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Abstract—Proximity Query (PQ) is a process to calculate the
relative placement of objects. It is a critical task for many
applications such as robot motion planning, but it is often too
computationally demanding for real-time applications, partic-
ularly those involving human-robot collaborative control. This
paper derives a PQ formulation which can support non-convex
objects represented by meshes or cloud points. We optimise the
proposed PQ for reconfigurable hardware by function transfor-
mation and reduced precision, resulting in a novel data structure
and memory architecture for data streaming while maintaining
the accuracy of results. Run-time reconfiguration is adopted for
dynamic precision optimisation. Experimental results show that
our optimised PQ implementation on a reconfigurable platform
with four FPGAs is 58 times faster than an optimised CPU
implementation with 12 cores, 9 times faster than a GPU, and
3 times faster than a double precision implementation with four
FPGAs.

I. INTRODUCTION

Advanced surgical robots support image guidance and hap-

tic (force-based) feedback for effective navigation of surgical

instruments. Such image-guided robots rely on computing in

real-time the intersection or the closest point-pair between two

objects in three-dimensional space; this computation is known

as Proximity Query (PQ).

PQ has been widely studied in areas such as robot mo-

tion planning, haptics rendering, virtual prototyping, computer

graphics, and animation [1]. Robot motion planning is partic-

ularly demanding for the real-time performance of PQ [2]. In

the past decade, PQ has also been used as a key task for Active

Constraints [3] or Virtual Fixtures [4], a collaborative control

strategy mostly applied in image-guided surgical robotics. The

clinical potential of this control strategy has been demonstrated

by imposing haptic feedback [5] on instrument manipulation

based on imaging data [6]. This haptic feedback provides the

operator with kinaesthetic perception for sensing positions,

velocities, forces, constraints and inertia associated with direct

maneuvering of surgical instrument within the target anatomy.

As mentioned above, fast and efficient PQ is a pre-requisite

for effective navigation through access routes to the target

anatomy [3]. This haptic guidance, rendered based on imaging

data, can enable a distinct awareness of the position of the

surgical device relative to the target anatomy so as to prevent

the operator from feeling disoriented within the surrounding

organs. Such disorientation could potentially cause unnoticed

major organ damage. This guidance is particularly important

during soft tissue surgery, which involves large-scale and

rapid tissue deformations. A high update frequency above

1 kHz is required to maintain smooth and steady manipulation

guidance. Due to its intrinsic complexity and this real-time

requirement, PQ is computationally challenging. Various ap-

proaches have been proposed to achieve the required update

rate [2], [7], with objects represented in specific formats such

as spheres, torus or convex surfaces. The only attempts that

apply PQ to haptic rendering, while considering explicitly

the interaction of the body with the surrounding anatomical

regions, involve modelling the anatomical pathway or the

robotic device as a tubular structure [4], [8]. The computation

burden is increased by the need to compute the placement

of anatomical model relative to the robot whose shape is

represented by more than 1 million vertices.

Due to its compute-intensive nature, PQ can greatly benefit

from hardware acceleration. However, the massive amount of

floating-point computations constitute a long data-path which

is resource-demanding. Even if we could implement the data-

path in an FPGA, the acceleration would be restricted by

low parallelism and clock frequency. This challenge limits the

implementation of PQ on an FPGA.

In this paper, we derive a PQ formulation which allows

objects to be represented in complex geometry with vertices.

To leverage the advantages of FPGAs, function transformation

eliminates iterative trigonometric functions such that the algo-

rithm can be fully-pipelined. We increase data-path parallelism

by adopting a reduced precision data format which consumes

fewer logic resources than high precision. To maintain the

accuracy of results, potential incorrect outputs are re-computed

in high precision. We design a novel memory architecture

for buffering potential outputs and maintaining streaming

data-flow. We further exploit the run-time reconfigurability

of FPGA to optimise precision dynamically. To the best of

our knowledge, our work is the first to apply reconfigurable

technology to narrow-phase PQ computation.



The contributions of this paper are as follows:

• A PQ formulation for calculating the relative placement

of objects modelled by vertices with complex morphol-

ogy, which facilitates restructuring of trigonometric and

search functions to be amenable to parallel implementa-

tion in hardware.

• Enhanced parallelism by treating input points as a novel

data structure propagating through pipelines, together

with FPGA-specific optimisations such as adapting PQ

to reduced precision arithmetic, supporting multiple pre-

cisions in a novel memory architecture, and automating

precision management with run-time reconfiguration.

• Implementation in a reconfigurable platform with four

FPGAs which is shown to be 478 times faster than a

single-core CPU, 58 times faster than a 12-core CPU

system, 9 times faster than a GPU, and 3 times faster

than a 4-FPGA system implemented in double precision.

II. BACKGROUND

In this section, we first provide a brief introduction to PQ.

Then we review the bit-width optimisation techniques that

inspired our research.

Fig. 1 illustrates two objects acting as inputs to the proposed

PQ. The object shown on the left is bounded by a series of

contours (cf. Definition 1), each of which is outlined by a set of

vertex points. This object can be either a luminal anatomy or a

robotic endoscope/catheter. On the right, the mesh comprises

vertex points which represent the morphological structure of

either the robot or the target anatomy in complex shape. The

proposed PQ actually computes how much the mesh deviates

beyond the volumetric pathway bounded along the contours.

Fig. 1. (Left) Various sets of vertex points aligned on a series of contours;
(Right) A set of vertex points located on an arbitrary form of mesh.

As shown in Fig. 2(a), a series of circular contours fitted

along a part of an endoscope, which passes through the rectum

up to the sigmoid colon. These contours form a constraint

pathway. Fig. 2(b) shows a distance map in three-dimensional

space with 177k grid points. Distance from every grid point to

the endoscope is computed by the proposed PQ. The warmer

colour, the further the point is located beyond the endoscope.

Definition 1. Each contour is denoted by Cj , ∀j ∈ [1, ..., NC ].
A single segment Ωj comprises two adjacent contours Cj and

Cj+1. Pj is the centre of the contour Cj . Mj is the tangent

(a)

(b)

Fig. 2. (a) A virtual tube (in green) bounded by a series of contour (in
red) denotes the configuration of an endoscope; (b) The corresponding three-
dimensional distance map in grids of 86x48x43.

of centre line of contour Cj . jωi = [jωxi,
j ωyi,

j ωzi]
T , (i =

1, ...,W ) are the contour vertices, where W is the number of

vertex points outlining each contour.

There has been previous work on hardware acceleration of

board-phase PQ, which involves detecting collisions between

primitive objects, e.g. spheres [7] or boxes [9]. Such an object

can be a bounding volume tightly containing a union of

multiple complex-shaped objects. On FPGA, the most relevant

work is covered by Chow el at. [10]; however, to the narrow-

phase PQ which computes the further detailed information,

for instance, the shortest distance or penetration depth be-

tween polyhedra, GJK [11], V-Clip [12] and Lin-Canny [13]

are the few well-established approaches, but their hardware

acceleration is difficult due to algorithmic complexity. There

is, thus far, no attempt of using FPGA. Such approaches are

also restricted to the object represented in convex polyhedra.

To this end, we have proposed a PQ approach for complex-

morphology object [8] but how it can be incorporated with

FPGA is not elaborated.

To leverage the advantages of FPGAs for hardware ac-

celeration, Chow et al. [10] proposed a mixed precision

methodology. They assume the data-path is short such that

both the reduced precision and high precision implementations

can be fitted in an FPGA. For complicated applications where

the level of parallelism is limited by FPGA resource, their

approach is not applicable. There are other studies about bit-

width optimisation which uses minimum precision in a data-

path given a required output accuracy. Examples include inter-

val arithmetic [14], affine arithmetic [15], [16] and polynomial

algebraic approach [17]. However, a reduction of precision in

any stage within a data-path will result in a loss in output



accuracy which is uncorrectable. They require using accuracy

models to relate output accuracy with the precisions of data-

path. Our work is different from these work by deriving an

automatic way to find an optimal precision using run-time

reconfiguration.

III. FORMULATION OF PQ

In this section, we derive our modified PQ process which

was originally proposed in our previous work [8]. The sig-

nificance of this modification is to formulate the PQ capable

of processing the contours in complex shapes. As a result,

it allows the analytical measure of the shortest Euclidean

distance between an arbitrary set of vertices and a series of

segments Ωj (cf. Definition 1) which has been a well-known

representation of a complex three-dimensional object [18].

Each segment is enclosed by two adjacent contours which are

outlined by vertices arranged in polar coordinates; hence, it

outperforms the existing narrow-phase PQs which are only

compatible with convex objects.

In consideration of the point-to-segment distance, as shown

in Fig. 1, four steps are taken to calculate the shortest distance

δj between a point x and the corresponding edge jV2 →j V3.

Before these steps, we capture the computation using polar

coordinates. Given a contour Cj , jφi are the polar angles

corresponding to each contour vertex jωi. The polar angles

of all the jωi along the contour have to be computed. This

computation can be further simplified by ignoring an axis

coordinate. The poles and the contour vertices are then pro-

jected either on X-Y, Y-Z or X-Z plane based on the following

conditions:

if |Mzj | = max (|Mxj |, |Myj |, |Mzj |)
j
ω

′

i = [jω1i,
j
ω2i]

T = [jωxi,
j
ωyi]

T
, P

′

j = [Pxj , Pyj ]
T

if |Mxj | = max (|Mxj |, |Myj |, |Mzj |)
j
ω

′

i = [jω1i,
j
ω2i]

T = [jωyi,
j
ωzi]

T
, P

′

j = [Pyj , Pzj ]
T

if |Myj | = max (|Mxj |, |Myj |, |Mzj |)
j
ω

′

i = [jω1i,
j
ω2i]

T = [jωzi,
j
ωxi]

T
, P

′

j = [Pzj , Pxj ]
T

(1)

Then jφi is calculated as follows:

jω′

i =
j
ω

′

i − P
′

j ,
j
φi = atan2

(

jω2i, jω1i

)

(2)

We will explain the details of atan2 is Section IV-A.

Step 1: Find the normal of a plane containing points x, Pj and

Pj+1. The symbol × denotes a cross product of two vectors

in three-dimensional space.

nj = (Pj − x)× (Pj+1 − x) (3)

Step 2: Calculate vectors ρj and ρj+1 which are respectively

perpendicular to tangents Mj and Mj+1 and are both parallel

to the plane with normal nj .

ρj = nj ×Mj , ρj+1 = nj ×Mj+1 (4)

Step 3: Determine a 4-vertex polygon outlined by
jV i=1...4 ∈ ℜ3×1 which is a part of the cross-section of

segment Ωj . This section is cut by a plane containing the

point x and the line segment Pj → Pj+1.

j
V 1 = Pj

j
V 4 = Pj+1

j
V 2 = Pj + tj · ρj

j
V 3 = Pj+1 + tj+1 · ρj+1

(5)

At this stage, we need to calculate tj and tj+1. This can be

achieved by mapping the values of ρj to a two-dimensional

plane.

if |Mzj | = max (|Mxj |, |Myj |, |Mzj |)

ρ
′

j = [ρ1j , ρ2j ]
T = [ρxj , ρyj ]

T

if |Mxj | = max (|Mxj |, |Myj |, |Mzj |)

ρ
′

j = [ρ1j , ρ2j ]
T = [ρyj , ρzj ]

T

if |Myj | = max (|Mxj |, |Myj |, |Mzj |)

ρ
′

j = [ρ1j , ρ2j ]
T = [ρzj , ρxj ]

T

(6)

Then we calculate jθ, the corresponding polar angle of ρ′j
by Equation 7.

j
θ = atan2 (ρ2j , ρ1j) (7)

A search is performed to find jφi and jφi+1 which embrace
jθ. The polar angles jφi and jφi+1 are calculated from

Equation 2.

Based on the value i obtained from the search, tj is

calculated.

a = [(Pj −
j
ωi)(

j
ωi+1 −

j
ωi)][(

j
ωi+1 −

j
ωi)ρ]

b = [(Pj −
j
ωi)ρ]‖

j
ωi+1 −

j
ωi‖

2

c = ‖ρ‖2‖jωi+1 −
j
ωi‖

2 − ‖(jωi+1 −
j
ωi)ρ‖

2

tj =
a− b

c

(8)

Step 4: Define the shortest distance to be zero if the point x

lies inside the polygon jVi=1...4 on the same plane. Referring

to [19], it can be determined by three variables λi=1,...,3

calculated as follows:

λi = nj · ψi, i = 1, ..., 3

s.t. ψi = (jVi − x)× (jVi+1 − x).
(9)

Here nj denotes the normal defined in Equation 3 and ψi

denotes the normal of the plane containing jVi=1...4. For all

λi=1,...,3 ≥ 0, the shortest distance δj from point x to the

segment Ωj is assigned to zero such that δj(x) = 0. Otherwise

δj(x) will be considered as the distance from the point x to the

line segment jV2 →j V3. Such a point-line distance in three-

dimensional space can be calculated simply referring to [20].

In consideration of many points and segments, Equation 10

generally expresses the deviation in distance from a single co-

ordinate xi to a series of constraint segments (Ω1, ...,ΩNC−1),

where i = 1, ..., NP and NP is the total number of vertex

points belong to the mesh model and NC − 1 is the number

of segments involved in the calculation.

iδNC−1 = min (δ1(xi), δ2(xi), ..., δNC−1(xi)) (10)

The point with the maximum deviation, also known as

penetration depth, is obtained below.

d
NC−1 = max

i=1,...,NP

(

iδNC−1(xi)
)

(11)



IV. OPTIMISATION FOR RECONFIGURABLE HARDWARE

The PQ formulation sketched in the previous section is not

entirely hardware-friendly. In this section we discuss several

techniques to allow PQ to benefit from FPGA technology.

A. Transformation of Trigonometric and Search Functions

The search process in step 3 of PQ checks whether
jφi ≤

jθ.

j
φi = atan2

(

jω2i, jω1i

)

,
j
θ = atan2 (ρ2j , ρ1j) (12)

atan2(a, b) is not a hardware-friendly operator. It requires

the calculation of tan−1(a, b) and then determines the appro-

priate quadrant of the computed angle based on the signs of

a and b. tan−1(a, b) is expensive and is often not available

in FPGA libraries, therefore, we transform Equation 12 to

another form as shown below:

j
φi = tan

−1





jω2i
√

jω1i

2
+ jω2i

2
+ jω1i





j
θ = tan

−1





ρ2j
√

ρ21j + ρ22j + ρ1j





(13)

atan2 is transformed to tan−1 which is then cancelled out

on both sides. As a result, the comparison becomes:

jω2i
√

jω1i

2
+ jω2i

2
+ jω1i

≤
ρ2j

√

ρ21j + ρ22j + ρ1j
(14)

In this case, square root calculation is much easier to be

mapped to hardware.

B. Precision Optimisation

Reduced precision data-paths consume less logic resource

at the expense of lower accuracy of results. To benefit from

reduced precision data-paths without compromising accuracy,

we partition the computation into two data-paths:

• Reduced precision data-path: Compute the deviations

based on Equation 3 to 10.

• High precision data-path: Re-compute those deviations

which are not accurate enough and calculate the penetra-

tion depth according to Equation 11.

In Equation 10, there are ∆m − 1 comparisons involved

to find the minimum value. The only item of interest is

the minimum value iδ∆m, rather than the exact values of

every δj(xi). Based on this insight, we define the comparison

operation:

δ
min
1,...,j = min (δ1(xi), ..., δj(xi))

D = δ
min
1,...,j − δj+1(xi)

(15)

The values of D when computed in reduced and high

precision are denoted as DpL
and DpH

, respectively. DpL

might have a flipped sign compared with DpH
. We use the

following three steps to make sure the results of Equation 10

is correct.

1) Evaluate Equation 15 using a reduced precision data

format.

2) Estimate the maximum and minimum values of the value

in high precision, i.e. min(DpH
) and max(DpH

), as

shown in Equation 16.

EpL
(δj+1(xi)) is the absolute error of δj+1(xi) in

reduced precision pL. It is computed at run-time and

the details will be discussed later.

EpL(DpL) = EpL(δ
min
1,...,j) + EpL(δj+1(i))

min (DpH ) = DpL − EpL(DpL)

max (DpH ) = DpL + EpL(DpL)

(16)

3) Determine whether the comparison result should be re-

computed or dropped.

Case A: min (DpH
) > 0, δj+1(xi) is smaller.

Case B: max (DpH
) < 0, δmin

1,...,j is smaller.

Case C: Cannot determine which value is smaller. Store

both values for re-computation using high precision pH .

In case A and B, the difference between the values is large

enough to distinguish the sign of DpH
even in the presence

of errors introduced by reduced precision computations. In

case C, the difference is small compared with the uncertainty

introduced and therefore re-computation in high precision is

necessary. The frequency of case C is lower than case A and B,

therefore the performance gain from using reduced precision

outweighs the re-computation overhead.

C. Dynamic Optimisation

We optimise the error bound based on feedback from run-

time environment. Although the error bound EpL
(DpL

) can

be derived statically [15], the estimated error bound grows

pessimistically as it propagates along the data-path. Thus, we

calculate the error bound using run-time data y and relative

error REpL
. REpL

is profiled using a number of test vectors

relative to a double precision data-path.

EpL(y) = y ·REpL (17)

On the other hand, we need to decide the precision used in

the reduced precision data-paths. A lower precision increases

the level of parallelism and hence increases the throughput

of reduce precision data-path. However, it increases the ratio

of re-computation and the total run-time. It is important to

find an optimal for the best performance. The ratio of re-

computation is data-dependent which changes over time and

cannot be computed in advance.

We propose a method to search for the optimal precision at

run-time. When a new data set is applied or the ratio of re-

computation exceeds a threshold, Algorithm 1 is invoked on

the CPU to reconfigure the FPGA with a higher precision. The

computation overhead of the algorithm is negligible. T (pL) is

the run-time measured computation time when using precision

pL as the reduced precision.

V. RECONFIGURABLE SYSTEM DESIGN

In this section, we present our design which treats input

points as a data stream that propagates through the customised

system architecture. We also propose an analytical model for

performance estimation.



Algorithm 1 Run-time tuning of precision

1: Get the list of precisions P
2: T (ptest)←∞
3: repeat
4: T (pL)← T (ptest)
5: ptest ← min (p ∈ P )
6: Remove ptest from P
7: Configure the FPGA with precision ptest
8: Compute PQ and get T (ptest)
9: until T (ptest) > T (pL)

A. Streaming Data Structure

In PQ, there are NP points to represent a mesh. PQ

computes the shortest distance from each point to the segment

boundary defined by NC contours. An intuitive implementa-

tion is to stream one point into the FPGA at the beginning, then

the contours are streamed in the subsequent NC iterations. In

other words, Equation 3 to 10 are iterated for NC − 1 times.

However, since every comparison operation in Equation 10

takes LCmp > 1 clock cycles to compute, the next com-

parison can only start after the current one completes. This

significantly reduces the FPGA’s throughput for LCmp times

because the pipeline is not fully-filled.

To tackle this problem, we propose a data structure for

efficient streaming. As shown in Fig. 3, data are streamed

in an order as indicated by the arrows. In each iteration of

NS cycles, NS > LCmp points are processed together as a

group. A new contour value is streamed in at the beginning of

each iteration. In this manner, NS points are being processed

together in the pipeline to retain one output per clock cycle.

Nc21

Nc21

Nc21

Contours

1

2

Ns

Points

Group 1

Nc21

Nc21

Nc21

Contours

Ns+1

2

2Ns

Points

Group 2

Fig. 3. Data structure: NS points are processed in a group. Each point of
a group is iterated for NC times. Data are streamed in an order as indicated
by the arrows.

B. System Architecture

Fig. 4 shows our proposed system architecture which con-

sists of three major components.

Data-paths: As mentioned in Section IV, we employ reduced

precision on FPGA to compute the deviations. The high preci-

sion data-path on CPU re-computes the deviations which are

not sufficiently accurate, and then it calculates the penetration

depth based on the minimum deviation. The reduced precision

and high precision data-paths are interfaced by a comparator

and a memory architecture as described below.

Comparator: The comparator compares the values of two

deviations and determines which one is smaller. The FIFO

stores the latest minimum deviation which corresponds to a

Reduced-precision

Data-path

Comparator

Memory Array

Tracking Units

F
IF
O

Contour Counter

distance value condition

En[0:Ns-1]

In Index

Addr

Out Index

Point Counter

High-precision

Data-path
DRAM

contour

index

point &

contour

values contour

index

Fig. 4. System architecture: Solid lines represent communication on the
FPGA board while dotted lines represent the bus connecting the reduced
precision data-path on FPGA to the high precision data-path on CPU.

group of points. The FIFO has NS slots because NS points

are processed together. Since the deviations are calculated in

reduced precision, according to Section IV-B, either one of the

three conditions happens: (A) The distance from the data-path

is smaller; (B) The distance stored in the FIFO is smaller;

(C) The difference between the two distances is too small, so

re-computation in high precision is necessary.

Memory Architecture: The purpose of the memory architec-

ture is to store the contours that require re-computation. We

design a memory array as shown in Fig. 5. There are NS

rows, each of which corresponds to the computation of one

point which is addressed by a point counter. Each row consists

of NC elements and it serves as a buffer for contours that may

need re-computation. Instead of storing the contours in three-

dimensional coordinate, we store their indices to save memory

space. The indices are counted by a contour counter. There

are NS tracking units, each for one row, to keep track of the

latest elements where the indices should be written.

To understand the mechanism of memory architecture, con-

sider the example in Fig. 5(a). First, the deviation in distance

of point 1 is being calculated. If the comparator indicates

condition A, the value from the reduced precision data-path

is the smallest, and all previous values stored in that row will

be cleared. Second, the index corresponding to the new value

is written to element 1 of row 1. Third, tracking unit 1 is

updated to point to that element. If condition B is indicated, the

minimum value is already stored in the memory and no update

is required. Consider another example in Fig. 5(b) where the

calculation of point NS indicates condition C. Both the indices

in the memory and from the data-path should be stored. Thus,

a contour index is written to the next element and tracking

unit NS advances one element further.

After a group of points are processed, the contour indices

stored in the memory array are transferred to the high precision

data-path. To fully utilise the memory bandwidth, only non-

empty memory columns are transferred in burst to the DRAM

on the FPGA board.



Tracking Unit Ns

Tracking Unit 1

Addr

En1

Ns rows

Nc columns

(a) Condition A: the value from the reduced precision
data-path is the smallest, tracking unit 1 points to the
element 1 of row 1. Previous vales stored in row 1 are
cleared.

Tracking Unit Ns

Addr

EnNs

Tracking Unit 1

(b) Condition C: both the value in the memory and the
index from the data-path should be stored. A contour
index is written to the next element and tracking unit NS

advances one element further.

Fig. 5. Memory array stores contour indices for re-computation.

C. Performance Estimation

We derive a performance model to make the most effective

use of the FPGA’s resources. The results will be presented in

Section VI-B and VI-C. The total computation time TComp

is affected by the time spent on three parts: (1) the reduced

precision data-path on FPGA, (2) the high precision data-path

on CPU, (3) the data transfer through the bus connecting the

CPU to FPGA. Equation 18 shows the three parts respectively.

TComp = TpL + TpH + TTran (18)

As shown in Equation 19, the computation time of FPGA

depends on the number of points NP and the number of

contours NC . LpL
is the length of the data-path but this term

is usually negligible when compared with the amount of data

being processed. Each point needs LOutput cycles to output

indices on the memory array to DRAM. LOutput is affected

by the bit-width available between the FPGA and the DRAM

and their relations are shown in Equation 20.

TpL =
NP · (NC + LOutput)

freqpL ·NpL

+ LpL (19)

LOutput =
NC

NOutput

, NOutput =
WDRAM

WIdx ·NpL

(20)

The computation time of CPU is related to the amount of

TABLE I
PARAMETERS OF THE PERFORMANCE MODEL

NP Num. of points
NC Num. of contours
NpL Num. of reduced precision data-path
NpH Num. of high precision data-path
LpL Length of the data-path
NOutput Num. of outputs per data-path per cycle
LOutput Num. of output cycles
R Ratio of re-computation
WDRAM Bit-width of FPGA-DRAM connection
WIdx Bit-width of one contour index
freqpL Clk. freq. of reduced precision data-path
α Empirical constant of CPU speed
BWbus Bandwidth of the bus connecting the CPU to FPGA

data and the ratio of re-computation.

TpH = α ·R ·NP ·NC (21)

The data transfer time from the DRAM to CPU is judged

by the amount of data, the ratio of re-computation and the

bandwidth of the bus connecting the CPU to FPGA.

TTran =
R ·NP ·NC ·WIdx

BWbus

(22)

VI. EXPERIMENTAL EVALUATION

A. General Settings

We use the MPC-C500 reconfigurable system from Maxeler

Technologies for our evaluation. The system has four MAX3

cards, each of which has a Virtex-6 XC6VSX475T FPGA with

476,100 logic cells and 2,016 DSPs. The cards are connected

to two Intel Xeon X5650 CPUs and each card communicates

with the CPUs via a PCI Express gen2 x8 link. The CPUs

have 12 physical cores and are clocked at 2.66 GHz. We

develop the FPGA kernels using MaxCompiler which adopts

a streaming programming model and it supports customisable

floating-point data formats.

We also build a CPU-based system by implementing the PQ

formulation on a platform with two Intel Xeon X5650 CPUs

running at 2.66 GHz. The code is written in C++ and compiled

by Intel C compiler with the highest optimisation. OpenMP

library is used to parallelise the program for multiple cores.

IEEE double precision floating point numbers are used.

For the GPU-based system, we use an NVIDIA Tesla C2070

GPU which has 448 cores running at 1.15 GHz.

Our PQ implementation supports 100 contours and we set

an update rate of 1 kHz as the real-time requirement.

B. Parallelism versus Precision

Fig. 6 shows the overall computation time (TComp) and

the degree of parallelism of PQ versus different number of

mantissa bits. Please note that all different configurations of

mantissa bits have the same output accuracy. The data set

includes 73k points and 100 contours. The computation times

are obtained using our analytical model in Section V-C and

they are verified experimentally using the implementation. The

degree of parallelism is obtained by filling the FPGA with

data-paths until the logic cell utilisation exceeds 80% after the



placement and routing process. The degree of parallelism is

the highest when we start with four mantissa bits. Using more

mantissa bits decreases the parallelism as well as the ratio of

re-computation, therefore TpL
increases but TpH

decreases. As

shown by the dotted line in the figure, a minimum computation

time is achieved when 10 mantissa bits are used. Note that

when the number of mantissa bits is more than 36, only one

data-path can be mapped onto the FPGA. In such cases, we

can implement the data-path in double precision directly which

does not require any re-computation on CPU. This is indicated

by the last data points of both curves.
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Fig. 6. Computation time [dotted line] and the level of parallelism [solid
line] vs. different number of mantissa bits.

C. Ratio of Re-computation versus Precision

The dotted line in Fig. 7 shows the ratio of re-computation

versus the number of mantissa bits. The results are obtained

from a software version of PQ implementation with precisions

adjusted using MPFR library [21]. For each point, 100 com-

putations of deviation in distance are required. The ratio of

re-computation drops exponentially as the number of mantissa

bits increases. From the performance perspective, to the left

the ratio of re-computation is too high, to the right the decrease

of re-computation cannot offset the impact brought by the

decrease in parallelism. When the number of mantissa bits is

four, in average 2.66 out of 100 computations need to be re-

computed using high precision, i.e. the ratio of re-computation

is 2.66%. When the number of mantissa bits is greater then

15, the ratio of re-computation drops to 1% which is the

minimum value as only one out of 100 values is re-computed.

The last data points of both curves indicate the situation when

double precision is used on the FPGA and no re-computation

is necessary.

The solid line in Fig. 7 shows the number of point processed

in 1 ms versus the number of mantissa bits. The application

has a real-time update requirement of 1 kHz so the results

are updated every 1 ms. The number of required vertex points

is based on the user specification of the model resolution in

three-dimensional space. When the number of mantissa bits

is 10, the maximum number of points can be processed. It is

because the throughput is the highest by balancing the ratio

TABLE II
COMPARISON OF PQ COMPUTATION IN 1 MS USING CPU-BASED SYSTEM

(CPU), GPU-BASED SYSTEM (GPU), DOUBLE PRECISION FPGA-BASED

SYSTEM (FPGA DP) AND FPGA+CPU SYSTEM WITH REDUCED

PRECISION (FPGA RP)

CPU GPU FPGA DP FPGA RP
Clock freq. (MHz) 2,660 1,150 80 130 & 2,660 a

Num. of cores 12 448 4 20

Num. of mantissa bits 53 53 53 10 & 53 b

Num. of pL eval. (k) 0 0 0 1009.4
Num. of pH eval. (k) 173 106 320 10.1
Num. of total eval. (k) 173 106 320 1019.5
Eval. in pH (%) 100 100 100 1
Num. of points in 1 ms 173 1,064 3,200 10,094
Normalised speedup 1x 6.15x 18.5x 58.35x
Reduced precision gain - - 1x 3.15x

a FPGA and CPU clock frequencies.
b Reduced precision and high precision.

of re-computation and the degree of parallelism. Since more

points can be processed in real-time, we can handle a more

complex robot model with a finer resolution.
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Fig. 7. Ratio of re-computation [dotted line] and the number of points
processed in 1 ms [solid line] vs. different number of mantissa bits.

D. Comparison: CPU, GPU and FPGA

Table II compares the performance of PQ running on CPU,

GPU and FPGA in double precision arithmetic, and our

proposed reconfigurable system with CPUs and FPGAs.

In 1 ms, our proposed system is able to process 58 times

more points than a 12-core CPU system, and 9 times more

points than a GPU system. Without any optimisation, we can

only implement one double precision data-path on an FPGA.

Our proposed approach can support five reduced precision

data-paths to be implemented in parallel on one chip, i.e. 20

data-paths in total on the 4-FPGA system. The clock frequency

is also higher because reduced precision simplifies routing of

signals. The performance gain over a double precision FPGA

implementation is over 3 times.

Fig. 8 shows the computation time for a PQ update against

the number of vertex points. The black solid line indicates

the real-time bound of 1 ms. In the CPU-based system, even

with the fastest configuration (12 cores), only 173 points can

be processed in real-time. Meanwhile, the performance of our



proposed 1-FPGA system is on-par with a 4-FPGAs system in

double precision. Our proposed 4-FPGAs system can process

10,094 points within the 1 ms interval.
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VII. CONCLUSION

This paper presents a reconfigurable computing solution to

proximity query computation. To the best of our knowledge,

our approach is the first to apply FPGAs to this problem.

We transform the algorithm to enable pipelining and ap-

ply reduced precision methodology to maximise parallelism.

Run-time reconfiguration is employed to optimise precision

automatically. We then map the optimised algorithm to a

reconfigurable system with four Virtex-6 FPGAs and 12 CPU

cores. Our proposed system achieves 478 times speedup over

a single-core CPU, 58 times speedup over a 12-core CPU

system, 9 times speedup over a GPU, and 3 times speedup

over an FPGA implementation in double precision. Since more

points can be processed in real-time, we can handle a more

complex robot model with a finer resolution.

The work shows the potential of reconfigurable computing

for PQ. Real-time performance is the pre-requisite to enable

Dynamic Active Constraints, which has drawn increasing at-

tention for effective human-robot collaborative control. Future

work includes extending the current run-time reconfigurable

architecture to cover other real-time applications that can

benefit from the reduced precision approach. These appli-

cations, such as the real-time PQ between a robotic device

and a rapidly deforming anatomy, will help us to evaluate

the impact of run-time reconfiguration on various data sets.

We are currently extending this work to cover imaged-guided

catheterisation, particularly for cardiac electrophysiology in-

tervention. To deal with the rapid deformation of the heart

and the associated vessels, it is vitally important to provide

the operator of a surgical robot online intra-operative guidance

in real time, for which fast and efficient PQ computation is

essential.
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