
it orchestrates all interactions between both parts. This is
facilitated by the common memory space, which allows
the CPU to access the FPGAs memory location and vice
versa. However for maximal performance data has to be
transferred to the right location, which can be guided by
pragmas. A simple example for this use of pragmas is given
with Listing 1 for a saxpy kernel that adds two vectors,
after one vector is multiplied by a scalar factor. The utilized
pragmas indicate the desired memory transfers, start and end
of the code region that is supposed to run on the coprocessor.
The pragma indicating that there are no loop dependencies
of the y vector in the inner loop is not required here for
vectorization itself, but it prevents a fence operation at the
end of each iteration, which could also be achieved with
other pragmas.

#pragma cny migrate_coproc (X,
#pragma cny migrate_coproc(y,
#pragma cny begin_coproc
unsigned long i;
#pragma cny no_loop_dep(y)
for (i = 0; i < size; i++) {
ylil = a = x[i] + y[il;

xByteSize);
yByteSize);

}

#pragma cny end_coproc

Listing 1. Saxpy Kernel with Convey compiler directives
Platform Virtex-5LX330 Vector Personality
Units 4 FPGAs 4 FPGAs
Cores/Unit 192 DSP48E 8 Function Pipes
SP Throughput/Cycle 1/2 mult! 4 fmac
Clock Frequency 550 MHz 300 MHz
Theoretical Peak 211.2 GFLOPS' | 38.4 GFLOPS
Measured® Std RAM - 5.42 GFLOPS
Measured”> SG RAM - 7.36 GFLOPS
Theoretical BW 80 GB/s 80 GB/s
Measured> BW Std RAM | - 32.5 GB/s
Measured” BW SG RAM | - 44.2 GB/s

Table I

OVERVIEW OF THEORETICAL AND MEASURED PERFORMANCE

D. Achievable performance

We analyze the theoretical peak performance of the Vector
Personality and compare it to the raw performance of the
FPGAs DSP slices in Table I. According to the Xilinx DSP
user guide [11], two DSP48E slices can be combined to form
an unsigned 24 x 24 bit multiplier, which has a latency of 4
cycles, but can be pipelined. This covers the multiplication
of the mantissas of two single precision floating point
numbers, however handling of the exponents and specific
characteristics of the IEEE floating point standard must be
implemented in fabric or using additional DSP slices. Thus
the theoretical peak performance of the FPGA platform in
Table I is not full-fledged floating point performance, but
covers only the core of the floating point multiplications.
On the other hand, it disregards any function units that can
be formed from the FPGAs logic cells.

Using these FPGA resources, the Convey Vector Personal-
ity implements full floating point units. The functional units
are grouped into 8 function pipes per FPGA, where each
function pipe can execute up to four fused multiply add
operations per cycle. An additional misc functional unit can
provide two additions per cycle, which are not counted in
the table. With a micro benchmark whose inner kernel loop
was manually designed in assembler code, we were able
to measure 35.98 GFLOPS for independent multiplications,
which is close to the predicted peak performance. Consider-

'No full floating point multiplications
2 Automatically vectorized kernel from Listing 1

ing the lower clock frequency, which is hard to avoid when
combining DSP slices with logic slices, and considering
the increase in functionality, from core features of a single
multiply to fused multiply add floating point operations, the
fraction of 2/11 of the FPGAs theoretical peak performance
that the Vector Personality offers is significant.

However, with actual kernels with memory accesses, writ-
ten in C/C++ and compiled with the vectorizing compiler, it
is hard to reach that performance level. For example for the
kernel shown in Listing 1, we measured a performance of
5.42 GFLOPS and a utilized bandwidth of 32.5 GB/s with
standard RAM modules and 1/3 higher values on a machine
with scatter-gather RAM modules (Table I). Even though
the memory accesses are sequential in this example, the
performance is improved by lower memory access latencies
of the scatter-gather modules. We see that bandwidth and
latencies of the memory accesses significantly limit the
performance, when the ratio of computation to memory
accesses is rather low as in this kernel.

IV. STEREO MATCHING

Stereo matching is the task of computing depth informa-
tion from a pair of two images taken by two cameras with
a horizontal offset, mimicking human 3D vision with two
eyes. The key concept is, that distant objects have almost
parallel incoming light rays for the left and right image and
thus appear in both images at the same position, when the
cameras are aligned properly. However, the rays of close
objects form an angle between the two cameras and appear
more to the left in the right image and vice versa. The
distance between the position of an object in the left image
and its corresponding position in the right image is called
disparity. It can be used to compute the distance of an object
to the viewer or camera.

We found the stereo matching problem to be an interesting
target for FPGA acceleration, because it contains abundant
parallelism for example on the pixel level, but on the other
hand it is not trivially parallizable because it can be split
into different phases with different computational patterns.
In our work we follow the algorithm of Mei et al. [8],
which is up to now the stereo matching algorithm with
the best matching quality in the popular Middlebury Stereo
Benchmark [10], [1]. Our current implementation doesn’t
achieve the matching quality reported by Mei et al., partly
because of some unclear details in the first or second phase
of the algorithm, partly because we didn’t implement all
final refinement steps. However, with an average of 6% bad
pixels, it would still be in the top third of all benchmark
entries. Also, the software runtimes of our implementation
match the reported software runtimes well. This is possible
because all refinement steps only take up a small fraction of
the total runtime due to the fact that they are only applied
once to relatively few selected pixels.

(a) (b)

Figure 2. Disparity images after (a) cost initialization, (b) cost aggregation
and (c) scanline optimization

In the reminder of this section, we present the general
ideas of the three major phases of the implemented stereo
matching algorithm and outline their computational patterns.
Figure 2 illustrates the disparity images of the Cones image
pair from the Middlebury benchmark [1], generated after
those three phases. The final refinement phase is omitted
due to space limitations, for its methods as well as for more
details of the three covered phases, we refer to the original

paper.
A. Cost Initialization

The cost initialization investigates for each pixel in one
image to all possibly corresponding pixels in the other image
if they could match each other. The more unlikely the
pixels match at a given disparity, the higher is the assigned
matching cost. In the benchmark, for each image pair a
maximal possible disparity d is given and limits the number
of possible matching positions that are investigated. Mei
et al. combine two metrics for the cost initialization, the
absolute difference cost C'4p and a census cost Cl.cy,sus. The
absolute difference cost is defined as the average intensity
difference of all three color channels of the two compared
pixels. For the census cost, first the census transform is
computed for both images. This transform compares each
pixel’s grey value with the grey values of its neighbors
in a 9 x 7 window and sets a result bit to 1 or O if the
intensity is higher or not higher respectively. The results
are encoded in a 64 bit string for each pixel. Then, the
census cost Cepsys for a pair of pixels in the left and right
image is given by the Hamming distance of their census bit
strings, which can be computed by a bitwise xor operation
and a popcount (counting the 1s) of the resulting bit string.
Figure 3 illustrates the census cost for the central pixel of a
3 x 3 window.

Cap and Cepsys are scaled by an exponential function
that also enables the weighting of outliers and then added to
form the final cost C. After each pixel obtained a cost value
for each possible disparity value, a first disparity image can
be computed, by simply selecting for each pixel the disparity
value with the lowest cost.

B. Cost Aggregation

Using only the initial costs, the cost volume or a resulting
disparity image is very noisy because it tries to match every

Census Census Bitstrings Hamming
Windows Transforms 9 Distance
6|66 1]1[1 jmp 11101000 | [00011100

2|4(5mpo]|x|1

1134 0j0]|0

[3]

6l7]6] [1][1]1
413
5[1[2] [1]o]o mpf 11110100 |

w
—
x

o

Figure 3. Census transform and Hamming distance for 3 x 3 windows

pixel individually. However, whenever neighboring pixels
belong to the same object, they are likely to have the same
or a very similar disparity. The cost aggregation tries to
exploit this property by summing up costs of neighboring
and similar pixels.

To define those neighboring and similar pixels, for each
pixel p four so called arm lengths are computed, one for each
of four directions. An arm specifies how far the region of
similar pixels stretches in its direction. The arm lengths are
limited by their absolute length, the color difference between
two adjacent pixels on the arm and the color difference of
the arm’s end pixels. Now the so called support region for
p is formed by using the vertical arms of p as base axis
and including all horizontal arms of all pixels ¢ on this base
axis.

In the aggregation step, for each disparity value, the
matching costs of all pixels in the support region of pixel
p are summed up to form a new cost value of p. A
naive implementation would require many additions for
each support region, but they can be computed much more
efficiently with 1D cost volumes, which effectively limit the
computational effort to two additions and two subtractions
per support region and per disparity value, at the cost of
having non-linear memory access patterns.

Mei et al. repeat this aggregation step four times, however
for steps 2 and 4, they form the support region in different
orientation, using the vertical arms of all pixels ¢ on a
horizontal base axis of pixel p, which changes the shape
of the support region.

C. Scanline Optimization

The scanline optimization is a technique introduced by
Hirschmiiller [6] in order to smoothen the matching images.
It’s basic idea is, that any changes of the assigned disparity
between two neighboring pixels should only happen, when
they are backed by a difference in matching costs that
is above some small penalty P;. Arbitrary large disparity
changes need to overcome a larger cost penalty P». The
penalties also depend on intensity changes in the original
image at that position, since disparity discontinuities are only

likely to arise at object boundaries, which often also cause
large changes in the original image’s intensity values.

These ideas are implemented by a method that iteratively
runs over scanlines in different directions. Mei et al. use two
horizontal and two vertical scanlines that cover each pixel
in all four directions. For every pixel p along a scanline
direction r and for every possible disparity d, a scanline cost
C, is computed that depends on the scanline cost values of
the previous pixel p — r along the line.

Cr(p,d) =C1(p,d) + min[C,.(p —
Colp—r,d+1)+ Py,
mkinCT(p —rk)+ P] — m}anT(p — k)

r,d), (D

These recursive values are computed with a dynamic pro-
gramming pattern along each scanline.

V. PARALLELIZATION AND RESULTS

In this section, we analyze which aspects of the three
matching phases can be parallelized. We focus on vec-
torization potential for the Convey Vector Personality, but
also comment on parallelization for multicore CPUs with
OpenMP and vectorization for CPU SIMD units. We docu-
ment in how far we were able to achieve vectorization using
the Convey vectorizing compiler and what is possible with
the ISA of the Convey Vector Personality. We also report
on the achieved runtimes (Figure 4) of each phase for the
image pair Cones. The first three tests of each phase were
conducted on a Convey HC-1 with standard RAM modules,
as fourth test, we repeated the third tests of optimized
assembler programs on a HC-1 equipped with scatter-gather
RAM modules.

Considering other image pairs, the CPU performance is
negatively impacted by larger image sizes, because they
reduce the effectiveness of its caches, whereas the FPGAs
offer the same memory bandwidth for any data size that
fits its DRAM memory and can profit from larger images
if they help to fill the vector units. The Cones image pair
is one of the largest in the benchmark, however with only
450 x 375 pixels and 60 allowed disparity values, in real
world applications much larger data sizes and thus better
speedup results for some stereo matching use cases are to
be expected.

For the scanline optimization phase, which turned out to
be best suited for the Vector Personality, we also compare
the achieved results to the measured peak performance of
the Vector Personality. We again subdivide the remainder of
this section into the three major matching phases.

A. Cost Initialization

The cost initialization is completely independent over
both image dimensions and over all disparity values. Thus
it can be easily parallelized with OpenMP over the outer
dimensions of the loops and data structures. The Vector

14 Runtimes by phase and variant

Il Software Single Core

12| | Vectorizing Compiler, Std RAM
Il Optimized Assembler, Std RAM
[Optimized Assembler, SG RAM

101

Runtimes [s]

Cost Initialization

Cost Aggregation

Scanline Optimization

Figure 4. Runtimes of three matching phases for image pair Cones

Personality is not very suitable for the generation of the
census transform and computation of Hamming distances
Creensus- The C++ template class bitset, which can be
used to generate efficient CPU implementations, hinders any
automatic vectorization.

When coding out the required steps on basic data types
(uint64), the census transform requires a conditional state-
ment to determine if a certain bit is to be set or not. The
compiler is not able to vectorize this statement. Similarly,
when no hardware instruction for popcount can be used,
counting the set bits of a bit string requires a conditional
statement, which prevents automatic vectorization.

On the other hand, the computation of C'4p as well as the
exponential scaling of both cost metrics can automatically be
offloaded to the Vector Personality after some code transfor-
mations. It required splitting of the three color channels of
the image into separate arrays, pragmas specifying the array
dimensions and a pragma to indicate no loop dependencies.

The performance results after partly vectorization of this
phase are disappointing (left part of figure 4), we see a
slowdown compared to the initial single core CPU imple-
mentation. Four aspects contribute to this final slowdown:
the clock frequency difference between CPU and FPGAs,
a less efficient software implementation in order to enable
vectorization, the data transfers between host memory and
FPGA memory, and additional memory accesses, because
we store the computed hamming distances on the host in
order to do the scaling on the FPGAs.

It would be possible to implement the entire phase on
the Vector Personality by using the vector mask registers to
hold the census bit strings. They even support a popcount
instruction to count the bits in order to determine the
hamming distance. Making use of those features of the
vector instruction set, we could again reduce the memory
accesses and data transfers. However, we still can’t expect

such an assembler implementation to be nearly as efficient
as a custom hardware solution for those bit level algorithms
as presented in [12]. Also, it will be nearly impossible to let
the compiler automatically generate this kind of assembler
implementation from source code automatically, so we don’t
expect a high development productivity for this phase with
the approach of automatic vectorization.

B. Cost Aggregation

For the cost aggregation phase, the computation of arm
lengths is hard to vectorize, because the number of steps
for each arm depends on its final length. Since it doesn’t
contribute much to the total runtime of the phase, we leave
it on the host CPU.

The cost aggregation itself is independent for all disparity
levels, which again enables easy OpenMP parallelization.
It runs in horizontal and vertical phases. In the horizontal
phases, each line can be processed independently, in the
vertical phases each column, which we can use for vec-
torization. However the irregular memory access patterns
caused by different arm lengths would prevent any CPU
SIMD acceleration.

In order to achieve automatic vectorization, in addition
to the previously mentioned methods, we added an empty
border region to the cost arrays in order to avoid the control
statements that otherwise need to make sure that no memory
access crosses the array borders. Also we needed to simplify
the array indexing in order to help the vectorizer. However,
after successful vectorization, we were disappointed to again
see a slowdown (middle part of figure 4). The obvious
sources of inefficiency were repeated loads of positions for
outer array dimensions inside the innermost loops. Also,
the loop order is not optimal, since the compiler can only
vectorize innermost loops. However, letting the innermost
loop iterate over the disparity values and vectorizing the
second loop of the loop nest allows reuse of the arm length
values.

Manually writing assembly code that optimizes those two
aspects enabled us to achieve speedups over the original
software version. We also made use of vector register
rotation, which helped to save another vector load in the
inner loop. However, the vector registers are still not fully
utilized by the “Cones” image pair but rather operate on
375 and 450 values for the horizontal and vertical phases
respectively, so higher speedups are possible for better suited
image dimensions.

C. Scanline Optimization

The scanline optimization runs independently for each
set of parallel scanlines. There are two sets of horizontal
and two sets of vertical scanlines, which in the current
implementation limits the speedup potential of OpenMP
parallelization, because for the scanlines that run adjacent
to the array dimensions, cache conflicts lead to slowdowns.

int difference , threshold; //given
int penalty; //to be computed
// variant with condition
if (difference >= threshold)

penalty = cl;
else

penalty = c2;
// equivalent condition free variant
int tmp = difference — threshold;
tmp = min(tmp, 0);
// now tmp==0 for all
tmp = min(—tmp, 1);
// now tmp==1 for all else cases
penalty = (1—tmp) * cl + tmp * c2;

if cases

Listing 2. Example for condition-free penalty

However this could be overcome by creating separate cost
arrays with switched dimensions for two of the scanline
runs. CPU SIMD acceleration for this phase is thinkable,
but would require more drastic changes to the array layouts,
putting elements of parallel scanline groups into the inner-
most dimension of all data structures. It would still require
an additional step for merging of the resulting horizontal and
vertical arrays, which can not be done by CPU SIMD units.

The main obstacles for automatic vectorization were again
conditional statements depending on the scanline direction
and too complex array access patterns, which had to be
solved splitting up arrays and writing a separate function
for each scanline direction. Conditional statements that can
be translated to minimum operations were automatically
resolved by the vectorizer, however the selection of penalty
values required much more effort. Making use of the fact that
the color differences, which determine the penalty values,
can only take discrete values, it was possible to replace the
two comparisons and three conditional statements by a series
of 18 arithmetic and logic instructions that yield the desired
penalty values without masked operations. The pseudocode
in listing 2 illustrates the technique for a simpler example.

This sequence was implemented in assembler and in-
cluded via intrinsic operation. Using the intrinsic and vec-
torizing the remaining C code after a number of additional
transformations again yield slowdowns rather than speedups.
Again, the key optimization technique that we were able to
apply on assembly level was to interchange the loop order,
and optimizing data reuse. Also by using a vector parti-
tioning technique, it was possible to better utilize the vector
registers, since vectorizing only image width or height didn’t
fill the 1024 elements of the vector registers. After these
optimizations, we were able to measure a speedup factor
of 23.2 compared the assembler version on a HC-1 with
scatter-gather RAM to the single core CPU implementation,
which is the highest speedup in this case study. This phase

[| Data Transfer | Computation

Instructions 8 [24

Image Dimensions 450 * 375

Disparity Values 60

Directions 4

Images 2

Total Amount 2.41 GB [1.94 GFLOP

Required Time SG RAM 0.27 s

Throughput 8.93 GB/s 7.16 GFLOPS

% of Theoretical Peak 11.2% 18.7 %

% of Saxpy Kernel SG RAM | 20.2% 97.3 %
Table II

PERFORMANCE ACHIEVED WITH THE ASSEMBLER VERSION OF
SCANLINE OPTIMIZATION

profits most from the scatter-gather RAM with a factor 2.02
over the standard RAM. Though all its memory accesses are
deterministic, they are still very irregular.

In order to evaluate the utilization of the Vector Personal-
ity in this example, we summarize the total size of memory
accesses and total number of floating point vector operations
of the inner kernel loops of the scanline optimization in
table II. We estimate that less than a total of 3% more
memory accesses and floating point vector operations occur
in the outer loops, most of them for computing the penalty
values, and chose to neglect them in these calculations.
After dividing the results by the measured runtimes, we can
compare the resulting performance values to the peak and
measured values from table I. We note that the compute
throughput almost matches that of the simple saxpy kernel.
Due to a higher ratio of computation to memory accesses,
pure bandwidth is much less of an issue in this case, so the
latencies between individual instructions seems to be the
dominant factor for both examples.

When comparing the functionality of our assembler pro-
gram on the Vector Personality to how a custom FPGA
implementation could work, we note that a number of
operations doesn’t require the full floating point arithmetic
units that we use and thus could be implemented more
area efficient and in particular the penalty computation
also faster. So we could instantiate a functional unit for
each step in the assembler programs inner loop and let the
parallel scanlines run through the sequence of functional
units pipelined instead of parallel in lockstep. Overall we
expect that such a design would both reduce the latency of
the pipeline and the used area, which could be used to exploit
more parallelism. Also, since the memory access pattern is
completely deterministic for this phase, all memory opera-
tions could be streamed and connected to the functional units
via buffers, which again reduces the latency of the pipeline.

VI. CONCLUSION

We investigated the Convey platform with the FPGAs
configured with the Vector Personality for its use for a
stereo matching application with abundant parallelism and

different phases with different computational patterns. Not
surprisingly, the possibility to leave non runtime critical
parts of the algorithm on the host CPU and focusing on the
runtime intense part for acceleration significantly facilitated
the development process.

However, the automatic vectorization process in its current
state did not match our expectations, both in terms of effort
and results. The limitations of the vectorizing compiler
required much more effort than just adding pragmas to
the code. In fact, we needed to apply many source code
transformations in order to automatically vectorize at least
some phases of the algorithm. Some of those transformations
have a negative impact on the software performance of
the implementation, so in order to retain the single source
principle and still have good performance for all targets, we
ended up having multiple code paths. Overall, we spend sev-
eral weeks to achieve the presented automatic vectorization
results, not mentioning the assembly optimizations, whereas
we were able to parallelize the entire software version with
OpenMP including refinement steps not covered here in a
single day. To be fair, considerably more time could be
spend on these OpenMP parallelizations to improve scaling
by sophisticated cache tiling strategies.

Comparing the vectorization process with a typical FPGA
tool flow, maybe even done by developers with as limited
background in FPGA design, as we had for developing
with the Convey tools, it still seems reasonable. Coming up
with a good custom FPGA implementation for the presented
algorithm will most likely require even much more time.

Now considering the results, the efforts to enable auto-
matic vectorization were not rewarded by speedups from
automatic vectorization. For some steps like the census
transform, custom circuits on the FPGA are substantially
superior to the configuration of FPGAs as vector processor
anyway. However, manual optimizations to the assembler
code showed that speedups of at least one order of mag-
nitude are possible with the Vector Personality given the
right computational pattern, as seen in the scanline opti-
mization phase. The major limitations of the performance
achieved with automatic vectorization are twofold. Firstly,
the compiler can only vectorize inner loops of loop nests.
However vectorizing outer loops and reusing vector data
in the inner loops can be much more efficient. Secondly
multidimensional array lookups in the inner loops lead to
load operations in the inner loop for each dimension, where
some could be moved to outer dimension. We do believe
that those optimizations could also be applied automatically
by the vectorizing compiler. Also, many time consuming
manual code transformations could be avoided by improving
the compiler and in particular adding support for more
masked vector instructions. If this is done, we think that
the presented workflow could become an alternative to
the highly productive parallelization with OpenMP. Then
the Convey platform would be able to offer the hardware

resources to always use parallelization strategy that is best
suited for the computational pattern.

ACKNOWLEDGMENT

This work was partially supported by the German Re-
search Foundation (DFG) within the Collaborative Research
Centre “On-The-Fly Computing” (SFB 901). The research
leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme under grant
agreement No. 257906.

REFERENCES

[1] vision.middlebury.edu/stereo/.

[2] W. Augustin, V. Heuveline, and J.-P. Weiss. Convey HC-1
hybrid core computer — the potential of FPGAs in numerical
simulation. In Proc. Int. Workshop on New Frontiers in High-
performance and Hardware-aware Computing (HipHaC).
KIT Scientific Publishing, Mar. 2011.

[3] J. D. Bakos. High-performance heterogeneous computing
with the Convey HC-1. Computing in Science and Engi-
neering, 12(6):80-87, Nov. 2010.

[4] F. Bodin and S. Bihan. Heterogeneous multicore parallel
programming for graphics processing units. Scientific Pro-
gramming, 17(4):325-336, Dec. 2009.

[5] T. Brewer. Instruction set innovations for the Convey HC-1
computer. /[EEE Micro, 30(2):70 =79, march-april 2010.

[6] H. Hirschmiiller. Stereo processing by semiglobal matching
and mutual information. [EEE Transactions on Pattern
Analysis and Machine Intelligence, 30(2):328-341, Feb. 2008.

[7] S. Maleki, Y. Gao, M. J. Garzardan, T. Wong, and D. A.
Padua. An evaluation of vectorizing compilers. In Proc. Int.
Conf. on Parallel Architecture and Compilation Techniques,
PACT °’11, pages 372-382, Washington, DC, USA, 2011.
IEEE Computer Society.

[8] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang.
On building an accurate stereo matching system on graphics
hardware. In Proc. ICCV Workshop on GPU in Computer
Vision Applications (GPUCV), 2011.

[9] B. Meyer, J. Schumacher, C. Plessl, and J. Forstner. Convey
vector personalities — FPGA acceleration with an OpenMP-
like programming effort? In Proc. Int. Conf. on Field
Programmable Logic and Applications (FPL), Aug. 2012.

[10] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Int.
Journal on Computer Vision, 47(1-3):7-42, Apr. 2002.

[11] Xilinx. Virtex-5 FPGA XtremeDSP design considerations
user guide, Jan. 2012.

[12] L. Zhang, K. Zhang, T. S. Chang, G. Lafruit, G. K. Kuz-
manov, and D. Verkest. Real-time high-definition stereo
matching on FPGA. In Proc. Int. Symp. on Field-
Programmable Gate Arrays (FPGA), FPGA 11, pages 55—
64, New York, NY, USA, 2011. ACM.

