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Abstract—Smart cameras allow pre-processing of video data
on the camera instead of sending it to a remote server for
further analysis. Having a network of smart cameras allows
various vision tasks to be processed in a distributed fashion.
While cameras may have different tasks, we concentrate on dis-
tributed tracking in smart camera networks. This application
introduces various highly interesting problems. Firstly, how can
conflicting goals be satisfied such as cameras in the network
try to track objects while also trying to keep communication
overhead low? Secondly, how can cameras in the network self-
adapt in response to the behaviour of objects and changes in
scenarios, to ensure continued efficient performance? Thirdly,
how can cameras organise themselves to improve the overall
network’s performance and efficiency? This paper presents a
simulation environment, called CamSim, allowing distributed
self-adaptation and self-organisation algorithms to be tested,
without setting up a physical smart camera network. The
simulation tool is written in Java and hence allows high
portability between different operating systems. Relaxing vari-
ous problems of computer vision and network communication
supports to focus on implementing and testing new self-
adaptation and self-organisation algorithms for cameras to use.
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I. INTRODUCTION

Smart cameras allow the pre-processing of video data on
the camera instead of sending it to a remote server for further
analysis. This allows not only the execution of distributed
algorithms on the cameras, but also enables each camera to
build up its own awareness of itself and its environment. Set-
ting up such a network of smart cameras in the real world has
various difficulties. First of all, deploying the network itself
can be challenging. This is especially true if a larger network
of cameras is being investigated, as cost can be prohibitive.
Furthermore, legal issues vary from country to country, and
setting up cameras only in a laboratory environment would
limit the number of used cameras drastically. Finally, both
cameras and computer vision algorithms are prone to fail
during runtime and the study of self-adaptation and self-
organisation techniques through repeatable experiments in a
real environment can prove quite difficult.

Our presented simulation tool, CamSim1 has been used
extensively in our previous research [1]–[4]. This simulation
environment focuses on infusing virtual smart cameras with

1CamSim is available at https://github.com/EPiCS/CamSim

distributed algorithms. As such, it can be used to test and
compare self-organising camera control techniques. The key
benefits of CamSim are:

1) Ease of generating test scenarios, with cameras and
objects limited only by computer memory.

2) Camera behaviour, using an economic and pheromone
inspired approach [1] is implemented, as well as
several communication strategies.

3) Several bandit solvers are implemented to provide
meta-management at the camera level, selecting be-
tween communication strategies dynamically at run-
time [2].

4) All aspects of camera behaviour, including ban-
dit solvers, communication strategies and pheromone
learning can be replaced using reflection mechanisms.

To support easy implementation, testing and compari-
son of distributed algorithms for self-adaptation and self-
organisation of the network, we made assumptions to relax
the real operating environment of multi-camera applications.
Smart camera networks are usually connected using either
Ethernet or Wi-Fi. These communication channels can be
highly reliable and therefore in our simulation we assume
perfect communication channel without any communication
loss. The controlled environment allows the analysis of
deployed algorithms very easily. Due to the simulator’s use
of discrete time steps, problems and anomalies can be iden-
tified, and debugging is easier than in real camera networks.
Also, the exact position of all objects and the states of every
camera can be extracted at any time step for further analysis.
The uncertainties of computer vision algorithms have been
removed from the simulation environment. This allows the
user to focus on the development of algorithms to self-adapt
cameras to a certain scenario and to self-organise the entire
network of smart cameras.

The rest of this paper describes the basic features of
CamSim in more detail. The next section will discuss the
simulation environment in general and then focuses on the
abilities of the cameras. Section II-B will describe the
behaviour of objects in the environment. Finally, we will
give an overview on how to use CamSim in Section III.

II. CAMSIM

This section describes the basic features of CamSim. More
details are available in the documentation of the simulation



environment.
Since CamSim is implemented in Java, it is highly flexible

and portable. It is able to simulate a large number of
cameras and objects limited only by available computer
memory. CamSim can be run with or without a graphical
user interface, to allow both user interaction and visual
inspection, and batch running of experiments, for example
on a cluster. Figure 1 shows a screen shot running a simple
scenario with five cameras and a single object. For each
scenario, the simulation environment has a predefined size,
depicted as a thin blue line. All objects, illustrated as black
dots, and all cameras, shown as green dots, have to be placed
within this simulation environment. The labels for cameras
and objects can be turned on or off as desired.

Figure 1. CamSim screen shot, showing 5 cameras, their fields of view,
and one object, being tracked by the left-most camera.

A. Cameras

Each camera and acts as a completely autonomous agent
without central control. Furthermore, each camera has its
own field of view (FOV) and a unique name. This FOV
is a circular segment, though illustrated as a triangle. This
triangle turns from grey to yellow as soon as an object is
within the respective camera’s FOV. The FOV of a camera
can have an arbitrary size and viewing angle. Cameras
can communicate with other cameras in the network using
message passing. Since CamSim simulates smart cameras,
each camera in the network can be provided with a specific
(possibly different) behaviour. For our distributed tracking
application as presented in [1] we implemented six different
communication strategies. Cameras can also fail for a limited
time or the remainder of the simulation. When a camera
fails, it can either recover previously learnt knowledge or
start from scratch to build up new knowledge again.

B. Objects

Objects to be tracked are depicted as black dots. Every
object has unique features which are used to identify and
distinguish the object among the others. An object can have

either a predefined path to follow, or an initial direction,
moving in a straight line until it reaches the boundary of
the simulation environment. To keep the number of objects
constant, objects do not leave the simulation environment
but bounce back in a random direction and continue in a
straight path. A green line between the object and the camera
indicates the object is currently processed by the respective
camera.

III. USAGE

The simulator can be used with or without parameters.
Parameters can set various values for the simulations. The
most important one is setting a scenario file. Scenarios are
specified using XML, using tags such as <simulation>,
<cameras> and <objects>. The parameter -t sets the
number of time steps in a simulation without graphical
user interface. -o allows the specification of an output
filename while -a and -c predefine a specific algorithm
and communication schedule respectively. --no-gui starts
the simulation without graphical interface. Finally, -h prints
out a text explaining the usage of the simulation environment
again including the possible parameters. The use of bandit
solvers can be defined within the scenarios files.

Even though CamSim was developed with smart camera
networks in mind, the simulation environment can easily
be extended to various distributed networks with resource
constraints, since many of the techniques implemented are
not specific to smart camera networks. Full usage details are
contained within the provided help files and tutorials.
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