
VERIFICATION OF STREAMING DESIGNS BY COMBINING SYMBOLIC SIMULATION
AND EQUIVALENCE CHECKING

Tim Todman, Wayne Luk

Department of Computing
Imperial College London

180 Queen’s Gate
London

email: timothy.todman@imperial.ac.uk, w.luk@imperial.ac.uk

ABSTRACT
As design complexity grows, verification becomes a bottle-
neck in design development and implementation. This pa-
per describes a novel approach for verifying reconfigurable
streaming designs, based on symbolic simulation and equiva-
lence checking. Compared with numerical simulation, sym-
bolic simulation provides a more informative way of showing
a design behaved as expected; equivalence checking enables
automatic checking of equivalence of symbolic expressions.
Our approach has been implemented for designs targeting
Maxeler technologies, using an easy-to-use symbolic simu-
lator and the Yices equivalence checker, together with other
facilities such as an output combiner to support an automated
verification flow. Several benchmarks including, including
one-dimensional convolution and finite difference computa-
tion, are used to evaluate the proposed approach.

1. INTRODUCTION

In recent years, Field-Programmable Gate Arrays (FPGAs)
have continued to increase in size, and in some applications
have started to replace fixed-function devices like application-
specific integrated circuits. Researchers have also used FP-
GAs in reconfigurable computing applications, where they
have proved competitive with both general purpose proces-
sors and graphics processing units. This increase in use
of FPGAs has led to research into different approaches to
programming them. The approaches include:

• Traditional hardware description languages (HDLs)
like VHDL and Verilog, which have good vendor and
third party support, but lead to large, complex designs;

• C-like approaches, which try to allow software-style
programming of FPGAs. Commercial approaches in-
clude Catapult-C, AutoESL, and Handel-C;

• Streaming approaches, which have advantages includ-
ing the natural expression of many traditional reconfig-

urable computing applications, and naturally pipelined
designs. Academic approaches include ROCCC [1],
while commercial approaches include Maxeler’s Max-
Compiler [2], which uses a custom Java subset over-
loaded with hardware-specific types and operations to
compactly describe streaming kernels.

Streaming approaches can improve productivity, but the
key challenge remains verification: how to ensure that opti-
mized designs preserve the original design’s behaviour.

Traditional approaches to verification simulate the refer-
ence and optimized designs with a set of test inputs, com-
paring the outputs. This approach works well, but the test
inputs must cover all aspects of the design’s behaviour, and
can be very large for designs with many possible inputs. For
example, it would be infeasible to simulate all input pairs
of a 64-bit multiplier. There is always a danger that the test
inputs do not cover all the cases, or that the output is only
coincidentally correct.

Rather than relying on numerical or logical simulation,
our approach combines symbolic simulation with equiva-
lence checking. Symbolic simulation applies symbols rather
than numbers or logic values to the design, the outputs being
functions of these symbolic inputs. For example, symboli-
cally simulating an adder with inputs a and b might result in
a+ b. However, for larger designs it is harder to distinguish
different but equivalent outputs (b+ a instead of a+ b) from
incorrect ones. The equivalence checker tests whether or not
the outputs of transformed designs are equivalent to those of
the reference design.

Our approach has the advantages that:

• We simulate and validate word-level designs, assuming
that arithmetic operations have already been validated
by other techniques, with the advantage that any mis-
matches between source and target are found at word
level, rather than at bit level, which can be hard to read
for application designers;



• Symbolic simulation means users need not worry about
covering full input and output ranges, as with numeri-
cal simulation;

• The equivalence checker automatically compares sym-
bolic input and output to ensure the optimized design
preserves the behaviour. Unlike numerical simulation,
it can reject false negatives due to different but equiv-
alent output that would differ using simple-minded
numerical comparison;

• The user can still use numerical simulation to (a) com-
pare with other simulators, such as those from FPGA
vendor tools, those from higher-level tools such as
Maxeler’s MaxCompiler simulator, or results of soft-
ware implementing the same design, (b) simulate only
part of design symbolically to eliminate data-dependent
values, allowing application to larger problems, or to
isolate problematic corner cases.

This work makes the following contributions:

• We develop an approach for verification of stream-
ing designs by combining symbolic simulation with
equivalence checking;

• We implement our approach for Maxeler designs us-
ing our symbolic simulator and Yices as an equiva-
lence checker, using a compile scheme to translate the
symbolic simulator output into universally quantified
expressions for Yices;

• We evaluate our approach on several benchmarks in-
cluding 1D convolution, and reverse time migration,
which is based on finite difference computation.

The paper is structured as follows. The next section
presents related work. Section 3 gives an overview of our
approach, showing how we verify streaming designs on re-
configurable hardware. Section 4 implements our approach
for Maxeler kernel designs, while section 5 gives results
and evaluates our approach on several benchmarks. Finally,
section 6 concludes and gives ideas for future work.

2. RELATED WORK

Partly thanks to some well-publicised bugs in widely used
hardware [3], formal verification of hardware designs has
received both academic and industrial attention. Industrial
tools include the Formality [4] equivalence checker, which
works with existing hardware flows to ensure the equiva-
lence of register-transfer level designs with optimized and
synthesized netlists.

Academic approaches include the work of Singh and
Lilleroth [5], who verify the equivalence of FPGA cores
using a model checker, and give some ideas for run-time

verification by running the model checker at run-time, which
is necessarily restricted to small designs such as adders. Su-
santo and Melham [6] verify run-time reconfigurable opti-
mizations such as partial evaluation using a theorem prover.

Other researchers have considered verification of proper-
ties of discrete event systems (such as freedom from dead-
lock) by model checking [7], verifying programs running
on FPGA-based soft processors [8], verifying declarative
parameterized hardware designs with placement information
using higher-order logic [9] and verifying that hardware re-
quested at run time implements a particular function using
the concept of proof-carrying code [10, 11].

Our approach resembles work on design validation of
imaging operations using symbolic simulation and equiva-
lence checking [12]. This work embeds a subset of a C-like
language for FPGA design into a theorem prover, using sym-
bolic simulation and an equivalence checker to verify the cor-
rectness of transformed designs. Unlike that work, we verify
optimizations of streaming designs, with our implementation
using Maxeler’s MaxCompiler. This means that we must
take care to preserve the order of inputs to and outputs from
the design. Because Maxeler designs are effectively imple-
mented as Java programs, they allow for metaprogramming
using the full power of that programming language. Unlike
previous work on verifying other design inputs, we must
allow for this in our verification.

3. OVERVIEW OF APPROACH

We now give a high-level overview of our approach, showing
how an optimized design is verified by comparing it with
a reference design using symbolic simulation and equiva-
lence checking. Whilst our approach is implemented for
Maxeler designs using a particular symbolic simulator and
equivalence checker, the same approach could apply to other
design inputs such as C-like languages, and to other symbolic
simulators and equivalence checkers.

The core of our approach is to compile a high-level design
description to a form that can be processed by a symbolic
simulator. The symbolic simulator applies symbolic inputs
to the design, resulting in symbolic outputs. Finally, we use
a checker to ensure symbolic output is equivalent to original.

Fig. 1 shows our approach, where a reference design (the
source) is used to compare with an optimized, transformed
design (the target), in four phases:

1. Design optimization: users apply various optimizations
manually or automatically [13] to transform a source
design to a target, optimized design;

2. Compilation for simulation: a compiler compiles both
source and target designs into input for a symbolic
simulator;
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Fig. 1. Abstract verification design flow.

3. Symbolic simulation: a symbolic simulator applies the
same set of symbolic inputs to both source and target
designs, yielding symbolic outputs for both;

4. Validation: a checker compares the outputs of source
and target designs, resulting in either success (source
and target designs match), or failure, with a counterex-
ample showing why the designs are not equivalent.

We assume designers optimize their design by starting
with a straightforward, but perhaps less optimal design, and
optimizing by applying successive transformations to opti-
mize various aspects of the design; the space of transformed
designs forms a tree rooted at the straightforward design.

The user only needs to verify the final design against the
straightforward design as a reference. If the designs are not
equivalent, the user can track down which transformation
caused the error by validating intermediate designs, perhaps
by manually using an algorithm such as binary search, al-
though we do not expect the transformation space to be large.

Finally, validation can result in a counterexample if the
designs are not equivalent; this can be used by the designer
to debug the optimization sequence, showing which part of
the optimized design is not equivalent to the source.

Note that our abstract approach is highly general and can
apply to any sort of input design or any optimization that can
be expressed as a transformation. While we apply our ap-
proach to streaming reconfigurable hardware designs in this
paper, the same approach could be used to validate software
designs, hardware designs in other languages, and so on. It
could also be used to validate the compilation of one lan-
guage into another, for example comparing a source design
in a software language such as C with the target design being
the output of a compiler, for example a VHDL design if we
are validating a C to VHDL compiler. If the source and target
designs are in different design descriptions, the approach
must use different compilers to compile to symbolic simula-
tion, but the abstract approach is otherwise unchanged. This
could also be extended to have multiple design descriptions

in the source and target, for example having control logic de-
fined in a tool such as Catapult-C, while the high-throughput
datapath is described in a tool such as MaxCompiler or a
conventional HDL like Verilog.

Our approach is also not limited to one validation tech-
nique. While we implement and evaluate our approach us-
ing an equivalence checker, other techniques such as model
checkers could also be used.

This section introduces our abstract approach to validat-
ing optimized designs. The next section shows how we apply
this general, abstract approach to the specific problem of
validating streaming reconfigurable designs.

4. IMPLEMENTATION: MAXELER TARGETS

We implement our approach for Maxeler MaxCompiler ker-
nel designs that support streaming computation. These are
effectively dataflow graphs which the user constructs pro-
grammatically using Maxeler’s custom extensions to the Java
programming language.

Our implementation comprises:

• a compiler from a subset of Maxeler’s MaxJ kernel
description language to symbolic simulator input. The
compiler includes an interpreter for a subset of Java
to evaluate (unroll) any compile-time loops and condi-
tionals used for metaprogramming. The compiler then
evaluates the design to build a dataflow graph (DFG)
and compiles the DFG into symbolic simulator input.

• a symbolic simulator based on the Rebecca system [14],
which can simulate bit-level and word-level designs,
and combine symbolic, numeric and logical inputs and
outputs;

• an output combiner, which compiles symbolic outputs
from source and target designs into a single design in
the Yices format, using universal quantified variables
to represent symbolic values;

• the Yices [15] SMT (Satisfiability Modulo Theories)
solver [15], used as an equivalence checker, to check
whether symbolic expressions, which may be struc-
turally different, are semantically equivalent.

All tools except Yices are written or modified by us.
Because Maxeler’s MaxCompiler allows use of the full

power of the Java language to metaprogram designs (particu-
larly loops and iteration statements), we choose to interpret
any metaprogramming features in the designs before com-
piling to the symbolic simulation. While it would be more
general to try to validate the designs without interpreting
the metaprogramming features, this requires a more general
logic system and more user intervention [9].



For symbolic simulation, we extend the Rebecca sym-
bolic simulator [16], rather than implement our own simula-
tor or use another implementation. This simulator has several
advantages: (a) it supports both word-level and bit-level de-
signs, meaning that our approach could extend to bit-level
designs in future; (b) there are already several tools which
compile other design inputs into the same simulator, exam-
ples including the Ruby language and the Pebble hardware
description language, which is effectively a structural subset
of VHDL, meaning our approach could extend to include
hardware cores written in other design inputs in future.

Previous work has used the ACL2 theorem prover for
simulation [12]. Whilst powerful, ACL2 is a large, complex
system which would be difficult to integrate with our other
tools. In contrast, our simulator is simple but modular, and
can be customised to support (i) new processing elements,
as long as their behaviour can be described numerically and
symbolically; (ii) new simulator functions, such as converting
between bit-level and word-level representations; (iii) new
target description formats such as VHDL, as well as formats
required by other tools such as Yices.

Moreover, the simulator can itself include optimizations
(such as simple code simplification) which can be validated
by an independent checker; the simplified output can ease
the equivalence checking in the next step, potentially allow-
ing larger designs to be verified. Since the same internal
representation generates the netlist for multiple targets, a
single design description can be used for both verification
and synthesis, reducing design effort and ensuring that what
is synthesized is what was verified.

We use the Yices SMT solver [15] to verify the equiv-
alence of source and target designs. We choose Yices for
several reasons. First, because its concept of function theory
allows us to implement array and memory updates as updates
to functions; this sometimes allows us to compare the out-
puts of original and transformed designs without needing to
reorder them, which can save time and eliminate possible
bugs in the reordering.

Second, Yices allows checking of designs at word-level,
rather than bit-level, and supports linear arithmetic on inte-
gers and reals. We make the tradeoff: rather than checking
every bit of the design, we assume that the operator imple-
mentations are correct (perhaps verified by other approaches,
such as Singh and Lilleroth [5]), and check the arithmetic at
word level. This potentially allows much larger designs to
be checked but relies on correct operator implementations.
Since such operator implementations are very heavily tested,
and can be verified by other means, we feel this is a reason-
able compromise.

Example: we illustrate comparing unrolled and rolling-
sum versions of a one-dimensional moving average kernel.
The following is a basic MaxCompiler kernel implementation
(for clarity, we only show the kernel core without surrounding

declarations; line numbers are not part of the code):

1:HWVar x = io.input("x", scalarType);
2:HWVar sum = constant.var(scalarType, 0);
3:for (int i = 0; i < W; i++)
4: sum += stream.offset(x, -i);
5:io.output("z", sum / W, scalarType);

Respectively: line 1 declares a stream input named x;
the type scalarType is parameterizable, in our example it
is single-precision floating point, lines 3-4 implement the
summation, summing the current stream input with previous
ones using stream offsets and line 5 outputs the sum divided
by the window size W to an output stream named z.

Note that the loop in lines 3-4 runs at compile time, ef-
fectively unrolling the summation and resulting in W adders
in total. We compare this design with one implemented as a
rolling sum, which saves W − 2 additions by saving partial
sum results between outputs:

1:HWVar inp1=io.input("x",scalarType);
2:HWVar temp=scalarType.newInstance(this);
3:HWVar sum=temp+inp1;
4:temp <== stream.offset(sum,-1);
5:HWVar temp2=sum-stream.offset(sum,-(W+1));
6:io.output("z",temp2 / W,scalarType);

where respectively: line 1 is as before, line 2 creates an
unconnected graph node which will be used for feedback,
line 3 adds the current input to the rolling sum, line 4 connects
the sum result back to the unconnected node, line 5 subtracts
the input from W + 1 cycles previously, line 6 is as before.

Our compiler translates this into the following simulator
input, for window width W = 3:

1: D 0 .2 .3
2: D 0 .1 .2
3: add <.3,.2> .4
4: add <.4,.1> .5
5: div <.5,3> .7
6:Directions - in ˜ out
7:Wiring - .1 ˜ .7

where nodes are numbered, so .1 is node 1, and each line
comprises the name of a simulator primitive and its input
and output nodes, for example D 0 .2 .3 is a register
with input node 2, output node 3. Respectively: lines 1-2
implement a register chain to implement the stream offsets,
lines 3-4 implement the unrolled adder tree, line 5 divides by
constant 3, and lines 6-7 give the external connections, input
x and output z compiled into nodes 1 and 7 respectively.

To simulate symbolically, we generate symbols to apply
to the inputs. We let the user decide how many cycles to
simulate; for Maxeler designs controlled by counters, the
design should be simulated for the total number of counter
states. Simulation results are as follows:



0 - a_0 ˜ ((0 + a_0) / 3)
1 - a_1 ˜ (((0 + a_0) + a_1) / 3)
2 - a_2 ˜ (((a_0 + a_1) + a_2) / 3)

This shows three cycles of symbolic output for symbolic
input stream a_0, a_1, a_2.

Finally, our output combining tool compiles the source
and target symbolic simulation outputs into input for the
equivalence checker. For our simple example, this looks like
(window width W = 3):

1: (echo "1: ")
2: (assert (forall (a_0::int)

(=(/(+ 0 a_0)3) (/(-(+ 0 a_0)0)3))))
3: (check)

where each simulation clock cycle gives rise to three state-
ments: an echo statement, which prints the clock cycle, an as-
sert statement, which declares symbolic variables used in the
statement and compares the output expressions, and a check
statement, which checks the previous statement for equiva-
lence. Note that the language uses Lisp-style s-expressions,
so each expression is enclosed by brackets and contains the
operator and its operands in sequence, thus a0 + a1 becomes
(+a0a1).

Our compile scheme to translate symbolic expressions
into Yices input works by translating: 1. symbolic values to
universally-quantified variables; 2. uninitialized values into
uniquely-named new variables, which may help the user to
locate the source of any mismatch; 3. corresponding symbolic
outputs into a Yices statement asserting their equality.

The assert statement uses a universal quantifier forall
to compare output expressions from the source and target
designs, which are the first and second operands of the ’=’
operator, respectively. Without the universal quantifier, the
SMT solver will try to guess values for symbols, which
can lead to different expressions being wrongly found to be
equivalent. Sample output is:

1: sat
2: sat

For each cycle, the equivalence checker output can be:
(a) sat, meaning the source and target designs match, (b)
unknown, meaning the checker could not tell if the designs
matched, and (c) unsat, meaning the outputs definitely do not
match. If the output is sat for all cycles, the source and target
designs have been successfully verified as equivalent. The
unknown case may indicate that the problem is too large for
the equivalence checker, meaning the user should try to prove
corresponding parts of the design equivalent instead. In the
unsat case, the user can examine the symbolic expressions to
aid in debugging the design.

Because different designs may have different startup la-
tencies (cycles to remove uninitialized data from the pipeline),

or run at different rates, the output combiner can be parame-
terized to skip (a) a set number of offset (startup) cycles, and
(b) every n cycles, where n >= 1.

5. RESULTS AND EVALUATION

We evaluate our approach by applying it to several bench-
marks, including one dimensional convolution and finite dif-
ference computation. Transformations applied include:

• loop unrolling: the simplest way to deal with loop-
carried dependences in streaming designs, leading to a
large design area;

• rolling sums: reduce area and latency by saving partial
sum results;

• multi-cycle feedback: a simple way to deal with loop-
carried dependences

Experimental setup: we use Maxeler MaxCompiler 2011.3.1
and Xilinx ISE 13.3 to implement our designs as Maxeler
kernels; verification uses our symbolic simulator compiler
and output combiner, Rebecca 0.1 and Yices 1.0.34. Maxeler
kernels require that all loop-carried dependences be resolved
by the user, so we choose the simplest design which resolves
the dependences as a reference: multi-cycle feedback.

1D Convolution: table 1 summarizes the designs verified.
We see that the rolling sum design has the highest clock speed
but a low throughput compared to the unrolled version, while
the multicycle has lowest area but lowest throughput.

Reverse time migration (RTM): we implement a simpli-
fied core of the RTM algorithm, which iterates over a discrete
grid, summing corresponding neighbours of a grid element
along each axis. We verify that for a 1D implementation,
both unrolled (fig. 2) and rolling sum versions are symboli-
cally equivalent. Because the rolling sum needs to be primed,
we offset that version by the number of cycles to prime. The
result shows that the unrolled and rolling sum versions are
verified as equivalent.

6. CONCLUSION

This paper describes a novel approach to verifying the equiv-
alence of streaming designs on reconfigurable hardware by
combining symbolic simulation and equivalence checking.

Future work includes extending our system to include bit-
level designs, which would eliminate any errors in translating
from word level to bit level, or allow the user to verify part
of their design at word level, part at bit level, concentrating
the greater computational demands of bit-level verification
on problematic parts of their design. Also, our approach
only compares two designs, but if designs are optimized by
transformation, there are potentially many designs that can be



Design Verification time Code size Area Area Speed Latency Throughput
(s) (lines) (% LUTs) (% FFs) (MHz) (cycles) (results/cycle)

Unroll < 1 32 4.07 2.53 69.5 WL 1
Rolling Sum < 1 41 2.14 1.26 77.0 L 1/L
Multicycle < 1 48 2.00 1.19 75.3 WL 1/(WL)
Loop tile < 1 71 2.27 1.33 55.9 L 1

Table 1. Results for verifying 1D convolution targeting Xilinx Virtex-6 SX475T FPGA: W is the window width, L is the
latency of one adder, speed and area results for W = 16, single-precision floating point data.
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Fig. 2. Dataflow graph from reverse time migration.

compared. Verifying multiple, related, designs at once could
lead to faster verification than verifying each in turn versus
the reference design, as some components of the transformed
designs will be identical. Another direction of research is to
integrate the proposed approach with complementary previ-
ous work, such as those based on designs with explicit layout
directives [9].
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