
Heterogeneous Reconfigurable System for

Adaptive Particle Filters in Real-Time

Applications

Thomas C.P. Chau1, Xinyu Niu1, Alison Eele3,
Wayne Luk1, Peter Y.K. Cheung2, and Jan Maciejowski3

1 Department of Computing, Imperial College London, UK
{c.chau10, niu.xinyu10, w.luk}@imperial.ac.uk

2 Department of Electrical and Electronic Engineering, Imperial College London, UK
p.cheung@imperial.ac.uk

3 Department of Engineering, University of Cambridge, UK
{aje46, jmm1}@cam.ac.uk

Abstract. This paper presents a heterogeneous reconfigurable system
for real-time applications applying particle filters. The system consists of
an FPGA and a multi-threaded CPU. We propose a method to adapt the
number of particles dynamically and utilise the run-time reconfigurability
of the FPGA for reduced power and energy consumption. An application
is developed which involves simultaneous mobile robot localisation and
people tracking. It shows that the proposed adaptive particle filter can
reduce up to 99% of computation time. Using run-time reconfiguration,
we achieve 34% reduction in idle power and save 26-34% of system energy.
Our proposed system is up to 7.39 times faster and 3.65 times more
energy efficient than the Intel Xeon X5650 CPU with 12 threads, and
1.3 times faster and 2.13 times more energy efficient than an NVIDIA
Tesla C2070 GPU.

1 Introduction

Particle filter (PF), also known as sequential Monte Carlo (SMC) method, is a
statistical method for dealing with dynamic systems having nonlinear and non-
Gaussian properties. PF has been applied to real-time applications including
object tracking [1], robot localisation [2], speech recognition [3] and air traffic
control [4]. However, PF operates on a large number of particles resulting in long
execution times, which limits the application of PF to real-time systems.

In this paper, an adaptive algorithmic and architectural approach using re-
configurable hardware is proposed for PF in real-time applications. An adaptive
PF algorithm is employed to dynamically adjust the size of particle set for re-
duced computation complexity. A heterogeneous reconfigurable system (HRS)
consisting of a multi-core CPU and an FPGA is developed for the adaptive PF
algorithm. As most of the PF operations can be performed independently, the
algorithm suits ideally for implementation in FPGA which consists of thousands

of customisable resources and dedicated digital signal processing units to exploit
parallel processing. The challenge is to meet real-time requirement by organising
the operations in streaming manner to maximise throughput and hide latency.

The contributions of this paper include:

1. Adaptive PF algorithm: the computational complexity of PF is reduced
through adapting the size of particle set dynamically, and the algorithm
is optimised for hardware acceleration (Section 3).

2. Heterogeneous architecture: fully pipelined computations of the PF are streamed
through the FPGA kernel, while control-oriented computations are handled
by the host CPU (Section 4).

3. Energy saving by run-time reconfiguration: FPGA is reconfigured to low-
power mode dynamically (Section 4).

4. Prototype: a robot localisation application is implemented on an FPGA
based on the proposed adaptive PF approach. Compared to a non-adaptive
implementation, the idle power is reduced by 34% and the overall energy
consumption decreases for 26-34% (Section 5).

2 Background and Related Work

This section briefly outlines the PF algorithm. A more detailed description can
be found in [5]. PF estimates the state of a system by a sampled-based approx-
imation of the state probability density function. The state of a system in time
step t is denoted by Xt. Sequences of control information and observations are
denoted by Ut and Yt respectively. Three pieces of information about the system
are known a-priori: a) p(X0) is the probability of the initial state of the system,
b) p(Xt|Xt−1, Ut−1) is the state transition probability of the system’s current
state given a previous state and control information, c) p(Yt|Xt) is the obser-
vation model describing the likelihood of observing the measurement at current
state.

PF approximates the desired posterior probability p(Xt|Y1:t) using a set of
P particles {χi

t|i = 1, ..., P} with their associated weights {wi
t|i = 1, ..., P}. X0

and U0 are initialised. This computation consists of three iterative steps.

1. Sampling: A new particle set χ̃i
t is drawn from the distribution

p(Xt|Xt−1, Ut−1), forming a prediction of the distribution of Xt.
2. Importance: Likelihood p(Yt|χ̃

i
t) of each particle is calculated. The likeli-

hood indicates whether the current measurement Yt matches the predicted
state χ̃i

t. Then a weight wi is assigned to the particle. The higher the likeli-
hood, the higher the weight.

3. Resampling: Particles with higher weights are replicated and the number
of particles with lower weights are reduced. With resampling the particle
set has a smaller variance. The particle set is then used in the next time
step to predict the posterior probability subsequently. The distribution of
the resulting particles χi

t approximates p(Xt|Y1:t).

The parallelism of particles in PF means it can be accelerated using spe-
cialised hardware with massive parallelism and pipelining. In [1], an approach
for PF on a hybrid CPU/FPGA platform is developed. Using a multi-threaded
programming model, computation is switched between hardware and software
during run-time to react to performance requirements. Resampling algorithms
and architectures for distributed PFs are proposed in [6].

Adaptive PFs have been proposed to improve performance or quality of state
estimation by controlling the number of particles dynamically. Likelihood-based
adaptation controls the number of particles such that the sum of weights exceeds
a pre-specified threshold [7]. Kullback Leibler distance (KLD) sampling is pro-
posed in [8], which offers better quality results than likelihood-based approach.
KLD sampling is improved in [9] by adjusting the variance and gradient of data
to generate particles near high likelihood regions. The above methods introduce
data dependencies in the sampling and importance steps, so they are difficult
to be parallelised. An adaptive PF is proposed in [10] that changes the number
of particles dynamically based on estimation quality. Our previous work [11]
extends their techniques for multi-processor system on FPGA. The number of
particles and active processors change dynamically but the performance is lim-
ited by soft-core processors. In [12], a mechanism and a theoretical lower bound
for adapting the sample size of particles is presented.

3 Adaptive Particle Filter

This section introduces an adaptive PF algorithm where the size of the particle
set is changed in each time step. The algorithm is inspired by [12], and we
optimise the algorithm to exploit the capability of FPGAs to support streaming
and deep pipelines.

Algorithm 1 shows the processing step of PF. The first part is performed on
the FPGA because the operations can be scheduled sequentially to maximise
throughput. The second part is done on the CPU because the operations involve
non-sequential or random access of data, such as sorting and resampling, that
cannot be mapped efficiently to FPGA’s streaming architecture.
Sampling and Importance (line 4 to 5): In time step t − 1, the number of
particles is Pt−1 ≤ Pmax. A particle has dimensions d = 1, ..., dim. Particle set
{χi

d,t−1
} is sampled to {χ̃i

d,t} and importance weight {w̃i} is assigned, where

i = 1, ..., Pt−1. For simplicity, we denote the set of Pd,t−1 particles {χ̃i
d,t} as a

vector X̃d,t = {χ̃1

d,t, χ̃
2

d,t, ...χ̃
Pt−1

d,t }. {X̃d,t} and {w̃i} give an estimation of the
current system state at dimension d.
Calculate the lower bound of particle set size (line 6): This step derives
the smallest number of particles that are needed to bound the approximation
error. This number, denoted as P̃t, is referred to as the lower bound of sampling
size. It is calculated by Equation 1 to 5.

P̃t =
dim
max

d
P̃d,t (1)

Algorithm 1 Adaptive PF algorithm
1: P0 ← Pmax, {X0} ←random set of particles, t = 1
2: for each step t do
3: —On FPGA—
4: Sample a new state {χ̃i

t} from {χ
i
t−1} where i = 1, ..., Pt−1

5: Calculate unnormalised importance weights w̃i and accumulate the weights as wsum

6: Calculate the lower bound of sample size P̃t by Equation 1 to 5
7: —On CPU—
8: Sort χ̃t in descending wi

9: if P̃t < Pt−1 then

10: Pt = max
(
⌈P̃t⌉, Pt−1/2

)

11: Set a = 2Pt − Pt−1 and b = Pt

12: –Do the following loop in parallel–
13: for i in P ′ do

14: χ̃t =
χa
t w

a+χb
tw

b

wa+wb

15: wi = wa + wb

16: a = a+ 1 and b = b− 1
17: end for

18: else if P̃t ≥ Pt−1 then

19: a = 0 and b = 0
20: for i in Pt − Pt−1 do

21: if wa < wa+1 and a < Pt then

22: a = a+ 1
23: end if

24: χ̃
Pt−1+b

t = χ̃a
t /2

25: χ̃a
t = χ̃a

t /2

26: wPt−1+b = wa/2
27: wa = wa/2
28: b = b+ 1
29: end for

30: end if

31: Resample {χ̃i
t} to {χ

i
t} where i = 1, ..., Pt

32: end for

P̃d,t = σ2

d ·
Pmax

V ar(X̃d,t)
(2)

σ2

d =
1

(wsum)2
·

Pt−1∑

i=1

(
w̃i · χ̃i

d,t

)2
− 2 · E(X̃d,t) ·

Pt−1∑

i=1

(w̃i)2 · χ̃i
d,t

+
(
E(X̃d,t)

)2

·

Pt−1∑

i=1

(
w̃i

)2
(3)

V ar(X̃d,t) =
1

wsum

·

Pt−1∑

i=1

w̃i · (χ̃i
d,t)

2 −
(
E(X̃d,t)

)2

(4)

E(X̃d,t) =
1

wsum

·

Pt−1∑

i=1

w̃i · χ̃i
d,t

(5)

w̃i is unnormalised. To calculate normalised weights wi, a trivial approach
is to stream data through the FPGA twice, one for accumulating the sum of

weights wsum and one for dividing the weights w̃i by wsum. This method is inef-
ficient as it reduces the throughput of the FPGA by half. Without degrading the
performance, our design computes wsum and w̃i simultaneously as data stream
through the FPGA. As shown in Equation 3 to 5, correct values of σ2

d, V ar(X̃d,t)

and E(X̃d,t) appear at the last cycle by dividing the last piece of data by wsum.
Meanwhile, Equation 3 to 5 involve accumulation which requires feedback

of data in the previous cycle. If accumulation is performed in floating-point
representation, the feedback path would take multiple clock cycles and greatly
reduce throughput. Therefore, we use fixed-point data path such that the delay
of the feedback path is kept in one clock cycle. The precision is designed to
ensure that no overflow or underflow occurs.
Particle set size tuning (line 8 to 30): The particle sample size is tuned to fit
the lower bound Pt.

First, the particles are sorted in descending order according to their weight.
Then, as the new sample size can increase or decrease, there are two cases.

– Case I: Particle set reduction when P̃t < Pt−1

The lower bound Pt is set to max
(
⌈P̃t⌉, Pt−1/2

)
. Since the new size is

smaller than the old one, some particles are combined to form a smaller par-
ticle set. Fig. 1 illustrates the idea of particle reduction. The first 2Pt−Pt−1

particles with higher weights are kept and the remaining 2(Pt−1 − Pt) par-
ticles are combined in pairs. As a result, there are Pt−1 − Pt new particles
injected to form the target particle set with Pt particles. To remove loop
dependency, we restrict that particles are combined deterministically. There-
fore, each iteration of the loop can be processed independently and acceler-

ated using multiple threads. The complexity of the loop is in O
(

Pt−1−Pt

Nparallel

)
,

where Nparallel indicates the level of parallelism.

Pt−1

2(Pt−1−Pt)2Pt−Pt−1

kept combined in pairs

(a) Combining the last 2(Pt−1 − Pt)
particles with lower weights

Pt−1−Pt

Pt−1

2Pt−Pt−1

Pt

kept droppedinjected

(b) Pt new particles are formed

Fig. 1. Particle set reduction

– Case II: Particle set expansion when P̃t ≥ Pt−1

The lower bound Pt is set to P̃t. Some particles are taken from the original set
and are incised to form a larger set. The particles with larger weight would
have more descendants. As shown in line 18 to 30, the process requires picking
the particle with the largest weight at each iteration of particle incision.

Since the particle set is pre-sorted, the complexity of particle set expansion
is O(Pt − Pt−1).

Resampling (line 31): Resampling is performed to pick Pt particle from X̃t to
form Xt. The process has a complexity of O(Pt).

4 Heterogeneous Reconfigurable System

This section describes the proposed heterogeneous reconfigurable system (HRS)
which makes use of run-time reconfiguration for power and energy reduction. The
architectural diagram of HRS is shown in Fig. 2. The system consists of an FPGA
board and a multi-threaded host CPU. The FPGA resources are customised to a
deeply pipelined structure and the CPU performs coordination of particles. The
FPGA has its own on board dynamic random-access memory (DRAM) because
the amount of data is too large to be stored on-chip.

For the sampling and importance processes, the computation is independent
for every particle. Therefore, particles are organised in a stream that is fed to
the FPGA. In every clock cycle, one particle is taken from the FPGA’s onboard
DRAM. The FPGA kernel has a long pipeline that is filled with particles, and
therefore many particles are processed at once. Fixed-point data representation is
customised at each pipeline stage to reduce bit-widths and hence FPGA resource
usage. One particle is written back to the DRAM in every clock cycle.

For lower bound calculation, particle set size tuning and resampling pro-
cesses, the host CPU gathers all the particle data from the FPGA via PCI
Express.

Memory

Onboard

Kernels

FPGA

Memory

CPU

Host

Host Program

OS

Pipeline stages

Data via PCI Express

Kernel parallelism

threads of execution

Instructions / Floating point data

Floating point data

Customised precision data

Customised precision data

Fig. 2. Heterogeneous reconfigurable system

We derive a model to analyse the total computation time of the proposed
system. The model helps us to design a configuration that can satisfy the real-
time bound and, if necessary, amend the real-time application’s specification.
The model is validated by experiments in Section 5.

The total computation time of the system (Tcomp) consists of three compo-
nents.

Tcomp = Tkernel + Thost + Tio (6)

Kernel time: It describes the time spent on the FPGA kernel for the sampling
and importance processes. Pt denotes the number of particles at current time step
and freqkernel denotes the clock frequency of the FPGA kernel. The sampling
and importance processes can be repeated for Nsi times before going to the
resampling process. Nkernel denotes the level of parallelism as multiple kernels
can be instantiated in the FPGA. L is the latency due to pipelining.

Tkernel =
Pt ·Nsi

freqkernel ·Nkernel

+ L− 1 (7)

Host time: It describes the time spent on the host CPU. The clock frequency
and number of threads of the host CPU are represented by freqhost and Nthread

respectively. par is an algorithm-specific parameter in the range of [0, 1] which
represents the ratio of CPU instructions that are parallelisable, and α is a scaling
constant derived empirically.

Thost = α ·
Pt

freqhost
·

(
1− par +

par

Nthread

)
(8)

IO time: It describes the time of moving particle data between the FPGA’s
onboard DRAM and host memory. dim is the number of dimensions of a particle,
e.g. if a particle represents coordinate (x, y) and weight, dim = 3. bw is the bit-
width to represent one dimension. freqpcie is the clock frequency of PCI Express
bus and lane is the number of PCI Express lanes. Since PCI Express encodes
data during transfer, the effective data is denoted by eff (in PCI Express gen2
the value is 8/10). The constant 2 accounts for the movement of data in and out
of the FPGA.

Tio =
2 · Pt · dim · bw

freqpcie · lane · eff
(9)

In real-time applications, the time for each step is fixed and is known as
real-time bound Trt. The derived model helps system designers to ensure that
the computation time Tcomp is shorter than Trt. An idle time Tidle is introduced
to represent the gap between finish time of computation and real-time bound.

Tidle = Trt − Tcomp (10)

Fig. 3(a) shows the timing of system operations. It illustrates that the FPGA
is still drawing power after the computation finishes. We propose a method to
reduce dynamic power by using run-time reconfiguration of FPGA. During idle
time, the FPGA is loaded with a low-power configuration which has minimal
active resources and runs at a very low clock frequency. The idea is shown in
Fig. 3(b). Equation 11 describes the sleep time when the FPGA is idle and being

loaded with the low-power configuration. If the sleep time is positive, it is always
beneficial to load the low-power configuration.

Tsleep = Tidle − Tconfig (11)

Configuration time (Tconfig): It describes the time needed to download a
configuration bit-stream to the FPGA. sizebs represents the size of bitstream in
bits. freqconfig is the configuration clock frequency in Hz and portconfig is the
configuration port width in bits.

Tconfig =
sizebs

freqconfig · portconfig
(12)

Tcf Ti Tkn To

Tact Tidle

Trd

RTT

time

Output

power

InputConfig Kernel Host Idle

(a) Without reconfiguration

Tcf Ti Tkn To

Tact Tidle

RTT

Trd Tcf Tsleep

Config Input Output

time

power

Kernel Host Config Sleep

(b) With reconfiguration to low-power
mode during idle

Fig. 3. Timing of the system’s operations

5 Result and Evaluation

To evaluate the HRS and make comparison with other systems, a simultaneous
robot localisation and people-tracking application is implemented. Given a priori
learned map, a robot receives sensor values and moves at regular time intervals.
In each time step, M people are tracked by the robot. The state of the whole
system of robot and people is represented by a state vector Xt:

Xt = {Rt, Ht,1, Ht,2, ..., Ht,M} (13)

Rt denotes the robot’s pose at time t, and Ht,1, Ht,2, ..., Ht,M denote the
locations of the M people.

The PF uses the following equation to represent the posterior of robot and
people locations:

p(Xt|Yt, Ut) = p(Rt|Yt, Ut)

M∏

m=1

p(Ht,m|Rt, Yt, Ut) (14)

Yt is the sensor measurement and Ut is the control of the robot at time t.
The robot path posterior p(Rt|Yt, Ut) is represented by a set of robot particles.
The distribution of a person’s location p(Ht,m|Rt, Yt, Ut) is represented by a set
of people particles, where each people particle set is attached to one particular
robot particle. Therefore, if there are Pr robot particles representing the posterior
over robot path, there are Pr people particle sets, each has Ph particles.

In the application, the map has an area of 12m*18m. The robot makes a
movement of 0.5m every 5s, i.e. Trt = 5s. The robot can track 8 people at the
same time. The system supports a maximum of 8192 particles for robot-tracking
and each robot particle is attached with 1024 particles for people-tracking.
Therefore, the maximum number of kernel cycles is 8*8192*1024=67M.

Experiment settings: For the evaluation of HRS, we use the MaxWork-
station reconfigurable accelerator system from Maxeler Technologies. It has an
FPGA board equipped with a Xilinx Virtex-6 XC6VSX475T FPGA which has
297,600 lookup tables (LUTs), 595,200 flip-flops (FFs), 2,016 digital signal pro-
cessors (DSPs) and 1,064 block RAMs. The FPGA board is connected to an
Intel i7-870 quad-core CPU clocked at 2.93GHz through a PCI Express link
with a bandwidth of 2 GB/s. We develop the FPGA kernels using the MaxCom-
piler, which adopts a streaming programming model. At each pipeline stage, the
fixed-point calculations are customised to different mantissa bit-widths.

There are two FPGA configurations: a) sampling and importance configura-

tion is clocked at 100MHz, with 115961 LUTs (39%), 169188 FFs (28%), 967
DSPs (48%) and 257 block RAMs (24%) per kernel. b) Low-power configuration

is clocked at 10MHz, with 5962 LUTs (2%), 6943 FFs (1%) and 12 block RAMs
(1%). It uses the minimum amount of resources just to maintain communication
between the FPGA and CPU.

The CPU performance results are obtained from an Intel Xeon X5650 CPU
clocked at 2.66GHz. It is optimised by ICC with SSE4.2 and flag -fast enabled.
OpenMP is used to utilise 6 physical cores (12 threads) of the CPU.

For the GPU performance results, we use NVIDIA Tesla C2070 GPU which
has 448 cores running at 1.15GHz and has a peak performance at 1288GFlops.

Adaptive vs. non-adaptive: Table 1 shows the breakdown of computation
time using our model and experimental data. Initially, the maximum number of
particles are instantiated for global localisation. For the non-adaptive scheme,
the particle set size does not change. The total computation time is estimated
to be 1.957s which is within the real-time bound. The remaining idle time is
enough to reconfigure to sleep mode, since Tsleep = (5− 1.957− 0.87)s = 2.173s.

For the adaptive scheme, the number of particles varies from 70 to 8192, and
the computation time scales linearly with the number of particles. Fig. 4 shows
how the number of particles varies versus time. Both the model and experiment
show 99% reduction in computation time.

Fig. 5 illustrates the localisation error of the mobile robot. The error is the
highest during initial global localisation and it is reduced when the robot moves.
It is observed that the localisation error is not adversely affected by reducing
the number of particles.

Table 1. Comparison of adaptive and non-adaptive PF on HRS (configuration with 1
FPGA kernel is used)

Non-adaptive Adaptive

Model Exp. Model Exp.

No. of particles 8192 70-8192

Kernel time Tkernel (s) 0.671 0.671 0.006-0.671 0.006-0.671
Host time Thost (s) 0.212 0.212 0.002-0.212 0.002-0.212
IO time Tio (s) 1.074 1.600 0.009-1.074 0.014-1.600
Total comp. time Tcomp 1.957 2.483 0.017-1.957 0.022-2.483

Comp. speedup (higher is better) 1x 1x 1-115.12x 1-112.86x

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140
 0.001

 0.01

 0.1

 1

 10

 100

 1000

N
u
m

b
e
r

o
f
p
a
rt

ic
le

s

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
)

Run time (s)

No. of particles
IO time

Kernel time
Host time
Idle time

Fig. 4. Variation of particle set size and computation time

Performance comparison: Table 2 shows the performance comparison of
CPU, GPU and HRS. Considering the kernel computation only, which ignores
the IO time and host time, the HRS is up to 19.94 times faster than the CPU,
and is 2.65 times faster than the GPU. If the overall system performance is
considered, the HRS is up to 3.26 times faster than the CPU, and is 1.74 times
slower than the GPU. Meanwhile, the CPU needs 7.002s to process a step, so
the real-time constraint of 5s is violated. Currently the performance of HRS
is limited by the PCI Express bus between the FPGA and CPU, which has a
bandwidth of 2GB/s. If PCI Express gen3 x8 (7.88GB/s) is used, which has
comparable bandwidth as that on the GPU, the overall system performance of
the HRS is 7.39 times faster than the CPU, and is 1.3 times faster than the
GPU.

In real-time applications, we need to consider the energy consumption within
the real-time bound. Fig. 6 shows the power consumption varies between compu-
tation and idle time, and a significant amount of energy is consumed during idle
time. Run-time reconfiguration reduces the idle power consumption of the HRS
by 34%, from 135W to 95W. In other word, the energy consumption is reduced
by 26-34%. For the case of 8192 particles, the HRS is up to 3.65 times more

Table 2. Comparison of using CPU, GPU and HRS

CPU a GPU b HRS(1) c HRS(2) c

Clock freq. (MHz) 2660 1150 100 100

Number of threads 12 448 1+8 d 2+8 d

Kernel time (s) e 0.058-6.780 0.008-0.892 0.006-0.671 0.003-0.336

Kernel speedup 1x 7.53x 10.11x 19.94x

Comp. time (s) e 0.060-7.002 f 0.011-1.236
0.021-2.483 g 0.018-2.148 g

0.011-1.283 h 0.008-0.948 h

Overall speedup 1x 5.67x
2.82x g 3.26x g

5.46x h 7.39x h

Comp. power (W) 279 287 135 145
Comp. power eff. 1x 0.97x 2.07x 1.92x

Idle power (W) 133 208 95 95

Idle power eff. 1x 0.64x 1.40x 1.40x

Energy. (J) e 674-1954 1041-1138
489-587 g 489-595 g

489-539 h 489-535 h

Energy eff. 1x 0.64-1.72x
1.37-3.33x g 1.37-3.28x g

1.37-3.62x h 1.37-3.65x h

a Intel Xeon X5650 @2.66GHz with 12 threads.
b NVIDIA Tesla C2070 and Intel Core i7-950 @3.07GHz with 8 threads.
c Xilinx XC6VSX475T and Intel Core i7-870 @2.93GHz with 8 threads. HRS(1)

has one FPGA kernel while HRS(2) has two.
d Number of FPGA kernels and number of threads in the CPU.
e Cases for 70 and 8192 robot particles.
f Real-time bound is violated as the constraint is 5s.
g On our platform, the FPGA and CPU communicate through PCI Express

with bandwidth 2GB/s.
h Assume the FPGA and CPU communicate through PCI Express gen3 x8,

bandwidth 7.88GB/s.

energy efficient than the CPU, and is 2.13 times more energy efficient than the
GPU. For the case of 70 particles, the HRS is 1.37 times more energy efficient
than the CPU, and is 2.13 times more energy efficient than the GPU.

6 Conclusion

This paper presents an adaptive particle filter for real-time applications. The
proposed heterogeneous reconfigurable system demonstrates a significant reduc-
tion in power and energy consumption compared with the CPU and the GPU.
The adaptive particle filter reduces computation time while maintaining quality
of results. Ongoing and future work includes applying the adaptive approach to
larger systems with multiple FPGAs. Distributed resampling and data compres-
sion techniques are explored to mitigate the data transfer overhead between the
FPGA and the CPU. More compute-intensive applications using PF would be
of interest on the extended heterogeneous reconfigurable system.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

L
o

c
a

lis
a

ti
o

n
 e

rr
o

r
(m

)

Run time (s)

Adaptive
Non-adaptive

Fig. 5. Localisation error

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140

P
o

w
e

r
(W

)

Run time (s)

CPU
GPU

HRS(1)
HRS(2)

Fig. 6. Power consumption

Acknowledgment

This work is supported in part by the European Union FP7 under grant agree-
ment number 248976, 257906 and 287804, by UK EPSRC, by Maxeler University
Programme, by Xilinx, and by the Croucher Foundation. The author would like
to thank Oliver Pell at Maxeler Technologies for comments on the paper.

References

1. Happe, M., et al.: A self-adaptive heterogeneous multi-core architecture for embed-
ded real-time video object tracking. Journal Real-Time Image Processing (2011)
1–16

2. Montemerlo, M., et al.: Conditional particle filters for simultaneous mobile robot
localization and people-tracking. In: Proc. Int. Conf. Robotics and Automation.
(2002) 695–701

3. Vermaak, J., et al.: Particle methods for bayesian modeling and enhancement of
speech signals. IEEE Trans. Speech and Audio Processing 10(3) (2002) 173–185

4. Eele, A., Maciejowski, J.: Comparison of stochastic optimisation methods for con-
trol in air traffic management. In: Proc. IFAC World Congress. (2011)

5. Doucet, A., et al.: Sequential Monte Carlo methods in practice. Springer (2001)
6. Bolic, M., et al.: Resampling algorithms and architectures for distributed particle

filters. IEEE Trans. Signal Processing 53(7) (2005) 2442–2450
7. Koller, D., et al.: Using learning for approximation in stochastic processes. In:

Proc. Int. Conf. Machine Learning. (1998) 287–295
8. Fox, D.: Adapting the sample size in particle filters through KLD-sampling. Int.

Trans. Robotics 22(12) (2003) 985–1003
9. Park, S.H., et al.: Novel adaptive particle filter using adjusted variance and its

application. Int. Journal Control, Automation and Systems 8(4) (2010) 801–807
10. Bolic, M., et al.: Performance and complexity analysis of adaptive particle fil-

tering for tracking applications. In: Proc. Asilomar Conf. Signals, Systems, and
Computers. Volume 1. (2002) 853–857

11. Chau, T.C., et al.: Adaptive sequential monte carlo approach for real-time appli-
cations. In: Proc. Int. Conf. Field Programmable Logic and Applications. (2012)
527–530

12. Liu, Z., et al.: Mobile robots global localization using adaptive dynamic clustered
particle filters. In: Proc. Int. Conf. Intelligent Robots and Systems. (2007) 1059–
1064

