
Verification of streaming hardware and software
codesigns

Tim Todman, Peter Boehm, Wayne Luk
Department of Computing, Imperial College London, UK

timothy.todman@imperial.ac.uk

Abstract—We present an approach to verifying the codesign of
software and hardware. Our approach verifies that a reference
design, perhaps a straightforward software implementation, is
equivalent to a design combining software and reconfigurable
hardware, possibly using runtime reconfiguration. Our approach
combines symbolic simulation with equivalence checking to
compare symbolic output expressions. Whilst our implementation
uses C-style software and streaming hardware based on Maxeler
designs, our approach is modular and could generalize to other
software or hardware inputs. We evaluate our approach by ap-
plying it to several kernels, including one used for geoengineering.

I. INTRODUCTION

To meet demanding application requirements, designers in-
creasingly choose complex systems combining hardware and
software, the idea being to combine the performance and power-
efficiency of dedicated hardware with the flexibility of software.
Software parts may be easier to develop and rewrite, while
dedicated hardware is usually faster and often more power-
efficient. This combination may occur at board level, or within
a single device such as a system-on-chip (SoC), which may
combine custom and standard hardware and software.

Additionally, designers may use reconfigurable hardware,
which blends hardware efficiency with software flexibility,
but adds to the design complexity, particularly if using run-
time reconfiguration (RTR), which allows large designs to
fit onto smaller reconfigurable hardware, or reduces power
requirements by replacing complex variable-input elements,
such as multipliers, with more efficient constant-input elements.

While complex systems with multiple software and hardware
elements can meet application demands, their very complexity
makes them hard to design and debug. Traditionally, such
systems are tested by extensive simulation with test inputs;
however, it is well-known that the complexity of today’s
systems makes exhaustive simulation infeasible.

Therefore, formal methods and verification are often used
to complement simulation and testing, especially in safety
critical application areas. The formal verification of hardware
and software are both well-studied fields with long histories
in academic research going back at least to Hoare [1],
Floyd [2], and Dijkstra [3]. Traditionally hardware and software
verification research are separate; different challenges result
from the complexity of Boolean algebra (for hardware) and the
undecidability and non-deterministic concurrency of software.

However, for embedded systems or SoCs, for example,
verifying hardware and software independently may not be
helpful: hardware without low-level software may simply
be non-functional, while low-level software may depend on
underlying hardware so crucially that a hardware abstraction
is insufficient to specify the software’s intended behaviour.
Thus, these systems usually have to be considered as hard-
ware/software codesigns and methodologies for their formal
verification is still an open research challenge.

Recent work [4] verifies FPGA-based streaming hardware
by combining symbolic simulation with equivalence checking.
However, when considering a software and runtime recon-
figuration, new verification challenges arise: (i) modelling
reconfiguration is a non-trivial and may significant increase
the complexity of the formal model as many possible configu-
rations may have to be considered; (ii) the interface between
hardware and software may be subject to change because of
reconfiguration, amplifying the problems.

We propose a methodology to verify the equivalence of
combined software and runtime reconfigurable hardware with
golden reference software. Our approach could extend to
compare a design with a specification; we do not implement
this since designers often have a software version, not a speci-
fication. Our work makes the following main contributions:

• an abstract approach allowing verification of both hard-
ware and software designs, including hardware-software
codesigns and runtime reconfiguration;

• a prototype implementation for verifying designs combin-
ing C software and Maxeler streaming hardware;

• case studies demonstrating the flexibility and the usability
of the approach and prototype, including reverse time
migration, a computationally-intensive finite difference
computation from the geoengineering application domain.

To the best of our knowledge, this is the first effort verifying
the compliance of runtime reconfigurable hardware/software
codesigns with a software specification. The automation of our
approach and the integration of well-established tools into the
prototype highlight the applicability of our work.

The rest of this paper is organized as follows: the next
section details related work. Section III shows our abstract
approach to verifying software and reconfigurable hardware,
while section IV shows a prototype implementation targeting
reconfigurable codesigns of C software and Maxeler hardware

978-1-4673-2845-6/12/$31.00 c© 2012 IEEE

Source

Equivalent?Equivalent Counter-example

Checker

Symbolic simulator

Compiler

TargetTransformations

Symbolic input

Output (from source) Output (from target)

Source Target

Yes No

Compile to
simulation

Design
optimization

Symbolic
simulation

Validation

Source Target

Fig. 1. Abstract verification design flow.

descriptions; section V evaluates our approach on several case
studies. Section VI concludes and discusses future work.

II. BACKGROUND

There is rich literature on software verification and on system-
level specification of hardware/low-level software designs using
high-level languages. Ball [5], Clarke et al. [6], and Lahiri
et al. [7] present verification approaches for software combining
predicate abstraction [8] and model checking [9] which have
proven successful for verifying C programs. Several tools based
on a abstract-check-refine paradigm [10] such as SLAM [11]
or CBMC [12] have shown great results.

Domain specific variations of general-purpose languages
such as SystemC have gained popularity for specifying systems
with hardware and software parts. Existing work on SystemC
verification includes: Habibi and Tahar [13] on design and
verification of SystemC models at transaction level; Kroening
and Sharygina [14] explore a verification approach based on
automatic partitioning of hardware and software; Vardi [15]
discusses formal techniques for SystemC verification.

Language-independent approaches to codesign verification
have been studied, among others, by Chiodo et al. [16]. Their
approach is based on communicating finite state machine (FSM)
models and hardware/software synthesis. While FSMs are well
suited for formal correctness argumentation, using them for
specifying large complex systems can be hard, error-prone task.
Edwards et al. [17] and Baleani et al. [18] present extensions
and enhancements to that work which also consider FPGAs.

Other FPGA-related verification efforts include work by
Singh and Lilleroth [19]. The authors verify the equivalence
of FPGA cores using a model checker, and outline their initial
ideas for runtime verification using a model checker at run-
time. This approach is heavily performance limited and only
applicable to simple components.

Our approach resembles work on design validation of
imaging operations using symbolic simulation and equivalence
checking [20]. However, we target streaming Maxeler hardware
instead of Handel-C, we use our own symbolic simulator rather
than ACL2, and we support runtime reconfiguration.

III. HARDWARE AND SOFTWARE VERIFICATION

Figure 1 shows our general verification flow. We refer to the
reference model as source model and to the optimised model,

which is being checked for equivalence, as target model. Either
design could be software, hardware, or a combination.

Given source and target designs, our approach has four
modular phases: (i) Design Translation: source and target
designs are translated to an intermediate representation, keeping
application/input-specific parts as small as possible. (ii) Sym-
bolic Simulation: both designs are executed symbolically using
the same inputs using a symbolic simulator for our intermediate
language. (iii) Output Combination: to support weaker notions
of equivalence than strict bisimulation-equivalence, such as
stutter-equivalence, we pre-process the two output traces of the
symbolic simulator in an output combiner before passing to the
equivalence checker. (iv) Validation: an equivalence checker
compares the symbolic outputs from source and target designs.
The result is either successful verification, or a counterexample
with symbolic inputs leading to different outputs.
Partitioning the workflow in these four steps, keeping the design
translation small and straightforward, increases the modularity
and generality of the approach. While we target C software and
Maxeler hardware, the system can extend to other hardware
input languages, such as Verilog.

To handle large systems, we model at word level. This limits
the state-space explosion problem, but assumes correct operator
implementations. We can still use bit-level correctness results
for components in our system using a modular verification
approach as operator implementations are combinatorial.

Our approach has some restrictions, which can be mitigated:
(i) we assume synchronous hardware with one global clock;
(ii) some data such as array sizes must be numeric, not
symbolic; (iii) data-dependent control flow can still cause state-
space explosion. Using numeric values for data that cannot
be abstracted to symbolic values rarely poses a problem in
practice: for example there is only a limited set of useful image
sizes which need to be verified. Data-dependent control flows
can be addressed by verifying different modes separately.

Finally, our approach can symbolically compare hardware
and software implementations of same algorithm—often the
translation between the two is a source of bugs.

A. The Model for Codesign

Our model for software-hardware codesign is a software host
with an application programming interface (API) for loading
and running streaming hardware designs. Our model and the
API calls are synchronous, meaning that the software halts
until the hardware returns. While this limits parallelism, this
can verify simple hardware-software partitioning which may
help to eliminate some bugs in a more general, asynchronous
design (here asynchronous means the hardware and software
run in parallel). The API contains the following calls: (i) load:
loads a streaming hardware design compiled with our hardware
compiler; (ii) run: runs a previously-loaded hardware design
for a given numeric cycle count, with one or more input or
output arrays, which must match stream inputs and outputs on
the hardware design; (iii) set_scalar: sets a scalar hardware
input to a given value, which will apply to the hardware design
on the next call to run.

C1 C2 C1

C1

C2

control

cycles

1

0
1 1

0 0

config-
urationcontrol

(a) (b)

Fig. 2. (a) two mutually-exclusive configurations connected by a multiplexer
(VMUX)-demultiplixer (VDMUX) pair; (b) Timing of reconfiguration modelled
by virtual multiplexers; when the control line of the multiplexer-demultiplexer
pair changes, the corresponding design is configured on the same cycle.

B. Runtime Reconfiguration

We extend our approach to support run-time reconfiguration
by adding to our API a call that allows the user to load
multiple streaming hardware designs and switch between them
by writing to a particular scalar input. Our approach compiles
reconfiguration to symbolic simulation using the concept of
virtual multiplexers to represent different configurations [21].

Figure 2 shows (a) how mutually exclusive configurations
are bracketed by virtual multiplexer-demultiplexer pairs, and
(b) the timing of our reconfiguration model.

IV. PROTOTYPE SYSTEM

We implement our approach for two design inputs: C software
and Maxeler hardware; To verify software-hardware codesign,
the source design is a C program, and the target design is a C
program driving a Maxeler hardware design. The approach is
not resticted to this scenario; other combinations of software
and hardware could be used as source and target designs.

In our prototype, compilation to hardware happens in two
phases: first the design is interpreted to compile away any
metaprogramming features, such as conditional compilation
(for C) or arbitrary Java programs which, when run, produce
the final design (for Maxeler hardware). Our compiler then
compiles into design input for our symbolic simulator.

Next, the user applies symbolic inputs to the design;
the user can define these manually, or the simulator can
automatically generate symbolic inputs based on a template.
Our output combiner translates both symbolic outputs for
the Yices SMT (Satisfiability Modulo Theories) solver [22],
which checks whether symbolic output expressions are actually
equivalent. Since different implementations may produce the
same output on different cycles, or at different rates, the user
can parameterize the output combiner to ignore some initial
cycles (allowing different startup latencies), or to filter some
results from either input (allowing different rates).

A. The Software Input Language

Our approach allows software designs to be described in a
C-like language with restrictions: there is no standard library
and no dynamic memory allocation; such restrictions allow
useful software from some application domains, such as
embedded software or digital signal processing, to be verified.
We could allow dynamic memory allocation, but with numeric
allocation sizes only. We extend C with a write statement and
read expression to respectively allow symbolic inputs to and

outputs from the design. Practical implementations could extend
existing C input/output facilities to symbolic input/output.

Our approach compiles from software to symbolic simulation
using a syntax-directed scheme, translating expressions to
combinatorial hardware and statements to a one-hot encoded
state machine. This means the simulation is effectively sched-
uled, with one assignment statement per simulation cycle, but
makes it easy for the designer to calculate when the outputs
corresponding to a symbolic input will emerge.

B. The Hardware Input Language
Our hardware design description is a simplified version of
the Maxeler MaxJ streaming hardware description language,
which allows the user to describe streaming hardware designs
as Java programs written using their Java class library and
Java language extensions. When run, the program builds the
dataflow graph of the streaming design, compiles the graph into
a HDL (Hardware Description Language) implementation, and
calls FPGA vendor tools to compile the HDL into a bitstream.

The streaming hardware design consists of a data path
reading from one or more stream inputs, and writing to one or
more stream outputs, one per cycle. Scalar inputs are set once
per run of the stream and are constant for each run. A control
path controls the design.

Our hardware input language comprises the data path of a
Maxeler description, plus the control path using counters; there
are restrictions: the control path is not symbolic, and models
numeric counters only. This means the verification can cover
all numeric states but that if the bounds of the counters are set
at compile time, the design must be verified for each parameter
value. We do not currently model Maxeler’s state machines;
these could be modelled like the counters.

C. Runtime Reconfiguration.
The Maxeler tools currently allow whole-chip reconfigura-
tion but not partial reconfiguration. Unlike real devices, our
reconfiguration model does not allow devices to run during
reconfiguration, but does allow designs which preserve state (for
example, intermediate results from the previous configuration).

Our extension adds a statement to Maxeler’s Java dialect
grammar: reconfigure_if (e) s else s where s
and e are non-terminals for statements and expressions, re-
spectively, and reconfigure_if is a new keyword. Unlike
the if-statement, this leads to run-time decisions, rather than
compile-time decisions in Maxeler kernels. The meaning is: e
is a run-time boolean expression; when e is true, the FPGA
is configured to perform s1, otherwise it is configured to
perform s2. The tools must (a) compile the expression into a
reconfiguration controller, such as a soft processor on a Xilinx
device, (b) compile s1 and s2 into separate bitstreams that can
load on demand depending on e. Several reconfigure_if
statements can be composed to model multiple configurations.
Figure 3 shows the datapath of the run-time reconfigurable
version, where the scalar input switches between constant mul-
tiplier sets; we factor out common parts of the configurations
for clarity. To swap between configurations, we modify the
software to to write to the scalar input conf.

inp

-1

outp

conf *a0

-2

+ + +0

*b0 *a1 *b0 *a2 *b2

KEY:

inp

conf

-1

outp

Stream input

Scalar input

Stream offset

Stream output

Fig. 3. Run-time reconfigurable 1D convolver design. The multiplexers and
demultiplixers are virtual, switching between partial configurations. Note we
gang the multiplexers: they share a control input. Writing to scalar input conf
reconfigures from one coefficient set to the other.

V. RESULTS AND EVALUATION

We evaluate our approach by applying it to (a) 1D convolu-
tion, (b) Reverse time migration.

Experimental setup: we develop compilers from streaming
hardware and software to symbolic simulator inputs, an output
combiner and use Yices version 1.0.34.

1D convolution: we compare various 1D convolver imple-
mentations, with window size W = 3 and N stream inputs,
comparing software with: (1) streaming hardware; (2) software
plus hardware; (3) software plus reconfiguring hardware.

(1): software versus hardware: the software produces one
result every 9 cycles, the hardware one per cycle. The extra
latency of the software comes from scheduling one assignment
per cycle. While the software takes 9 cycles to produce its first
result, the hardware produces results immediately, but the first
W − 1 are partial, using stream offsets before the start of the
stream. To verify the designs as equivalent, we (i) parameterize
the output combiner to ignore the first 9 software results and
8 of every 9 thereafter; (ii) duplicate software inputs 9-fold.

(2): software versus software driving one hardware configu-
ration. The software-hardware design takes 3N cycles: N to
load data, N to run and N to copy back to software.

(3): we modify both designs to run the first N/2 inputs with
one coefficient set, the remaining N/2 with another. Applying
the same skipping and duplication to the inputs and outputs as
above, the designs are verified equivalent.

Reverse time migration (RTM): we implement a one-
dimensional core of the RTM algorithm, which iterates over
a grid, summing corresponding neighbours of a grid element,
multiplying by a coefficient array. We compare two versions:
one where the coefficients are scalar inputs, and one where
the design has two configurations, one per coefficient set. Our
verification approach shows that the two designs are equivalent.

VI. CONCLUSION

We present our approach to verifying the codesign of
software and streaming hardware, which allows reference
software to be verified as equivalent to designs using software
and hardware together, and extends to run-time reconfigurable
hardware. We apply our approach to several examples.

Current and future work includes adapting our approach to
other input languages such as Verilog. Second, we would like
to verify compile-time parametrisable designs once, rather than

once per parameter value; while the space of useful parameter
values is typically small, highly parameterised designs could
still take a long time to verify.

Acknowledgements: Thanks to the reviewers for their comments.
The research leading to these results has received funding from Euro-
pean Union Seventh Framework Programme under grant agreement
number 287804, 248976 and 257906. The support by UK EPSRC,
the HiPEAC NoE, the Maxeler University Program, and Xilinx is
gratefully acknowledged.

REFERENCES

[1] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.

[2] R. W. Floyd, “Assigning Meaning to Programs,” in Proceedings of the
Symposium on Applied Maths, vol. 19. AMS, 1967, pp. 19–32.

[3] E. W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.
[4] T. Todman and W. Luk, “Verification of streaming designs by combining

symbolic simulation and equivalence checking,” in FPL ’12, 2012.
[5] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic

predicate abstraction of C programs,” in PLDI ’01. New York, NY,
USA: ACM, 2001, pp. 203–213.

[6] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate
Abstraction of ANSI-C Programs Using SAT,” Form. Methods Syst.
Des., vol. 25, no. 2-3, pp. 105–127, Sep. 2004.

[7] S. Lahiri, R. Bryant, and B. Cook, “A Symbolic Approach to Predicate
Abstraction,” in CAV ’03, ser. LNCS, W. Hunt and F. Somenzi, Eds.
Springer Berlin, 2003, vol. 2742, pp. 141–153.

[8] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in CAV ’97, ser. LNCS, O. Grumberg, Ed. Springer Berlin / Heidelberg,
1997, vol. 1254, pp. 72–83.

[9] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
2001.

[10] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstraction,”
in POPL ’02. New York, NY, USA: ACM, 2002, pp. 58–70.

[11] T. Ball and S. Rajamani, “The SLAM Toolkit,” in CAV ’01, ser. LNCS,
G. Berry, H. Comon, and A. Finkel, Eds. Springer Berlin / Heidelberg,
2001, vol. 2102, pp. 260–264.

[12] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in TACAS ’04, ser. LNCS, K. Jensen and A. Podelski, Eds.
Springer Berlin / Heidelberg, 2004, vol. 2988, pp. 168–176.

[13] A. Habibi and S. Tahar, “Design and verification of SystemC transaction-
level models,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 14, no. 1, pp. 57–68, Jan. 2006.

[14] D. Kroening and N. Sharygina, “Formal verification of SystemC by
automatic hardware/software partitioning,” in MEMOCODE ’05, Jul.
2005, pp. 101–110.

[15] M. Y. Vardi, “Formal Techniques for SystemC Verification; Position
Paper,” in DAC ’07, Jun. 2007, pp. 188–192.

[16] M. Chiodo, P. Giusto, A. Jurecska, H. C. Hsieh, A. Sangiovanni-
Vincentelli, and L. Lavagno, “Hardware-software codesign of embedded
systems,” Micro, IEEE, vol. 14, no. 4, pp. 26–36, Aug. 1994.

[17] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli,
“Design of embedded systems: formal models, validation, and synthesis,”
Proceedings of the IEEE, vol. 85, no. 3, pp. 366–390, Mar. 1997.

[18] M. Baleani, F. Gennari, Y. Jiang, Y. Patel, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “HW/SW partitioning and code generation of
embedded control applications on a reconfigurable architecture platform,”
in CODES ’02. New York, NY, USA: ACM, 2002, pp. 151–156.

[19] S. Singh and C. J. Lillieroth, “Formal Verification of Reconfigurable
Cores,” in FCCM. IEEE Computer Society, 1999, pp. 25–32.

[20] K. W. Susanto, T. Todman, J. G. F. Coutinho, and W. Luk, “Design
Validation by Symbolic Simulation and Equivalence Checking: A Case
Study in Memory Optimization for Image Manipulation,” in SOFSEM,
ser. LNCS, vol. 5404. Springer, 2009, pp. 509–520.

[21] P. Lysaght and J. Stockwood, “A simulation tool for dynamically
reconfigurable field programmable gate arrays,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 4, no. 3, pp.
381–390, Sep. 1996.

[22] B. Dutertre and L. de Moura, “The YICES SMT Solver,” Computer
Science Laboratory, SRI International, 333 Ravenswood Avenue, Menlo
Park, CA 94025 - USA, Tech. Rep., 2006.

