Application-Specific Customisation of Market Data
Feed Arbitration

Stewart Denholm*, Hiroaki Inoue', Takashi Takenaka' and Wayne Luk*
*TImperial College London, UK
{swd10, wl} @doc.ic.ac.uk
NEC Corporation, Kawasaki, Japan
{h-inoue@ce, takenaka@aj}.jp.nec.com

Abstract—Messages are transmitted from financial exchanges
to update their members about changes in the market. As UDP
packets are used for message transmission, members subscribe
to two identical message feeds from the exchange to lower
the risk of message loss or delay. As financial trades can be
time sensitive, low latency arbitration between these market
data feeds is of particular importance. Members must either
provide generic arbitration for all of their financial applications,
increasing latency, or arbitrate within each application which
wastes resources and scales poorly. We present a reconfigurable
accelerated approach for market feed arbitration operating at
the network level. Multiple arbitrators can operate within a
single FPGA to output customised feeds to downstream financial
applications. Application-specific customisations are supported
by each core, allowing different market feed messaging proto-
cols, windowing operations and message buffering parameters.
We model multiple-core arbitration and explore the scalability
and performance improvements within and between cores. We
demonstrate our design within a Xilinx Virtex-6 FPGA using
the NASDAQ TotalView-ITCH 4.1 messaging standard. Our im-
plementation operates at 16Gbps throughput, and with resource
sharing, supports 12 independent cores, 33% more than simple
core replication. A 56ns (7 clock cycles) windowing latency is
achieved, 2.6 times lower than a hardware-accelerated CPU
approach.

I. INTRODUCTION

Financial institutions require up-to-date information for
risk management, the operation of algorithmic trading, and
for identification of arbitrage opportunities. Such information
is provided by exchanges via a market data feed. Messages
describing the current state of the market, such as market
events related to available and completed trades, are multicast
to financial institutions which have subscribed to market data
feed services.

The time-sensitive decisions that applications make based
on the current state of the market are highly dependent on
data feed messages being received and presented in order.
Incomplete information increases financial risk and results in
reduced opportunities for trade.

As message feeds are typically transmitted over Ethernet
using UDP, messages may be lost or arrive out of order. To
combat this, institutions subscribe to two identical message
feeds from the exchange. Work is then required to merge these
feeds, either using a single one-size-fits-all windowing scheme,
or an application-specific approach within every application.

We accelerate market data feed arbitration on an FPGA
at the network level, reducing software processing, and al-
low multiple, independent arbitrators per FPGA. By allowing
arbitration cores to be independently customised we support

978-1-4799-2198-0/13/$31.00 ©2013 IEEE

-322-

multiple downstream processing platforms and applications.
Sharing resources on the FPGA also permits the use of more
cores compared to a simple core replication scheme.
The new contributions of our work include:
- A reconfigurable market feed arbitrator where multi-
ple, independent arbitrators can operate within a single
FPGA, sharing resources to improve scalability. Arbi-
tration uses a timeout & message counting windowing
mode, for which the thresholds can be set at runtime.
- Performance models examining the scaling of ar-
bitration to support multiple platforms, and how
application-specific customisations in arbitrators affect
downstream applications and other arbitration cores.
- Implementation and evaluation of multiple market
feed arbitrators within a Xilinx Virtex-6 FPGA using
the NASDAQ TotalView-ITCH 4.1 message feed stan-
dard. We achieve 16Gbps throughput and a 56ns (7
clock cycles) windowing latency. Scalability, customi-
sation and resource optimisations are also examined.

The paper is organised as follows. Section II reviews past
market data feed processors. Section III gives the details of
feed arbitration, its customisations and how we achieve it
within our design. Section IV presents an analytical model for
scaling and customisation. Section V describes our arbitrator’s
implementation within a Virtex-6 FPGA. Section VI presents
the results of the experiments carried out on our implementa-
tion. Finally, Section VII draws conclusions.

II. RELATED WORK

Feed arbitration is performed in [1] with a Celoxica AMC
board as part of an OPRA FAST trading platform. It has a
3.5M messages per second throughput and hardware latency
of 4us. The arbitration latency is not given and there are no
opportunities to customise arbitration or discussions on how it
was configured for their design.

Some works, like the high frequency trading IP library
from Lockwood et. al. [2], mention arbitration, but do not
implement it. Most works, however, do not address it at all,
such as the OPRA FAST feed decoder from Leber et. al. [3].
Our customised, multi-arbitration design is then ideally suited
to feed into these systems.

For feed processing platforms within FPGAs, the difficulty
lies in the functions they provide. It can be extremely difficult
to customise or expand upon the implemented features due
to the limited space within an FPGA. Such platforms are then
unlikely to be deployed within financial institutions unless their
design specifically matches the institution’s needs, including
the market data feed protocol used.

(Maximum-count = 2)

nBIEIEIGI6] [A][F]] Rdfl

out: [5]6]7] 91011
P
>Timeout, <Count <Timeout, >Count
Fig. 1. An example of time & message count based arbitration.

Stand-alone arbitrators tend to be implemented within net-
work interface cards (NICs), such as Solarflare’s arbitrator [4]
based on the Altera Stratix V FPGA. It supports either a low
latency or maximum reliability mode, the latter being similar
to our windowing approach, but it supports only one arbitration
core and lacks options for application-specific customisation.
Multiple message protocols are supported, but no processing
latency figures are available.

Even if stand-alone designs such as [4] offered customi-
sation options, they are not scalable for applications spanning
multiple nodes. Each node would require the enhanced NIC,
with each card performing the same feed arbitration work.

Our approach is to create a single customisable market feed
arbitrator at the network level able to support many different
applications and market data feed protocols. The arbitrator
should also be small enough to facilitate multiple cores op-
erating within one FPGA, allowing resources to be shared,
improving scalability and enabling a number of downstream
applications to use the same arbitrator platform.

III. MARKET DATA FEED ARBITRATION

Exchanges can transmit multiple messages within one UDP
packet. Dealing with missing or out-of-order packets therefore
requires we treat network packets as the smallest unit of data
we process and store during arbitration. The network level,
rather than within the host, is then the logical platform for
arbitration. The challenge then becomes how to:

e customise arbitration for financial applications;
e provide a scalable platform to host multiple, indepen-
dent arbitration cores within an FPGA.

Merging two market data feeds is facilitated via unique
identifiers within each message, typically taking the form of
an incrementing sequence number. Market data feed protocols
either utilise sequence numbers at the message level, like
OPRA [5], or the packet level, like NASDAQ TotalView ITCH
[6]. As the sequence number location within our arbitrator is
customisable, any protocol or financial exchange may be used.
For protocols with message level sequence numbers, the packet
sequence number is then that of the first message in the packet.

When we encounter a packet with a sequence number
larger than the next expected sequence number, it has arrived
out of order. The missing packet, or packets, may simply be
late, or not arrive at all. The time we delay a packet is based
on the amount of time we have stalled the output and the
number of messages delayed. Within this window we accept
and store any valid packets, i.e., packets we have not seen
before, while waiting for the missing packets. If the missing
packet or packets arrive within our window boundaries we
output the new and stored packets in order. It is important to
ensure we do not delay a valid, expected packet when it arrives
as this is the most likely case.

By using a windowing system based on the delayed time
and data feed messages we can determine an upper limit on
packet delays, while also providing a time-independent means
of following the incoming packet rate. Figure 1 shows an

-323-

example of a windowing system with a single input, in which
both the time and count thresholds are used to determine
whether a stored packet should be output. Packet P, takes too
long to arrive, therefore exceeding P5’s timeout and resulting
in P, being discarded. Later, Ps is also late, but whilst we
are waiting for Py’s timeout, the number of messages we are
buffering has exceeded maximum-count = 2 messages, and Py
is discarded.

A. Customisation

The windowing time and message thresholds can be set
to benefit specific downstream applications. For example, an
application that analyses price movements in the 100ms range
is less willing to wait for missing packets as an application
operating on the second or minute scale. With arbitration cus-
tomisation we do not need to sacrifice application performance
to meet generic arbitration schemes.

As we operate at the network level we must take an active
role in routing non-market data packets through the network,
reserving FPGA resources to process, store and route these
non-market feed packets. This typically requires little space,
but the level of resources provided to non-market packets can
be set, letting applications communicate with each other via
the network. This is processed at the lowest possible priority
so as to minimise interference with market packets.

The size and number of packets stored can be configured
for each arbitrator. Arbitrators can then trade-off resources to
support a mix of long and short time scale applications.

The method used to compare packet sequence numbers can
be altered to reduce the arbitration resolution. For example,
applications that deal with long term price fluctuations may
not want to be flooded with updates every few milliseconds,
and so would choose to only receive new messages after a set
amount of time has elapsed.

B. Application Scaling

By default we output using Ethernet-based UDP, so a single
arbitrator can multicast to multiple applications. As Ethernet is
widely adopted, it is well served to communicate with a range
of existing platforms and any applications they implement.

Since we utilise an Atlantic interface [7] to send packets
to and from our arbitration core, additional stages can be
added within the FPGA by implementing and connecting to
this standard interface. This also allows input and output con-
nections other than Ethernet to be used. Using any commercial
or customised network we can then feed into a range of data
processing applications, such as the data feed processing in [3]
and [2], or more complex, event driven functions like [8].

Performing arbitration at the network level means down-
stream applications can more easily span multiple computing
nodes, as each node does not need to implement the appli-
cation’s specific arbitration scheme. Combining this with our
ability to multicast from each arbitration core, and the cus-
tomisations allowing application-specific non-market packets
to pass through arbitrators, our arbitration scheme is ideally
suited to accommodate the arbitrary scaling of applications.

IV. PERFORMANCE MODEL
A. Multi-Core Deduplication

By simply replicating arbitration cores within an FPGA
we enable additional arbitration functionality with a simple
linear increase in resource usage. Although the cores are
independent, this approach duplicates some core functionality,

such as the handling of network packets. Our design designates
a single core to perform these functions, freeing resources for
additional cores or to expand upon the existing ones.

This effect is more pronounced for smaller numbers of
cores as the duplicate work is then a larger percentage of
the utilised resources. To ensure our work is applicable to
larger FPGAs we must find a platform-independent method by
which to judge arbitration scaling. We measure the resource
requirement scaling using:

Ryep =Cx(R+ D) (1

Rdedup =C*R+D (2)

where R,., is the resource requirement for simple linear

replication of cores, Rgequp 1 the resource requirement for

our deduplication scaling, C' is the number of arbitration cores

in the design, R is the number of unique resources needed by
each core, and D is the resources that are duplicated.

To determine the validity of our design in Section VI, the
relative performance improvement of our deduplication scaling
as we approach an infinite degree of scaling is found by:

Rrep
Rdedup
Cx(R+ D)

e CxR+D
_R+D

R

Pdedup = Clgn
o

3)
B. Customisation Scaling

Translating our expected gains from application-specific
customisation into increased performance within a multi-
arbitrator system can be difficult due to platform overhead and
overhead within each core. By examining two arbitrator con-
figurations, A and B, we can isolate this overhead and find the
resources required by any number of cores or customisations.

We can utilise this configuration cost to make judgements
when trading-off the number of cores and resources within the
FPGA. For example, to quantify the cost of a specific core
implementation, or find the resources freed by removing an
existing arbitration core. For this we use:

R Ry (N*xRs)—Rp 4
where R, is the resource requirement to implement a cus-
tomisable feature, such as additional memory or a wider data-
path; R4 and Rp are the resources used by configurations A
and B respectively; C' is the number of arbitration cores in the
design; and NN is the expected performance improvement, for
example N = 2 when halving the number of block RAM:s.

The total number of resources used within a multi-arbitrator
system is then:

with R; is the total resources need for a given resource i;
and O, and O. being the platform and core logic overhead
respectively.

V. IMPLEMENTATION

We implement our design within a Xilinx Virtex-6 LX365T
FPGA on an Alpha Data ADM-XRC-6T1 card. As our
processing rate is greater than our target 10Gbit Ethernet
connection, we transfer data into and out of our design via
PCI Express. As mentioned in Section III, since we utilise
an Atlantic interface within our arbitrators the physical con-
nection has no impact on performance. We configure the

-324-

packet processing operations for the NASDAQ TotalView-
ITCH 4.1 message format, which transmits packets using the
moldUDP64 protocol [9] operating on top of UDP. Total View-
ITCH messages from 9 September 2012 are used to test the
system, and packet sequence numbers are supplied by the
moldUDP64 header.

The location and length of the sequence number and mes-
sage number fields are all that is needed to process Total View-
ITCH packets. Changing support to another protocol requires
only that we indicate where these fields—or their equivalent—
are located within the new packet format.

A. Design and Testing

Our design operates with a 128-bit data-path and at a
clock frequency of 125MHz, achieving 16Gbps throughput.
TotalView-ITCH sequence numbers are 64-bits wide and we
utilise the full 64-bit field when comparing packets. The packet
buffer can store a maximum of 8 packets and Total View-ITCH
messages range in size from 5 to 44 bytes. When taking the
9000 byte payload and all the packet headers into account, the
buffer is therefore able to store upto 10224 messages.

We measure packet latency by noting the packet sequence
numbers at an arbitrator core’s input and output. The number
of cycles between a packet entering and exiting the arbitrator
is then written into the packet, allowing us to later find the
latency by inspecting the packet.

VI. RESULTS

Simply replicating arbitrator cores within an FPGA results
in an unnecessary duplication of work, wasting resources. With
our approach we allocate all the duplicate work to the first
arbitrator core. Non-message packet handling is the main focus
of this as block RAMs—our most limited resource—will see
the greatest reductions.

Figure 2 shows how block RAM usage scales with the
number of arbitrator cores. On our LX365T FPGA we can
operate 12 cores using deduplication, compared to 9 with
simple replication. For the larger Virtex-6 SX475 FPGA this
would rise to 26 cores, or 46 for the Virtex-7 X1140T.

Using Equation 3 we can find our theoretical maximum
scaling gain. Block RAM allocation is simplest to quantify,
for which R = 8, the number of packets each arbitrator can
store, and D = 2, the number of stored non-market packets
we do not need to duplicate. Our theoretical maximum scaling
gain is then: Pyequp = % = 1.25, or 25%.

With 12 cores we experience a 33% scaling gain in
our implementation. We are technically able to fit about 9.6
replicated cores into an FPGA, but as we cannot operate an
incomplete core, this must be rounded down.

Figure 3 shows our improvements over simple replication,
for which we see block RAMs tending towards their theoretical
scaling limit as the number of arbitrator cores increases. The
figure shows lower gains for slice registers and Look-Up Tables
(LUTs), at 10% and 5% respectively, but block RAM storage
on the FPGA is our primary concern.

A. Customisation Performance

To find the improvements achieved by customisation we re-
built our design for the OPRA message format. Comparing our
two implementations using Equation 4, we find the resource
requirements to implement a customisable feature. Essentially,
this acts as a customisation co-efficient.

3000 — — ‘
Simple Replication ——
Depulicated Design -

2500 r

2000 [Virtex-7 VX1140T

Block RAMs Used on Target FPGA

1500 + 1
Virtex-6 SX475
1000 +] 1
500 [Virtex-£ 1
O] L L L L L L

0 10 20 30 40 50 60
Number of Arbitrator Cores

Fig. 2. The number of arbitrator cores able to fit into an FPGA.

For block RAMs—the critical factor in determining how
many cores can be placed within an FPGA—we expect N = 6
times less buffer space to be used as we require only 1500 byte
payloads, not the 9000 bytes of TotalView-ITCH. For C' = 64
cores, R4 = 542 block RAMs for OPRA and Rp = 2078 for
TotalView-ITCH. The resources requirement is then R.,s =
S (G T — 4.8 block RAME.

Similarly, applying Equation 4 to slice registers and LUTs,
we get R.,s = 731 registers and R.,s = 1490 LUTs
respectively. Solving for Equation 5 using our R, values
and our implementation results, we find the general form for
our total block RAM, register and LUT usage to be:

Rypams = 30+ C * (3.2 + N * 4.8)
Rycqg = 6724 + C * (1556 + N % 731)
Rrurs = 9667 4+ C * (2325 + N x 1490) (6)

Looking at slice registers for example, since OPRA uses
32 bits for sequence numbers and TotalView-ITCH uses 64
bits, in an ideal system we expect an N = 2 times reduction
in FPGA registers. For a C = 12 core system, we find that
34168 registers are needed for OPRA and 42940 for ITCH, a
20% reduction.

We can project similar calculations to an arbitrary number
of cores and customisations. Resource trade-offs within and
between cores are then possible without requiring a number
of time-consuming, trial-and-error build processes.

B. Software Speed-up

Finally, we compare the performance of our FPGA arbi-
trator with that of a software implementation. Fully-optimised
software is often commercial in nature and kept confidential.
For comparison, we refer to work done on market data feed
processing using the cutting-edge IBM PowerEN processor
[10]. Out-of-order packets are stored in L2 cache and a time-
based windowing mechanism is used, rather than the combined
time & message count method in this work. Arbitration takes
150ns compared to 56ns in our design. Thus, our design
achieves a 2.6 times speed-up over the software. The timeout
mechanism in [10] uses a 33MHz clock, so the resolution is
only 30.3ns compared to 8ns in our design.

VII. CONCLUSION

In this paper we outline a reconfigurable accelerated ap-
proach to market feed arbitration operating at the network
level. Application-specific customisations are provided within
each arbitrator allowing it to uniquely benefit feed processing

-325-

25 + Block RAMs

R

Slice LUTs D e d

0 10 20 30 40 50 60
Number of Arbitrator Cores

Improvement over Simple Replication (%)

Fig. 3. Scaling improvement of our design over simple core replication.

platforms. As multiple arbitration cores may be present within
a single FPGA we can simultaneously provide application-
specific arbitration to a wide range of financial applications.
Our design within a Xilinx Virtex-6 FPGA allows 12 cores to
function in parallel, which would rise to 26 or 46 cores for
the largest class of Virtex-6 and Virtex-7 FPGAs respectively.

Our implementation operates at 16Gbps throughput, 60%
higher than the target 10Gbps Ethernet input line rate, and
with resource sharing, supports 12 independent cores, 33%
more than in the case of simple core replication. A 56ns (7
clock cycles) windowing latency is achieved, 2.6 times lower
than a hardware-accelerated CPU approach.

REFERENCES

[11 G. Morris, D. Thomas, and W. Luk, “FPGA Accelerated Low-Latency
Market Data Feed Processing,” in High Performance Interconnects,
2009. HOTI 2009. 17th IEEE Symposium on, 2009.

[2] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, and
K. A. Vissers, “A Low-Latency Library in FPGA Hardware for High-
Frequency Trading (HFT),” in High-Performance Interconnects (HOTI),
2012 IEEE 20th Annual Symposium, 2012, pp. 9-16.

[3] C. Leber, B. Geib, and H. Litz, “High Frequency Trading Acceleration
Using FPGAs,” in Field Programmable Logic and Applications (FPL),
2011 International Conference on, 2011, pp. 317-322.

[4] “Solarflarc AOE Line Arbitration Brief,” 2013. [Online].
Available: http://www.solarflare.com/Content/UserFiles/Documents/
Solarflare_ AOE_Line_Arbitration_Brief.pdf

[S] “OPRA (Options Price Reporting Authority) Participant Interface
Specification,” Tech. Rep. [Online]. Available: http://www.opradata.
com/specs/participant_interface_specification.pdf

[6] “NASDAQ TotalView-ITCH 4.1 Specification,” 2013. [Online].
Available: https://www.nasdaqtrader.com/content/technicalsupport/
specifications/dataproducts/NQTV-ITCH-V4_1.pdf

[71 “Atlantic Interface,” Altera, 2002. [Online]. Available: http://www.
altera.co.uk/literature/fs/fs_atlantic.pdf

[8] T. Takenaka, M. Takagi, and H. Inoue, “A scalable complex event pro-
cessing framework for combination of SQL-based continuous queries
and C/C++ functions,” in Field Programmable Logic and Applications
(FPL), 2012 22nd International Conference on, 2012, pp. 237-242.

[9] “MoldUDP64 Protocol,” 2009. [Online]. Available:
http://www.nasdaqtrader.com/content/technicalsupport/specifications/
dataproducts/moldudp64.pdf

[10] D. Pasetto, K. Lynch, R. Tucker, B. Maguire, F. Petrini, and H. Franke,
“Ultra low latency market data feed on IBM PowerEN,” Computer
Science - Research and Development, vol. 26, pp. 307-315, 2011.

Acknowledgement

This work is supported in part by the European Union Seventh
Framework Programme under the grant agreement number 257906,
287804 and 318521, by UK EPSRC, by Maxeler, and by Xilinx.

