
Reconfigurable design automation by high-level
exploration

Tim Todman, Wayne Luk
Department of Computing
Imperial College London

London, UK
{timothy.todman, w.luk}@imperial.ac.uk

Abstract—This paper describes a novel approach for de-
sign automation of general-purpose reconfigurable computing
applications, which combines design space exploration with
transformation-based high-level feedback of performance results
obtained from a detailed implementation. This approach en-
hances effectiveness of high-level exploration by using perfor-
mance estimates to guide the selection of applicable transfor-
mations. The impact of the transformations on metrics such as
speed and area is pre-characterised, so that appropriate transfor-
mations likely to contribute to meeting design requirements are
selected. A prototype system supporting this approach has been
developed, and promising results have been obtained.

I. INTRODUCTION

A major challenge for reconfigurable computing is to improve
designer productivity while, ideally, raising the quality of the
implementations at the same time [1], [10]. This challenge is
becoming increasingly acute, since FPGA (Field-programmable
Gate Array) vendors continuously produce larger and more
complex devices which not only require greater effort from
designers to use them efficiently, but also more time for
vendor tools to implement designs on them. Both algorithmic
techniques [3] and architectural techniques [5] have been
reported in addressing this situation.

A well-known method for improving productivity is to
increase the abstraction of the design representation [1]. The
intention is to allow designers to focus on key properties of the
design, ignoring implementation details which can be vendor
specific. The benefits are obvious: designs are simpler so design
cycles can be shorter; implementation details can be taken into
account separately to improve design re-use; there are automatic
ways of optimizing designs by transformation; and it is easier
to specify functional requirements for high-level descriptions,
facilitating development and verification.

One way to automate high-level design exploration and
optimization is to apply successive correctness-preserving
transformations, turning an obvious description into a less
obvious, more efficient one.

A transformation-based approach is attractive, because: (a)
the relationship between designs is made explicit; (b) transfor-
mations allow parameterizing and formalizing optimizations,
facilitating their reuse, automatic application and verification;
(c) it enables designers to work at a higher level, selecting
applicable transformations and sequences of transformations.

Controller

Results
parser

C-to-hardware
compiler

FPGA vendor tools 
(place, route)

C 
source

Apply
Transform

Performance
Estimator

Unparser

AST

AST

RTL 
HDL

Actual 
performance

Estimated
performance

Parser
Optimization
engine

AST

C source

Bitstream, reports

Produce host 
software

Fig. 1. Overview of our prototype, showing two nested loops: inner loop
rapidly explores design space using performance estimator; outer loop uses
external tools to get real performance measurements.

There is, however, one key issue. High-level descriptions
are, by their nature, abstract and may not contain sufficient
information to enable accurate performance estimation. This
inaccuracy in performance estimation could affect the selection
of appropriate transformations to produce a design that meets
the desired performance requirements.

This paper introduces a novel approach, which combines
high-level design exploration and optimization with feedback
of accurate performance information, while making use of
estimation techniques to avoid spending excessive amounts of
time on running FPGA tools.

The contributions of this paper include:
• a transformation-based approach to high-level design

exploration and optimization that uses both estimated
and accurate implementation information to guide the
development process;

• a prototype tool that supports this approach, representing
designs as C programs, optimized by a transformation
engine;

• an evaluation of the proposed approach with an analysis
of the results.

Whilst our prototype tool deals with designs represented as
C programs, the approach is not limited to C and could adapt
to other high-level descriptions such as behavioural VHDL.

The rest of the paper is organized as follows. Section II
reviews related work. Section III provides a high-level overview
of our approach to high-level exploration; Section IV describes
a prototype implementation for FPGA design optimization.
Section V evaluates our prototype system. Finally, section VI
concludes and suggests ideas for future work.



II. BACKGROUND

Related work on improving productivity for reconfigurable
computing can be divided into two classes: those at device
level and those at application level.

At device level, since placement is one of the most time-
consuming stages, there is much research on methods to
accelerate FPGA placement. Techniques based on maximum-
bipartite matching techniques have been explored [3]. In-
cremental methods [13] have also been proposed to reduce
execution time by only placing the parts that are changed.
Another possibility is to parallelize the placement algorithm
to target multiple processors [8]. A complementary approach
is to examine how FPGA architectures themselves can be
developed in a way to reduce execution time of design tools;
an investigation into high-capacity logic block architectures
has been reported [5]. Such techniques are orthogonal to our
work. Unless the implementation time approaches the high-
level transformation time, the benefits of our approach remain.

At application level, recent work suggests that high-level
synthesis tools, such as those based on the C language, can
achieve quality of results similar to manual design [2]. However,
designs still need to be written in a way to allow compilers
and synthesis tools to carry out effective optimization. To
address this issue, techniques and tools have been proposed
to automate the transformation of designs at the source
level [15]; a variety of transformations can be supported,
including syntax-directed transformations and goal-directed
transformations. However, current transformation tools are
driven by performance estimates which may not be accurate and,
as a result, inappropriate transformations can be selected which
would lead to suboptimal designs. The proposed approach
addresses the accuracy issues with performance estimates.
Representing loop transformations using polyhedral models
allows some transformations to be described and combined
mathematically [14]; this could combine with our approach; we
could also work with heuristics for design-space exploration [4].

The need for our approach is reduced if accurate performance
estimates are available. However, current research indicates
that such estimates are only available for resource usage [12]
and power consumption [9] for RTL (Register Transfer Level)
descriptions. While there has also been work on performance
estimation for FPGA-based processors [16], we are not aware
of a general technique capable of rapid performance estimation
with high accuracy for reconfigurable computing designs.

There is also much research in software compiler optimiza-
tion to find an appropriate order of optimizing transformations;
examples use virtual execution [6] and machine learning [7].
However, it is non-trivial to adapt such techniques for general-
purpose reconfigurable computing, since: (a) there is no fixed
instruction-set architecture, and (b) hardware compilation time
is significantly longer than software compilation time.

III. OVERVIEW OF APPROACH

We optimize designs by repeatedly applying high-level trans-
formations to them; here high-level means that (a) the design is
represented in an abstract way that could correspond to many

concrete implementations; (b) the transformations similarly
operate at high-level, rather than on low-level, device-specific
descriptions. Examples of high-level representations include
software source code, behavioural hardware descriptions, or
dataflow graphs for streaming applications.

Our approach contains the following elements:
• a high-level representation of the design to be optimized;
• a transformation engine operating on the high-level

representation;
• a performance model, to rapidly evaluate performance of

the high-level design representation;
• a means of making a detailed implementation, from which

real performance results can be obtained;
• a means of updating the performance model to reflect the

real performance results.
Operating at a high level has important advantages. For

example, pattern matching for applying transformations is easier
as we do not need to factor out or recognise low-level details.
We can also evaluate designs much more rapidly, because there
are no low-level details. Design transformations take seconds
rather than minutes or hours to apply. Conversely, high-level
representations and transformations have disadvantages: they
are abstract, so evaluating design performance and the effects
of transformations is less accurate. Accurate evaluation requires
translating to an implementable representation to measure the
real performance. This can be slow; for FPGAs, implementing
large designs can take hours, even days.

We combine the benefits of high-level representations and
transformations with detailed design performance data obtained
by periodically using detailed implementations. If the detailed
implementation meets the user requirements, the optimization
terminates. If it does not, we update the performance model
to match the real results to the model; some transformations
may be reversed if the performance worsens.

Our approach makes a tradeoff: more frequent detailed
implementations allow more accurate high-level evaluations,
because the model is more frequently updated and compared
to implementation results, but make the overall process slower.

The proposed approach provides a simple but powerful means
of customizing design automation of reconfigurable computing
applications: first, while our approach is general-purpose, it
also works well for high-level application-specific and domain-
specific descriptions.

Second, if there are multiple ways to estimate performance
with trade-offs in estimation speed and estimation accuracy,
designers can choose the best way depending on their particular
need; some would involve a complete implementation, while
others could involve resource estimation tools based on RTL de-
scriptions. Similarly, vendor tools offering fast implementation
allow more frequent detailed implementation. Early outer-loop
iterations can set the vendor tools to use lower effort for faster,
more frequent implementation; later iterations can use higher
effort as the process homes in on the final design.

Finally, designers can focus on organizing design transfor-
mations. Sequences of successful transformations for related
designs can be captured and adapted to for re-use. When



designs are ported to different devices, adjusting device-specific
transformations may suffice for an acceptable solution.

IV. FRAMEWORK PROTOTYPE

We develop a prototype framework implementing our pro-
posed approach. The components implemented are:
• The high-level representation is a program source code

represented as an Abstract Syntax Tree (AST);
• The high-level transformation engine transforms ASTs into

other ASTs, using the ROSE compiler framework [11];
• The performance model uses a syntax-directed model

of a C-to-hardware compiler which, given a C program,
estimates area and speed by linear functions of the
estimated speed and area;

• a strategy decides when to interleave real implementations
using the compiler and FPGA vendor tools with high-level
transformations;

• detailed implementation results are obtained by unparsing
the AST back to C, compiling to hardware, using FPGA
vendor tools to compile to a bitstream and real performance
measurements, which are then mapped back to update the
linear performance model.

The input to our prototype is a C design plus user goals for
speed and area, with the set of transformations; the output is
the optimized C design plus the bit streams from vendor tools.

Figure 1 shows our prototype, with the major components and
the nested-loop: the inner loop rapidly generates new designs
by applying source-to-source transformations, evaluating them
using a performance estimator. The outer loop uses vendor place
and route tools to implement designs on the target hardware.

Our prototype takes a design in the C language, which a
parser translates into an Abstract Syntax Tree (AST). The
optimization process is supervised by a controller, which runs
the two-loop process to try to meet user design goals. In
the inner loop, the controller uses a transformation engine to
generate many designs from the current design, by choosing
from the available set of source-to-source (strictly AST to AST)
transformations and applying them.

To evaluate the performance of generated designs without
placing and route them, we use a performance estimator to
evaluate design performance, such as speed and area. The
performance estimator can use a straightforward approach, for
example a syntax directed depth-first traversal of the AST,
summing all register and operator widths, and recording the
maximum logic depth. To make a performance estimator for a C
to hardware compiler, users write test programs to measure the
cycle time of different operator widths and control structures.
More sophisticated models encompassing, for example, routing
delays can be used, but they would take longer to finish.

Users choose a strategy to decide when to get real imple-
mentation results. Example strategies could include: running a
fixed number of inner loops per outer loop, or ending the inner
loop when the estimated performance improvement crosses a
threshold. The controller chooses the most promising design
from the inner loop to implement on the target hardware. We
use ROSE’s unparser to translate the AST back to C. Next, a

C to hardware compiler translates the C code into a suitable
form for hardware implementation, such as a RTL Hardware
Description Language (HDL) description; suitable compilers
include Xilinx’s AutoPilot [2]. The RTL can be synthesized
by FPGA vendor tools into a bitstream, plus reports detailing
size and area usage of the design.

Finally, the outer loop uses a results parser to read speed
and area results from the place and route reports. We use this
as the actual performance, though our approach could measure
wall-clock execution times, accounting for the data transfer
time, and other effects not captured by the reports.

Given estimates of speed′ and area′, we approximate the
real performance as a linear combination of the estimates:

speed = ks0 + kss × speed′ + kas × area′

area = ka0 + ksa × speed′ + kaa × area′

where ks0, kss, kas, ka0, ksa and kaa are estimation parameters
which model interdependencies between speed and area.

We assume the real performance is a linear function of the
estimates for simplicity, although the actual relation could be
nonlinear for tightly packed designs. Note that the assumed
performance for speed uses both estimates for speed and area;
the rationale is that the performance of large designs will
depend not just on the estimated speed (the logic depth), but
also on the area, due to more routing congestion. Larger area
can alleviate routing, or it can support additional processing,
leading to higher speed. Similarly, the assumed area depends
on the estimated speed as well as the estimated area. These
estimates could extend to other design parameters such as
power and energy consumption.

Initial values of the estimation parameters can come from
previous designs, set by domain or platform experts or otherwise
set to reasonable initial values.

To reconcile the actual performance results with the estimated
speed and area, the controller tries to correlate the real results
with the estimates, using this feedback to generate better
estimates for subsequent estimates. This maps the real results
back to the estimates, to calculate better values of the estimation
parameters, based on linear regression.

This describes one outer loop iteration. Subsequent outer
loops revisit the designs generated by the first outer loop with
better performance estimates, homing in on the final design.
When the design meets user goals, or when a user-specified
time limit is reached, the controller terminates, giving either
a design meeting the optimization goals, or feedback to the
user: designs tried, the number of iterations, and so on. The
user can modify their goals or the inputs to subsequent runs
of the same process.

Our approach is also modular: our transformations could
use other compiler frameworks. We implement our own per-
formance estimator, but could use any performance estimator
with C input. Much of our approach is agnostic to the C to
hardware compiler, if it matches the performance estimator.
Finally, other FPGA vendor tools can be used, if performance
results can be extracted.



Metric S U64 I IP2 IP4 IP8 P4U64

P 1 1 1 2 4 8 4
U 1 64 1 1 1 1 64
LUTs/103 6.65 33.1 6.05 7.36 10.2 14.9 118
FFs/103 7.52 42.7 7.24 9.37 13.7 22.2 155
BRAMs 11 12 14 22 37 61 27
Speed 77.5 74.1 75.1 70.4 68.2 63.9 71.3
PU 1 64 1 2 4 8 256
Bus txns 1 1 W W W W 1
data/txn NW N N N N N N
Area 1 4.98 0.909 1.11 1.53 2.24 17.8
Speedup 1 61.2 0.977 3.16 6.13 11.5 235
Speedup/Area 1 12.3 1.07 2.85 4.01 5.13 13.2

TABLE I
MEDIAN FILTER RESULTS; SPEED IN MHZ; I = INNERONLY, Ux = UNROLL

BY x, S = STRIPMINE, Px = PARALLELIZE BY x, TXN = TRANSACTION.

V. RESULTS

Experimental setup: we use Maxeler’s MaxJava system to
implement designs. MaxJava is a stream compiler, so loop-
carried dependencies must be removed before compiling to
hardware by the transformations: loop unrolling (unrolling
the carrying loop completely); loop tiling (stripmining and
interchange to move dependencies outside the streamed loop)
and Inneronly (implementing only the innermost loop body;
dependencies are carried in software).

Unrolling costs extra hardware, stripmining and innermost
cost extra time, due to the need to replicate the inputs. We apply
other transformations: loop coalescing, loop interchange, loop
unrolling and loop parallelization, represented by C pragmas.

To reduce the size of the design space, we apply the following
heuristic: apply parallelization after other transformations,
keeping most place-and-route times low; we unroll before
parallelization to increase overall parallelization. The strategy
is to run two inner loops per outer loop.

We systematically translate from C to MaxJava designs by
(a) moving all computation to the innermost loop body using
predication and (b) generating counters to implement loop
iteration variables. The Maxeler system parses the output of
the Xilinx FPGA place and route tools, allowing us to extract
the performance information.

Table I shows results for part of the design space, showing
speedup compared to the initial stripmined version (speedup
for hardware parts only), with the Maxeler (2011.3) and Xilinx
(ISE v13.1) tools aiming at a clock speed of 75MHz with high
effort, aiming at a Xilinx Virtex 6. Total parallelism PU is the
unroll factor U multiplied by the parallelization factor P .

We compare both speed and area of the designs, as well as
metrics of speedup, area factor and finally speedup per area,
to measure the area cost-effectiveness of our transformations,
using the stripmined version as a basis for comparison. We
also show the number of bus transactions used and the data
per transaction, measuring the use of the bus. Stripmining and
unrolling use the bus better than inneronly: (one bus transaction
versus W ); unrolling at the expense of area.

Stripmining and Inneronly give roughly the same clockspeed,
despite stripmining having a more complicated control path.

We can see that for median filtering, unrolling and parallelism
both give large speedups, but that unrolling is much more cost-
effective in terms of area than parallelism. Combining unrolling
with speedup gives the fastest design, but it is barely more
cost-effective than unrolling alone. Compared to the stripmined
version, the largest design is about 235 times faster, and 13.2
times more cost-effective.

VI. CONCLUSION

We present a framework for optimizing a design via high-
level design exploration, obtaining accurate performance in-
formation by detailed implementation. The proposed approach
combines fast optimization at high-level with accurate feedback
of performance information to guide the transformation process.
Results show that our approach has led to about 235-times
speedup compared to the original design.

Current and future work includes: (a) parallel optimization,
for example by generating multiple designs as in our approach,
but then placing and routing multiple designs in parallel,
choosing one or more as the basis for the next generation;
(b) more nested loops in the approach (fig 1), running parts of
the place and route tools in their own loops.

Acknowledgements: This work was supported by UK EPSRC, the
European Union Seventh Framework Programme (grant agreement
numbers 248976, 257906 and 287804), Maxeler, and by Xilinx.

REFERENCES

[1] B.E. Nelson et. al. Design productivity for configurable computing. In
Proc. ERSA, pages 57–66, 2008.

[2] Berkeley Design Technology. An independent evaluation of the AutoESL
autopilot high-level synthesis tool. 2010.

[3] H. Bian, A. C. Ling, A. Choong, and J. Zhu. Towards scalable placement
for FPGAs. In Proc. ACM Int. Symp. on FPGAs, pages 147–156, 2010.

[4] C. Silvano et. al. Multicube: Multi-objective design space exploration
of multi-core architectures. In 2010 IEEE Computer Society Annual
Symposium on VLSI, pages 488 –493, July 2010.

[5] S. Chin and S. Wilton. Towards scalable FPGA CAD through architecture.
In Proc. ACM Int. Symp. on FPGAs, pages 143–152, 2011.

[6] K. Cooper et al. ACME: Adaptive compilation made efficient. In Proc.
LCTES, pages 69–77, 2005.

[7] Grigori Fursin et. al. Milepost GCC: Machine learning enabled self-
tuning compiler. Int. Jnl. of Parallel Programming, 39:296–327, 2011.

[8] A. Ludwin, V. Betz, and K. Padalia. High-quality, deterministic parallel
placement for FPGAs on commodity hardware. In Proc. ACM Int. Symp.
on FPGAs, pages 14–23, 2008.

[9] P. Schumacher et. al. Fast RTL power estimation for FPGA designs. In
Proc. FPL, 2011.

[10] S. Merchant et al. Strategic challenges for application development
productivity in reconfigurable computing. In Proc. National Aerospace
and Electronics Conference (NAECON), 2008.

[11] M. Schordan and D. Quinlan. A source-to-source architecture for user-
defined optimizations. In Proc. Modular Programming Languages, LNCS
2789, pages 214–223. Springer, 2003.

[12] P. Schumacher and P. Jha. Fast and accurate resource estimation of
RTL-based designs targeting FPGAs. In Proc. FPL, pages 59–64, 2008.

[13] D. Singh and S. Brown. Incremental placement for layout driven
optimizations on FPGAs. In Proc. Int. Conf. on CAD, pages 752–759,
2002.

[14] Steven Derrien et al. High-level synthesis of loops using the polyhedral
model. In High-level synthesis, pages 215–230. Springer, 2008.

[15] T. Todman, Q. Liu, W. Luk, and G. Constantinides. Customizable
composition and parameterization of hardware design transformations.
In Proc. DSD, pages 595–602, 2010.

[16] L. Yan, S. Lam, and T. Srikanthan. Performance estimation framework
for FPGA-based processors. In Proc. Int. Conf. on Field-Programmable
Technology, 2010.


