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1 Introduction

This technical documentation describes our Structure from Motion pipeline from a
system point of view. The idea is to explain in details, which input data is needed
and what can the user expect as output. This documentation describes briefly the
overall setting, but no internal parameters are mentioned. The algorithms are not
mentioned in this document, because they were already described here [6].

This document has five sections. The first section introduces the problem of
reconstructing a model of an unknown scene providing images from a single camera.
In second section, the input for this reconstruction algorithms is described. The
third section presents the output structures and the fourth section presents results
from a reconstructed scene. The last section concludes this document.

1.1 Problem Declaration and Motivation

Recovering an unknown scene, also known as Structure from Motion (SfM), is a
difficult problem in computer vision. The difficulty is that this task can not be
treated as a single task, but has to be tackled as two problems. First, to compute the
camera ego-motion and second, to estimate the metric coordinates of the surrounding



scene. Fortunately, the computer vision community provides SfM algorithm, which
can solve these problems. Our SfM pipeline is using the state-of-the-art algorithms
as described in [6]. However, there is future potential for solving some open problems
in SfM (e.g. loop closing), but this is out of scope of this document.

The motivation of this document can be considered as twofold. First, as men-
tioned in [6], StM is needed to calibrate surveillance cameras in unknown scene (e.g.
in the airport). Second, to provide an inexperienced user an idea what input and
output data are needed to reconstruct an unknown scene.

1.2 Related Work

The problem of SfM is tackled in the seminal work of Pollefeys et al. [9]. To find an
optimal solution the authors presented offline non-linear and linear self-calibration
approaches.

In [I], an interesting three-dimensional real-time SfM estimation system is de-
scribed. This system is based on non-linear filtering. The main disadvantage of
this approach is the unavoidable presence of drift, which occurs when long motion is
performed.

In robotics community, the same problem as tackled by SfM is called Simultane-
ous Localisation and Mapping (SLAM). In the same year, when Davison presented
Moncular Simultaneous Localisation and Mapping (MonoSLAM) [2], Nister intro-
duced a system capable of robust real-time SfM estimation [7]. Nister’s system is
based on a preemptive scoring in RANSAC and the framework uses the bundle ad-
justment [IT] algorithm to find robust motion and structure estimates.

Recently, a very interesting real-time parallel tracking and mapping approach
was introduced by Klein and Murray in [4]. They proposed splitting the tracking
and mapping into two separate tasks, running them in parallel threads. The goal of
their approach is to estimate a dominant plane in a small workspace, where virtual
characters can be displayed. The result is a system capable of estimating the pose
of the camera while mapping thousands of features in real-time.

An excellent overview of current state-of-the-art in SfM is provided in [10].

2 Expected Input

To successfully start our SfM pipeline two different inputs are needed. A sequence of
images and a camera model with known intrinsic parameters. Despite the fact that
only two inputs are needed we expect several furher assumptions.



As mentioned above, as first input we need a sequence of images. These images
has to be taken sequentially, because otherwise the matching could fail establishing
point correspodences. Further we assume that the scene contains enough texture
and the camera does not perform abrupt motions.

The second expected input is a camera with known internal geometry. This does
mean that the camera has to be calibrated before we start taking images [3]. After
the images are taken with a perspective camera, these has to be undistorted before
starting SfM pipeline. When using a omnidirectional camera, this step is not needed.

This is an overview of above mentioned inputs:

e an image sequence (undistorted when using a perspective camera),
e manually select pairs of images needed for loop closing
e calibration matrix [3] and

e two-parametric non-linear model for fisheye camera [5].

3 Output Structures

The output from SfM pipeline contains:
e detected feature points,
e inlier matches from relative pose computation,
e iterative results from non-linear optimisation and

e various output format files.

3.1 Detected Feature Points

We used four types of features, which provide complementary characteristics. First,
FAST features are used to detect corner points [I0]. Other two feature detectors
are the scale-invariant SIFT and SURF points [I0]. These points can be found in
many object recognition applications, because they are stable in both location and
scale. The last detector is MSER, which is an important affine invariant region
detector [10].

For every feature detector a separate folder is created. In this folder, for each
processed image frame the result of detection is one structure. This structure has
three parts:



e Keypoints. Every keypoint contains: x and y position, size, angle, RGB code
and extra information for tracking.

e Descriptors. For every keypoint one 128 dimensional array is assigned [10].

e A structure array with the same name as method for computing descriptors.
Each structure contains: the I'D of descriptor, keypoint coordinates and de-
scriptor.

3.2 Relative Pose

An important step in our SfM pipeline is to connect consecutive image frames. This
is done pairwise, where an Essential matrix is found using the well-known Five-point
algorithm [§].

The output relative poses are stored in ’eg’ folder. Every relative pose contains:

e indices of inliers,
e array with matched rays,
e essential matrix and

e information about descriptors.

3.3 Sparse Bundle Adjustment

The pose and structure results from non-linear optimisation are stored in 'sfm’ folder
in 1_c_cposes.mat file. c is the count of estimated frames. After this file is loaded the
user gets two most important varibles. P is a cell array with all projection matrics.
X is an array with all three-dimensional points.

A futher interesting information for the user is that the ’sfm’ folder contains
every iterative output from non-linear optimisation. This provides an overview how
the camera poses are added to the P cell array and how the X structure array is
expanding.

3.4 Output Formats

For further visualisation or processing purposes is the output structure together with
camera poses saved in four formats.
These output formats are:



Virtual Reality Modeling Language (VRML),

Polygon File Format (PLY),

Snavely’s Bundler Format (OUT) and

Extensible Markup Language (XML).

The first two output formats are intended only for visualisation purposes. The
saved information is the reconstructed scene and camera’s poses. The third output
file contains except scene and camera information also the image measurements.
This means that for every reconstructed point a track of two-dimensional points is
available. The last output file encompases only information about the camera poses.

4 Reconstruction Example

We tested our SfM pipeline in our department to reconstruct the corridor scene. We
used a calibrated perspective camera and recorded 319 images. As depicted in Fig.
the result of the reconstruction contains 319 camera poses and 54784 points.

5 Conclusion

In this document, we described what are the inputs and outputs of our SfM pipeline.
This description is intended to provide a better understanding for future users. With
this document the users should be able to process image sequences and extract the
usefull information. An example of a reconstructed scene is also enclosed.
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