
Accelerating Sequential Monte Carlo Method for Real­time
Air Traffic Management

Thomas C.P. Chau1, James S. Targett1, Marlon Wijeyasinghe2,
Wayne Luk1, Peter Y.K. Cheung2, Benjamin Cope3, Alison Eele4, Jan Maciejowski4

1Department of Computing, 2Department of Electrical and Electronic Engineering

Imperial College London, United Kingdom
3Altera Europe Limited, United Kingdom

4Department of Engineering, University of Cambridge, United Kingdom

email: {c.chau10, james.targett10, marlon.wijeyasinghe09, w.luk, p.cheung}@imperial.ac.uk,

bcope@altera.com, {aje46, jmm1}@cam.ac.uk

ABSTRACT

This paper presents how field-programmable gate arrays (FP-
GAs) are used to accelerate the Sequential Monte Carlo
method for air traffic management. A novel data structure is
introduced for a particle stream that enables efficient evalu-
ation of constraints and weights. A parallel implementation
for this streaming data structure is designed, and an analyt-
ical model is provided for estimating the performance and
resource usage of our implementation. We compare our de-
sign to implementations on CPU and GPU. We show 9.3
times speed up and 89 times improvement in energy effi-
ciency over an Intel Core i7-950 CPU with 8 threads and
demonstrate 1.3 times speed up and 13.5 times improvement
in energy efficiency over an NVIDIA Tesla C2070 GPU with
448 cores. We also estimate the performance of FPGA in
future scenario and show that FPGA is able to control 15
times and 2.8 times more aircraft than CPU and GPU in
real-time respectively.

Keywords

Air Traffic Management, Sequential Monte Carlo

1. INTRODUCTION
Sequential Monte Carlo method (SMC), also known as

Particle Filter, is a computationally intensive state estima-
tion technique that is applied to solve dynamic problems
involving non-Gaussianity and non-linearity. SMC keeps
track of a large number of particles, where each contains
information about how a system should evolve. The current
state of a system is approximated by the collection of parti-
cles. The more complex the problem, the larger the number
of particles that are needed. Each particle requires many
floating-point operations. It is observed that time required
to carry out SMC in a sequential manner is prohibitive for
use in real-time systems. A detailed discussion of SMC can
be found in [1].
Air Traffic Management (ATM) is concerned with the

routing and scheduling of aircraft in regions of airspace.
The main concerns lie with avoiding dangerous encounters
around the terminal manoeuvring area through maintenance

This work was presented in part at the fourth international sympo­
sium on Highly­Efficient Accelerators and Reconfigurable Technologies
(HEART2013), Edinburgh, Scotland, UK, June 13­14, 2013.

of safe separation between aircraft [2]. Nowadays the pro-
cess is largely performed by humans but attempts are be-
ing made to automate this process [3]. The current ATM
system is near the upper limit of traffic it can safely ac-
commodate [4]. The level of anticipated growth in avia-
tion travel is predicted to double in the next 20 years [5,6].
SMC has been studied extensively in controlling air traf-
fic [2, 7]. In [2], SMC is applied on scenarios with multiple
aircraft flying under the effects of wind and additional un-
certainty. It is observed that the time required to solve such
problems is currently prohibitive, not to mention meeting
future requirements [2]. Various attempts have been made
to simultaneously process SMC using multi-threaded CPU
or GPU, in applications such as object tracking [8], signal
processing [9] and robot localisation [10]. However, due to
complicated iterative nature of ATM, research in accelerat-
ing SMC for ATM through parallelisation is limited. The
sequential implementation of ATM does not have sufficient
speed for real-time practice [2].

This paper presents techniques for accelerating SMC in
ATM through the use of FPGA. We also implement the
application on multi-threaded CPU and GPU. The contri-
butions of this paper include:

• We develop a novel data structure for a particle stream
that enables efficient evaluation of constraints and
weights.

• We provide a parallel implementation for this stream-
ing data structure, and an analytical model for esti-
mating the performance and resource usage of our im-
plementation.

• Our FPGA design is 9.3 times faster and 88.5 times
more energy efficient than an Intel Core i7-950 CPU
with 8 threads, and 1.3 times faster and 13.4 times
more energy efficient than an NVIDIA Tesla C2070
GPU with 448 cores.

2. BACKGROUND
The underlying concept of SMC is to approximate a se-

quence of states as a collection of particles. Each particle is
weighted to reflect the quality of an approximation. The col-
lection of particles varies with time as they are propagated
iteratively using a sequential sampling and resampling mech-
anism. In this way a sample is drawn from the population
of particles to act as an estimator of the current state.

The task of ATM is to control aircraft that appear concur-
rently around the terminal manoeuvring area. The number
of aircraft is denoted as NA. When applying SMC method
on ATM, each particle contains information of all aircraft,
in which each has a known state. The state consists of the
current position in 3 dimensional space (x, y, a), heading an-
gle χ, velocity V and mass M . From change in mass we can
calculate the fuel usage. Each aircraft has a destination G.
The states of aircraft change with time. The state at time

t is denotes as St. The SMC algorithm produces a good
choice of controls for the aircraft for one time step.
When applying on ATM, the SMC algorithm is repeated

to estimate the path of the aircraft further into the future.
The algorithm consists of 5 main steps:
(1) Trajectory planning: ATM control is based on finite
horizon optimization. SMC aims to find a good set of con-
trols for each aircraft such that the resultant sequence of
states makes good progress towards the goal. The method
uses a set of particles, each of which estimates a state and
a control sequence for all aircraft.
At time step t, for each particle, the current state St is

sampled and a control strategy is computed for a horizon
H in the future. During planning, the algorithm explores
trajectories that emanate from the current state and finds
a control strategy until time t + H − 1. Eventually, only
the first step of the control strategy C∗0t has the chance
to be committed. The control at time step t is denoted
as C0...H−1

t . The corresponding states across the horizon
are denoted as S∗0,...,H−1

t , which are described as explor-

ing states. For simplicity, we use transition to describe the
movement between exploring states.















x′

y′

a′

V ′

χ′

M ′















=















x+ δtV cos(χ′) cos(τ)
y + δtV sin(χ′) cos(τ)

a+ δtV sin(τ)
χ+ δtL sin(φ)/(MV)

V + δt(T
M

− D
M

− g sin(τ))
M − ηδtT















(1)

A state consists of a vector (x, y, a, V, χ,M), and a con-
trol is a 3-tuple: roll angle φ; pitch angle τ ; and thrust T .
g, η, P, ρ, CL, CD, L,D are application-specific constants [2].
(2) Score calculation: SMC uses a score function to eval-
uate the quality of estimate by each particle. The score at
one time step takes distance from destination G, fuel usage
and altitude into account.

J(k) = αdistance Jdistance(k)+

αfuel Jfuel(k) + αaltitude Jaltitude(k)
(2)

As an illustration, the score contributed by distance is
shown below.

Jdistance(k) =
(
√

(x0 −Gx)2 + (y0 −Gy)2 + kδtVmax

−
√

(x−Gx)2 + (y −Gy)2 + (a−Ga)2)
)

/(k + 1)

(3)

(3) Constraint handling: The algorithm makes sure there
is no failed constraint such that all aircraft fly in a normal
manner and are kept apart by minimum safe distances. If
an aircraft fails any constraints relating to its own transition
or its position relative to the other aircraft then its weight
must be set to zero.
Equation 4 shows the single aircraft constraints which en-

sure that the aircraft only perform reasonable manoeuvres.

Inter-aircraft constraints ensure that aircraft maintain min-
imum safe distances. Each aircraft is surrounded by a con-
ceptual cylinder of diameter 2PR and height 2PH . If the
cylinders of two aircraft intersect, the aircraft are considered
to be in conflict and they fail the constraint. The constraint
for aircraft i is thus expressed in Equation 5:

(φmin ≤ φ ≤ φmax) ∧ (τmin ≤ τ ≤ τmax) ∧ (Tmin ≤ T ≤ Tmax)

∧ (Vmin ≤ V ≤ Vmax) ∧ (amin ≤ a ≤ amax) ∧ (Mmin ≤ M)
(4)

(
√

(xi − xj)
2 + (yi − yj)

2 < 2PR

)

∧ (|ai − aj | < 2PH) ∧ (j 6= i)

∀j ∈ {0, ..., NA − 1}
(5)

(4) Weight calculation and normalisation: The weight
W of each particle is calculated as the sum of scores of the
transitions across the horizon. The weight of particle with
failed constraints will be zero.

W =

H−1∑

k=0

J(k) (6)

(5) Resampling: The idea of resampling is to remove the
particle trajectories with small weights and replicate the
trajectories with large weights. The resampling step is to
reduce the variance of the particle weights quickly. Oth-
erwise, the inference would be degraded because very few
normalized weights are substantial and only a small number
of particles can be used for inference.

3. KERNEL DESIGN
Our FPGA design attempts to take advantage of the abun-

dant logic resources of the FPGA to simultaneously process
particles in two aspects: a) exploiting spatial parallelism,
b) utilising the pipeline by arranging particles in stream.
Figure 2 shows how a stream of NP particles is organised
in a data structure that enables efficient evaluation of con-
straints and weights. The importance of this data structure
will emerge after the description of the flow illustrated in
Figure 1.

In the Initialisation stage, the control of each particle is
picked randomly within a permitted range. The weight W
is initialised to 1/NP . The set of particles are iterated for
Schedule R times. At each iteration, random noises are
added to the control which become C∗0...H−1

t .
In the Sampling stage, the effect of control in the trajec-

tory of aircraft is reflected in states S∗0...H−1
t using Equa-

tion 1. This stage is iterated for H times to compute all
the exploring states. Then S∗0...H−1

t are evaluated using
the score function in Equation 2. Any control that violates
constraints in Equation 4 and 5 is marked with a fail flag.

In the Weighting stage, a weight W is assigned to each
particle as indicated in Equation 6. The sampling and weight-
ing stage is iterated for Schedule W (i) times, at each time
random noises are added to the controls. W is updated
and normalised in every iteration such that those estima-
tions with sustainable good effects are assigned higher val-
ues. The value of Schedule W (i) increases with the number
of resamples performed, because the set of particles is re-
flecting a closer approximation after each resample.

In the Resampling stage, particles are either replicated
or deleted according to their weights. In the Update stage,

i<Schedule_R

Initialise weights

Add noise to controls

St

S*t
0 W

j<Schedule_W(i)

k<H

Trajectory planning

w/ noise

Score calculation

Constraint handling

C*t
k

S*t
k

Score S*t
k+1

Weight calculation

Weight normalisation

Score W

W

Resampling

C*t
0...H W

Pick the best particle

Commit the control

St

Time step t

i=j=k=0

if i <Schedule_R

St+1

Ct
0...H

Generate controls

Ct
0...H

C*t
0...H

Ct
0...H

Ct
0

Figure 1: Control and data flow of SMC applied on ATM.
Data are in circles; processes and controls are in rectangles.

the best particle in the set is selected and the corresponding
control is committed to the aircraft.
Referring to Figure 1, three challenges are identified:

1. Data dependency: the control flow consists of nested
loops and conditional branches. To minimise the im-
pact of data dependency, the stream of particles needs
to be buffered in an optimised order.

2. Iterative process: in the inner loop, each particle need
to go through the sampling stage for schedule R ×
schedule W ×H times.

3. Randomness: the resampling process relies on random-
ness to replicate and eliminate particles. The ordering
of particle is infeasible for streaming.

To address challenge 1, we introduce a novel data struc-
ture by organising particles as a stream as shown in Fig-
ure 2. A particle contains information for all aircraft {Ai|i =

0, ..., NA − 1}. In the Sampling stage, data dependency ex-
ists as the current exploring state (S∗kt) is used to compute
the transition to S∗k+1

t . Therefore, a stream is divided into
H parts, each of which represents all the particles in one step
of the horizon. Meanwhile, as the detection of inter-aircraft
constraints requires pairwise comparison between aircraft,
the data of each aircraft are packed together within a par-
ticle such that the results are produced consecutively.

A0A1A2A3A0A1A2A3A0A1A2A3

Particle 0Particle NP-1Particle 0

Horizon 0Horizon 1

Figure 2: A stream of particles when NA = 4

Challenge 2 implies that the inner loop retains most floating-
point operations. Therefore, as illustrated in Figure 3, a
customised kernel is designed with dedicated hardware ar-
chitecture for accelerating the inner loop. Control decisions
are kept outside the kernel such that the kernel is fully-
pipelined. The kernel can be replicated as many times as
FPGA resources allow such that the core computation can
achieve the maximum speedup. The names of the blocks are
mapped to the operations depicted in Figure 1.

Controls States

Stream Buffer

Trajectory planning

Score calculationConstraint handling

Weight calculation

Weight normalisation
(NA blocks in parallel)

Weights

Figure 3: Kernel design

Stream buffer: It is the point where the data enter the
kernel. Controls are accepted from outside the kernel for
every sampling process. States are only accepted for the
first transition (k = 0) because future states will be fed
back from the Trajectory planning block. The Stream Buffer

communicates with the sender to inform it when the kernel
can accept new data. The data of the Trajectory planning

block need not to be transferred outside the kernel, thus
retaining the throughput.
Trajectory planning: On each clock cycle the Stream

Buffer sends a set of state and control to the Trajectory

planning block, which then calculates the new state. As the

algorithm finds a control strategy until time t+H − 1, the
states across the horizon {S ∗kt |k = 0...H − 1} need to be
passed back to the stream buffer for H − 1 times. Mean-
while, the state is sent to the Score calculation block and
the Constraint handling block.
Score calculation: This block uses the new states from the
Trajectory planning block to calculate a score of H transi-
tions.

c b a

c b a
d

(a) stage 1

b a d c

d c b a

d/a
d/b

c/d
c/a

b/c
b/d

a/b
a/c

(b) stage 2

Figure 4: Inter-aircraft constraints detection when NA = 4

Constraint handling: This block uses the control from the
stream buffer and the new state from the Trajectory plan-

ning block to calculate whether any constraint has been vi-
olated. The single-aircraft constrains are computed simply,
however, the inter-aircraft constrains require the state of the
other aircraft in the particle. An Inter-aircraft constraints

detection block is designed to make use of the specialised
data structure that the information of aircraft is arranged
consecutively,
As shown in Figure 4, the block has two shift buffers to

buffer a set of aircraft such that collisions can be tested in
parallel. Each shift buffer stores NA locations. In stage one
(Figure 4(a)), we shift the buffered aircraft’s locations into
the shift buffer for NA cycles. In stage 2 (Figure 4(b)), one
buffer remains unchanged, whereas the other buffer contin-
ues shifting with the end value sent back into the start of
the shift register. This stage process lasts for NA cycles. For
example, to detect collisions between the first aircraft, we
check the output of the first element of the static buffer. In
the second cycle of stage 2, the output shows whether the
first aircraft collides with the second aircraft. If we take an
or operation of all output values of the first element of the
static buffer, we find the result of the collision constraint for
the first aircraft. If any constraint fails, the score is replaced
with a fail flag. The score of the transition for each aircraft
is then sent to the Weight calculation block.
By this scheme, the collision detection of all NA aircraft

are done in parallel. However, this method has a bottleneck
as it takes 2NA cycles to process NA cycles of input data.
A näıve solution to compute using NA cycles is to duplicate
the entire process such that collision detection is done for
two particles together. However, the blocks for evaluating
the collision detection (marked as circles in Figure 4(b)) are
only in use during stage 2. We only have to duplicate the
shift registers and introduce a multiplexer to share the com-
putation section. It is similar to the idea of double buffering.
Therefore, when the set of aircraft from one particle is com-

Processor

On Chip
Memory

States TX

Resample
Memory

Controls TX
Noise

Addition

NC kernels in parallel

Figure 5: System design (TX - memory transmission blocks)

puted in stage 2, the set for the next particle in the stream
is filling up the shift registers.
Weight calculation: The purpose of this block is to com-
bine the scores of the transitions across the horizon. The
operation is essentially accumulation. Therefore, for com-
putation of the weight of a particle, this block consists of a
FIFO long enough to store a score for each aircraft of each
particle. Each score that is received by the block is added
to the score at the head of the FIFO. For example, when
the score of the first aircraft at k = 2 arrives, the head of
the FIFO is storing the sum of the scores at k = 0 and 1 of
the first aircraft. Eventually, each item of the FIFO is the
sum of the scores it received for each particle and the scores
are then streamed out as the weights.
Weight Normalisation: There is a separate Weight Nor-

malisation block for each aircraft. The stream coming from
the Weight calculation block is considered as being time-
multiplexed on aircraft. Therefore, the stream is split to
the separate blocks, each of which contains a FIFO long
enough to store a weight for each particle. In the first stage,
each weight received from the weight calculation block is
multiplied by the head of the FIFO and stored back in the
FIFO. Meanwhile, the value that was stored is added to an
accumulator. At the end of each sequence of weights, each
weight in the FIFO is the product of all the weights for that
particle, and the accumulator value is the normalisation con-
stant. In the second stage, values are read out of the FIFO
and they are divided by the normalisation constant. The
result of this stage is a stream of the normalised weights
stored in the FIFO for the next iteration in the kernel or
the resampling stage in the processor.

4. SYSTEM DESIGN
To address the iterative processing and the randomness is-

sue mentioned in challenges 2 and 3 of Section 3, we partition
the system into three parts: a) kernels, b) soft-processor,
c) custom interface that connects kernels and processor to-
gether. The system design is outlined in Figure 5.
Soft-processor and on-chip memory: The soft-processor
controls the iterative invocation of kernels, and the stream-
ing of data between each iteration. The processor also allows
random addressing of particle data during the resampling
process. Resampling is not the bottleneck of computation,
so it is performed on the soft-processor in the current design.
It is possible to move this stage to hardware in the future.

There are two considerations in organising memory and
IO access for the streaming of data into the kernels:

1. The processor covers multiple kernels running in paral-

lel. However, the processor can only write data serially
through a bus with limited data width while each ker-
nel can accept a much larger data width. Streaming
data into the kernels serially would represent a large
overhead.

2. Each kernel receives the same set of data many times.

Therefore, we design a custom interface that can make
good use of the kernels and prevent the performance from
being constrained by the bandwidth between the kernels and
processor.
Custom interface: To achieve maximum performance, data
should be streamed into the kernels in parallel. Since the
processor is only capable of transmitting data in serial, we
introduce two customised memory transmission (TX) blocks
as intermediaries between the processor and the kernels.
One is used for the states (States TX) and the other is used
for the controls (Control TX). The TX blocks do the serial
to parallel conversion, and hence the processor writes data
in serial in just once.
For the first iteration of loop Schedule W , the processor

writes data into the TX blocks. Then through control reg-
isters, the processor instructs States TX and Control TX

to stream data to all the kernels multiple times in parallel.
The performance gain is obtained from the fact that in sub-
sequent iterations, the processor does not have to repeatedly
transfer large amounts of data. Data about state and con-
trol of the aircraft are transferred in burst through Direct
Memory Access (DMA). It is not necessary to replicate data
across the on-chip memory and the TX blocks, and hence
we can reduce the size of on-chip memory.
For every control that is sent to the kernels, it has random

noise added to it. The Noise addition block intercepts the
stream to Controls TX and adds the noise.
The resampling step takes the control data and resamples

them according to weights that are received from the kernels.
During the process, the controls are updated, but at the
same time, the original controls are needed throughout the
process. Therefore, a Resampling memory is introduced to
store the original controls so they are not overwritten as
Resampling memory has the same size as the Control TX

block. The controls are copied from the Control TX block
to the Resampling memory via DMA such that the copy
process occurs in parallel with the kernel operation.
Performance model: Performance changes with a num-
ber of design parameters: the number of aircraft (NA), the
number of particles (NP), the length of horizon (H) and
the number of kernels processing data in parallel (NC). We
derive an analytical model for performance estimation as
shown in Equations 7 to 9. The model will be used in Sec-
tion 5 to describe the scalability of the system design.

Completion time =
γ1

NAmaxNPH

NC
+ γ2NANPH + γ3NP + γ4

fMax
(7)

NAmax is a compile time parameter that accounts for the
maximum number of aircraft the design can accommodate.
γ1 to γ4 are constants calibrated empirically. The γ1 compo-
nent is the time spent in the kernels. The γ2 component is
the time taken for the processor to stream and read controls,
and to complete the resampling stage. The γ3 component is
the time used for the particles to pass through the Weight

normalisation step. γ4 summerise the time used in various
initialisation steps and control steps.

LUT/DSP usage = β1NA + β2NANC + β3NC + β4 (8)

Similarly, β1 to β4 are constants calibrated empirically.
The β1 component is due to theWeight normalisation blocks
which has fixed size but duplicated with the number of air-
craft. The β2 component accounts the Inter-aircraft con-

straints detection block as NA checks happen concurrently
in each kernel. The β3 component summerises the resources
used in the rest of the each kernel. The β4 component is the
resources consumed by the soft core processor.

Memory usage = α1NAH + α2NA + α3NANP

+ α4NANPNC + α5NC + α6

(9)

The α1 component is the Control TX. The α2 component
is the State TX. The α3 component is the buffer stored in
the normalisation blocks. The α4 component is the stream
buffer in each kernel. The α5 component is register bits used
through each kernel for pipelining. The α6 component is the
memory used in the processor and to hold the program and
stack that the processor runs.

5. RESULTS
Light air traffic: To simulate a realistic scenario, we apply
the flight plan from [2]. The terminal manoeuvring area is
considered as a circle of radius 30km. The real-time require-
ment is 30s (thirty seconds). The plan also sets NP = 1024
and H = 6 for decent trajectory planning results. As an
example, we study a 4-aircraft scenario, i.e. NA = 4.

A single-kernel FPGA design is implemented on an Al-
tera DE4 development board. Single precision floating-point
data type is being used. The board accommodates a Stratix
IV EP4SGX530 FPGA with 424,960 ALUTs, 1,024 embed-
ded multipliers and 21.2Mb of block memory. The soft-
processor is implemented using a Nios II/f core. Multiple
clock domains are employed such that the kernel is clocked
at 170MHz and the soft-processor is clocked at 195MHz.
The design occupies 24% of ALUT, 88% of embedded multi-
pliers and 56% of block memory. Due to resource limitation,
we can only implement one kernel on the DE4 board.

If more embedded multipliers are available on the FPGA,
we can replicate more kernels to process data in parallel.
We target our design to a Stratix V 5SGSD8 FPGA with
524,800 ALUTs, 1,963 DSP blocks and 52.6 Mbit of block
memory. Figure 6 shows the resource utilisation for different
number of kernels (NC). The data are obtained from post
placement and routing report of the design tool. The system
frequency is targeted at 200MHz.

We observe that resource utilisation scales linearly with
the number of kernels. The resource of Stratix V 5SGSD8
FPGA can support up to 5 kernels. The results match the
analytical model in Equation 8 to 9. We also notice that
the system frequency decreases from 200MHz for 1 kernel to
150 MHz for 5 kernels. The main reason is that the routing
is more congested as there are more kernels occupying the
resources on the FPGA.

Table 1 shows the speed and power performance of our
FPGA designs compared with CPU and GPU. Our designs
on FPGA, even for one kernel setting on Stratix IV, are able
to meet the 30s real-time requirement. The FPGA design

0

20

40

60

80

100

0 1 2 3 4 5 6

R
es
o
u
rc
e
u
ti
li
sa
ti
o
n

Number of kernels

ALUT
DSP

MEM

Figure 6: Resource utilisation vs. number of kernels when
NAmax = 4

Table 1: Performance comparison when NAmax = 4

CPU a GPU b FPGA1 c FPGA2 d

No. cores 8 448 1 5

Comp. Time (s) 36.2 5.1 3.9 2.2 e

Time eff. 1x 7.1x 9.3x 16.5x

Active power (W) 247 265 26 -
Idle power (W) 133 153 19 -

Energy (J) 8940 1350 101 -
Energy eff. 1x 6.6x 89x -

a CPU: Intel Core i7-950 @3.06GHz with 8 threads, op-
timised by Intel Compiler.

b GPU: Nvidia Tesla C2070.
c FPGA1: Altera Stratix IV EP4SGX530.
d FPGA2: Altera Stratix V 5SGSD8.
e Estimated by Equation 7.

has over 13 times improvement in energy consumption com-
pared with the GPU implementation. Meanwhile, the CPU
is not able to meet the real-time requirement and it is almost
90 times less energy efficient than the FPGA design.
Heavy and future air traffic: In addition, we apply the
heavy traffic scenario from [2].

1

10

100

0 10 20 30 40 50

C
o
m
p
le
ti
o
n
ti
m
e
in

se
co
n
d
s

Number of aircraft

CPU
GPU

FPGA NC = 1, NAmax = 4
FPGA NC = 1, NAmax = 20
FPGA NC = 5, NAmax = 20

FPGA NC = 10, NAmax = 50
Real-time bound

Figure 7: Completion time vs. number of aircraft

Refer to Figure 7, the curve ’NC = 1, NAmax = 20’ illus-
trates the performance of the FPGA designed to accommo-
date a maximum of 20 aircraft. The kernel processing time
is fixed, but the resampling time increases as the aircraft
processed varies from 1 to 20. On the other hand, the curve
’NC = 5, NAmax = 20’ shows the situation when the FPGA

design has 5 kernels. The kernel processing time decreases
by 80%, but the resampling time is not improved.

We also study a future scenario which has 50 aircraft cir-
culating together in the terminal manoeuvring area. Though
the current FPGA does not have enough resources for such
design, we apply the experimental results of
’NC = 1, NAmax = 4’ to calibrate the model mentioned in
Section 4. The curve ’NC = 10, NAmax = 50’ predicts the
performance of an FPGA design that aims to accommodate
50 aircraft’s traffic. It shows that the FPGA can meet the
30s real-time requirement upto 45 aircraft and outperforms
CPU and GPU which can only handle 3 and 16 aircraft re-
spectively. The FPGA design scales better than CPU and
GPU in dealing with extremely heavy air traffic.

6. CONCLUSION
This paper has demonstrated how SMC is accelerated us-

ing FPGA technology, which provides a promising solution
for large-scale air traffic management. The FPGA design
is shown to be faster and more energy efficient than those
implemented on CPU and GPU. Future work includes mov-
ing the resampling stage to the kernel block such that the
FPGA design can scale better for future air traffic. A larger
FPGA or a multi-FPGA platform would allow more aircraft
to be processed in real-time.

Acknowledgment. This work is supported in part by
the European Union Seventh Framework Programme under
grant agreement number 257906, 287804 and 318521, by UK
EPSRC, by the Croucher Foundation, and by Altera.

7. REFERENCES
[1] A. Doucet, N. de Freitas, and N. Gordon, Sequential

Monte Carlo Methods in Practice. Springer, 2001.
[2] A. Eele and J. Maciejowski, “Comparison of stochastic

methods for control in air traffic management,” in
Proc. IFAC World Congress, 2011.

[3] J. A. Atkin, E. K. Burke, J. S. Greenwood, and
D. Reeson, “On-line decision support for take-off
runway scheduling with uncertain taxi times at
London Heathrow airport,” Journal Scheduling,
vol. 11, no. 5, pp. 323–346, Oct. 2008.

[4] European Commission, “Single European sky: report
of the high-level group,” 2001.

[5] Federal Aviation Authority, “FAA aerospace forecasts
for years 2009-2025,” 2009.

[6] Eurocontrol Air Traffic Statistics and Forecast Service,
“Long-term forecast of air traffic (20082030),” 2009.

[7] I. Lymperopoulos and J. Lygeros, “Sequential monte
carlo methods for multi-aircraft trajectory prediction
in air traffic management,” Int. Journal Adaptive
Control and Signal Processing, vol. 24, no. 10, pp.
830–849, 2010.

[8] M. Happe, E. Lübbers, and M. Platzner, “A
multithreaded framework for sequential monte carlo
methods on CPU/FPGA platforms,” in Proc. Int.
Workshop Reconfigurable Computing: Architectures,
Tools and Applications, 2009, pp. 380–385.

[9] G. Hendeby, J. Hol, R. Karlsson, and F. Gustafsson,
“A graphics processing unit implementation of the
particle filter,” in Proc. European Signal Processing
Conf., 2007, pp. 1639–1643.

[10] T. Chau, X. Niu, A. Eele, W. Luk, P. Cheung, and
J. Maciejowski, “Heterogeneous reconfigurable system
for adaptive particle filters in real-time applications,”
in Proc. Int. Symp. Applied Reconfigurable Computing,
2013, pp. 1–12.

