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ABSTRACT

Hawkes processes are point processes that can be used to
build probabilistic models to describe and predict occurrence
patterns of random events. They are widely used in high-
frequency trading, seismic analysis and neuroscience. A
critical numerical calculation in Hawkes process models is
parameter estimation, which is used to fit a Hawkes process
model to a data set. The parameter estimation problem can
be solved by searching for a parameter set that maximises
the log-likelihood. A core operation of this search process,
the log-likelihood evaluation, is computationally demand-
ing if the number of data points is large. To accelerate the
computation, we present a log-likelihood evaluation strategy
which is suitable for hardware acceleration. We then design
and optimise a pipelined engine based on our proposed strat-
egy. In the experiments, an FPGA-based implementation of
the proposed engine is shown to be up to 72 times faster than
a single-core CPU, and 10 times faster than an 8-core CPU.

1. INTRODUCTION

Hawkes processes [1] are point processes that can be used
to build probabilistic models to describe and predict occur-
rence patterns of random events. The study of Hawkes pro-
cess models has attracted the attention of researchers and
practitioners from various areas including high-frequency
trading [2, 3], seismology [4, 5] and neuroscience [6, 7].
Hawkes process models are parametric. To model the
occurrence pattern of a random event with a Hawkes process
model, one needs to estimate the parameters using historical
occurrence data of the event. The estimated model can be
used to predict the occurrence frequency in the near future.
The parameter estimation problem of Hawkes processes
can be solved by maximum likelihood estimation [8, 9]. This
is a challenging task because the core operation, the log-
likelihood evaluation, is computationally demanding if the
number of points in the data set is large. Unfortunately,
industrial-scale data sets are usually large and their sizes

have been growing swiftly in recent years. For instance, fi-
nancial markets order placement frequencies have increased
in orders of magnitude over the last several years and so
has the scale of the models used to describe this activity.
Moreover, it is desirable to invoke parameter estimation fre-
quently in order to keep the model up-to-date. The con-
flict between the data size and computational efficiency is
especially serious in time critical problems such as high-
frequency trading and optimal order execution [10, 11].

While systems based on point process models can bene-
fit from the speed, simplicity and power efficiency of hard-
ware implementations, hardware acceleration of point pro-
cesses is not well-studied. To the best of our knowledge,
our work is the first to cover hardware acceleration of model
fitting of point processes. Our key contributions are as fol-
lows.

e We present a log-likelihood evaluation strategy by set-
ting up incremental computation rules and eliminating
complex data dependency. This strategy is particu-
larly suitable for hardware acceleration.

e We design a pipelined hardware architecture based on
our strategy. We then propose a series of optimisa-
tions for our hardware architecture to avoid pipeline
stalls, to promote parallelism among multiple itera-
tions, to reduce memory bandwidth consumption, and
to remove redundant logarithm evaluation units.

e We implement our design in a commercial FPGA ac-
celeration platform, and compare its performance with
a CPU implementation on a single core and eight cores.

The rest of the paper is organised as follows. Section 2
briefly describes point processes, Hawkes processes and the
maximum likelihood estimation problem. Section 3 presents
a log-likelihood evaluation strategy for hardware accelera-
tion. Section 4 describes the design and optimisations of a
pipelined hardware architecture based on the proposed strat-
egy. Section 5 provides experimental results about an imple-
mentation of our hardware design, and explains experimen-



tal observations. Section 6 provides a brief conclusion, and
discusses possible future work.

2. BACKGROUND

In this section we provide a short introduction to Hawkes
processes. We first illustrate related concepts including point
processes, counting processes, intensities and Hawkes pro-
cesses. Then we briefly discuss the maximum likelihood
estimation problem.

2.1. Point Processes and Hawkes Processes

A sequence of random variables, {t;} = (¢1, ta, t3, ...), is
a point process if and only if ¢; > 0 and ¢; < t;41 for all
i € NT. A point process is typically used to describe the oc-
currences of a repeatable event. Each entry of the process is
the time of an occurrence of the event. The counting process
of a point process, C(t), is defined by

Clt) = Lo (1)
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Using the counting process, we may describe the frequency
of the occurrences using the intensity function, which is de-
fined by

A = lim %P(C(t LR -0 >0 Q)

where P(X) is the probability of random event X. In other
words, the intensity of a point process taken at a fixed point
in time, t, is the instantaneous rate at time ¢ with which the
event occurs. A point process {t;} is a Hawkes process if
the intensity function A(-) satisfies

ot
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where A\t is a constant; C(-) is the counting process of {t;}
and g(-) is a response function which needs to be integrable
and positive. In this study, we focus on the exponential re-
sponse function [1] defined by

g(z) = ae™P" “)

where « and (3 are constant parameters. With this response
function, the intensity function can be written as

K(t)
At) =t +a ) e Pt (5)
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where K (¢) is the number of occurrences by time ¢. The fea-
ture that makes the Hawkes process useful for making pre-
dictions and modelling data is that its intensity (a) is stochas-
tic, (b) changes in time and (c) depends on the history of the
process.

Hawkes processes models are parametric. A parameter
set for a Hawkes process with an exponential response func-
tion is a triplet in the form § = (A, a, ). Note that the
intensity function A\(¢) depends on the parameter set §. We
write A(t) instead of A(t]@) for brevity.

2.2. Parameter Estimation for Hawkes Processes

Parameter estimation for Hawkes process models is the pro-
cess to find a reasonable parameter set to fit a model to a data
set. This process is the critical part in various applications
that involve Hawkes process models. For instance, Hawkes
processes can be used to predict the occurrence frequency of
a random event in the near future. The first step to perform
the prediction is to fit a model using historical data.

Parameter estimation can be achieved by maximum like-
lihood estimation [9] where the parameter set is estimated by
the following estimator

OvLe = argmaxyL(0) (6)

where argmax,(f(z)) is the set of argument z that max-
imises function f(z); L(#) is the log-likelihood for the pa-
rameter 6 is defined by

L(6) = /O log A()dC(t) — /O ABdE ()

Given a data set with K observations D = (t1,t2,...,tx),
the log-likelihood function can be written in a computable
form

K K
L(0) =Y r(k) = AT+ h(k) (8)
k=1 k=1
where
k—1
r(k) =log A(tx) = log(\" + o Y e sty (9)
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where T is the time of termination of sampling. In this
study, we take T' = tx following [8]. The maximum like-
lihood estimation technique is proved to be asymptotically
normal with optimal convergence rate and optimal variance
[2]. However, there is no close-form expression for Oy, in
Equation 6, therefore one has to search over the parameter
space for a parameter set that maximises the log-likelihood
[8].

The search of parameters can be conducted by a general-
purpose optimisation algorithm. No matter what algorithm
is used, it needs to evaluate log-likelihood frequently. This
evaluation process can be computationally expensive if the
number of data points is large. Practically, large data sets



are often used for estimation accuracy. As a result, the log-
likelihood evaluation usually dominates the execution time
of the parameter search. In this study, we accelerate the pa-
rameter estimation process by designing a pipelined hard-
ware architecture for log-likelihood evaluation.

The idea of accelerating log-likelihood evaluation for
statistical models using FPGAs has been proposed [12, 13].
However, our acceleration solutions for Hawkes point pro-
cess is significantly different from existing work because the
evaluation algorithms for different problem settings do not
share a common computational pattern.

3. ACCELERATION STRATEGY

In this section, we present a log-likelihood evaluation strat-
egy for Hawkes process models which is suitable for recon-
figurable hardware. We first explain the mathematical back-
ground of the strategy, and then discuss a method for elimi-
nating complex data dependencies.

3.1. Incremental Log-likelihood Evaluation

For hardware efficiency, we compute the log-likelihood func-
tion with sequential data access and simple data dependency.
Given a data set D = (t1,t2,...,tK), we define

K
Q(k) = > (r(k) + h(k)) (1
k=1
From this definition and Equation 8, we express the log-
likelihood using Q(K) by

LA) = Q(K) - \'T (12)

Q (k) can be computed recursively by

0 ifk=0
Q(k) = {Q(k — 1) +r(k) + h(k) otherwise 1

where 7(k) and h(k) are defined in Equation 9 and 10 re-
spectively.

We may calculate h(k) using Equation 10 directly. The
computation is obvious because h(k) only depends on the
parameter set and the data point {;. However, it may not
be wise to compute (k) using Equation 9 because r(k) de-
pends on ty,ts,...,t;—1. This data dependency leads to
high time complexity and makes the computation inappro-
priate for hardware implementation. With respect to this is-
sue, we present an alternative way to compute 7 (k) in the
next subsection.

3.2. Recursive Computation for r (k)

The exponential response function provides the opportunity
to eliminate the complex data dependency in the computa-
tion of (k). We present one possible strategy to achieve this

by applying the log-likelihood decomposition technique in
[9] to our response function in Equation 4. Let

k—1

(k) =y e i) (14)

k=1

Then the summation operation in Equation 9 can be replaced

by ¢(k),
r(k) = log A(ty) = log (A\* + ag(k)) (15)

If ¢(k) can somehow be obtained, then (k) can be com-
puted easily. Therefore we focus on calculating ¢ (k). When
k =1, we have ¢(1) = 0. When k& > 1, from Equation 14,
¢(k) can be written as

k—2
¢(k) = Z e_ﬁ(tk_tk/) + e_B(tk_tk—l) (16)
k'=1

We explore relationship between the case where &’ = k and
the case where k£’ = k — 1 by performing the following
transformation on ¢(k):

k—2
(k) = e Bltk—tr—1) Z e Btk—1—tyr) + e Btk —tr—1)
k'=1
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Substitute Equation 14 to Equation 17, we obtain:
p(k) = e Ple=te-1) (G(k — 1) + 1) (18)

Therefore, (k) and ¢(k) can be computed given ¢(k — 1),
which eliminates the data dependency in Equation 9. This is
particularly useful for hardware design.

4. HARDWARE DESIGN AND OPTIMISATION

In this section, we map the strategy derived in the previous
section to a pipelined hardware architecture. We first de-
scribe three hardware modules and discuss possible ways to
combine them to compute Q) (k) efficiently.

4.1. Basic Architecture

We propose three arithmetic modules: the ¢ module, A mod-
ule and h module. Their structures are shown in Fig. 1. The
¢ module is designed based on Equation 18. The base case
of the function when k = 1 is not reflected in the hardware.
By supplying ¢(0) = —1 as the input to a ¢ module, we
can obtain ¢(1) = 0. The A module is designed based on
Equation 15. We do not take logarithms for the purpose of
optimisation, which will be explained in Section 4.3. The h
module is based on Equation 10. One input to the & module,
a/p, is computed in the host computer to avoid implement-
ing division in the reconfigurable device.
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Fig. 1. Basic Arithmetic Modules

An elementary combination of the basic modules, the @)
module, is shown in Fig. 2. This module is designed based
on Equation 13. It computes Q(k) and ¢ (k) by taking Q(k—
1), ¢(k — 1) and model parameters as the inputs.

Fig. 2. A Simple @@ Module

Due to the latency of the module, it is impossible to use
an output of (k) as the input immediately for the next it-
eration. Therefore, evaluating the log-likelihood for a single
parameter set will result in pipeline stalls. To ensure effi-
ciency, we apply c-slow retiming [14] to process a batch of
P parameter sets together to keep the pipeline busy. More
specifically, a data point ¢; is loaded from the data stream
at the beginning of every P cycles. Q(k) for parameter set
1... P are computed based on t; within P cycles before the
next data point is loaded.

4.2. Parallelism over Multiple Iterations

When multiple consecutive data points are available, it is
possible to combine the basic modules to compute multiple

iterations. From Equation 13, when k& > 1 we have
w w
Q) =QUk =W —1)+ > r(k—w)+ Y _ h(k—w)

w=1 w=1
(19)
According to this equation, we design a () module to com-
pute Q(k) using Q(k — W) and consecutive (W + 1) data
points. For example, an architecture which takes 4 consec-
utive data points is shown in Fig. 3. The inputs of model
parameters are omitted for simplicity.

F> Q(K)

Q(k-3)

d(k)

Fig. 3. @ Module Handling Multiple Iterations

If the pipeline is kept busy, W iterations of the compu-
tation of Q(k) for a parameter set can be performed in a
single cycle. As a result, we may boost the performance by
integrating more A, ¢ and i modules to handle more itera-
tions. A ) module handling W iterations requires (W + 1)
consecutive data points. W out of the (W + 1) data points
need to be collected from the data stream. When processing
a batch of P parameter sets, these inputs need to be updated
every P cycles. Suppose the update occurs at the beginning
of cycle u, we collect the W data points from cycle (u— W)
to (u — 1) and save the data points in a buffer. With this
buffering scheme, only one data point is accessed in each
cycle, which results in low memory bandwidth requirement.



4.3. Logarithm Evaluation Reduction

The architecture shown in Fig. 3 needs W logarithm eval-
uation units to compute W iterations in one cycle. How-
ever, these units are expensive in terms of computational re-
sources. It is desirable to reduce the number of logarithm
evaluation units. From Equation 19,

w w w
D or(k—w) =Y log A(tx—w) =log ] Ath—w)
w=1 w=1 w=1

(20)

Therefore, we replace the W logarithm evaluation units by
a single one and (W — 1) multipliers, which reduces the
overall resource consumption. For instance, an optimised
version of the architecture in Fig. 3 is shown in Fig. 4. The
effect of this optimisation depends on the design of loga-
rithm evaluation units. For example, in our experimental
implementation, the number of iterations in one cycle, W,
increases from 10 to 12 with this optimisation.

Q(k-3)

$(k-3) ¢ ¢

> (k)

Fig. 4. Q Module with Logarithm Evaluation Reduction

5. EXPERIMENTAL EVALUATION

We implement the proposed architecture with all the dis-
cussed optimisations in an FPGA-based acceleration plat-
form and test its performance using data sets with various
sizes. In this section, we first describe the experimental set-
tings and then discuss experimental results.

5.1. Experimental Settings

We implement our hardware design on a Maxeler MAX3 ac-
celeration system, which is equipped with a Xilinx Virtex-
6 V6-SXT475 FPGA. It communicates with the host com-
puter via a PCI-Express interface. The clock frequency of
the FPGA is set to 100MHz. The hardware is described in

the MaxJ language and compiled to VHDL using Maxeler
MaxCompiler. The ) module we implemented computes
W = 12 iterations for Q(k). This parameter is selected to
maximise hardware resource usage for better performance.
To keep the pipeline busy, we evaluate P = 1024 parame-
ters in a batch to avoid pipeline stalls.

We also build an implementation that runs exclusively
on the CPU platform using the OpenMP library. Both the
host code for the FPGA implementation and the pure CPU
implementation are written in the C programming language
and compiled using the Intel C compiler with the highest
compiling optimisation. Both systems are invoked in a server
with an Intel Xeon X5650 CPU running at 2.67GHz.

The IEEE single precision floating point numbers are
used throughout the FPGA and CPU implementations ex-
cept for the inputs of the logarithm evaluation unit in FPGA,
where double precision floating point numbers are employed
for better accuracy. A log-likelihood value computed by
the FPGA implementation may slightly differ from the one
computed by the CPU implementation, but the relative dif-
ference is controlled below 0.1%.

The Nelder-Mead simplex algorithm is used as the search
algorithm for parameter sets. We first run the algorithm in
the CPU platform and record all the log-likelihood queries.
We then execute this set of queries on the tested systems.
The performance is measured by the execution time for each
log-likelihood query. To make a fair comparison, the latency
overhead for CPU-FPGA communication is included in the
experimental results. To make the results less dependent
on a particular search algorithm, the execution time of the
Nelder-Mead simplex algorithm is excluded. We have no-
ticed that an inappropriate search algorithm in the host com-
puter may incur unnecessary overhead and limit the overall
performance. This issue will be discussed in a future publi-
cation.

5.2. Results and Discussion

The experimental results are plotted in Fig. 5. The execution
times for a query are recorded in Fig. 5(a). The speedup of
the FPGA implementation over the CPU implantation on a
single core and eight cores are presented in Fig. 5(b). We
record the data size in log scale with base 10 in both figures.
To reflect the trend of the increment of the execution time,
we also plot the results in log scale in Fig. 5(a).

The execution times of both the CPU and FPGA imple-
mentation increase approximately linearly as the data size
grows. The CPU implementation works well on eight cores.
It is around 7.1 times faster than a single core.

When data size K < 107, the speedup of the FPGA im-
plementation over the CPU implementation increases as the
size of the data set grows. This is because, while the execu-
tion time spent on the pipeline grows linearly with the size
of the data set, the overhead including the hardware initiali-
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Fig. 5. Experimental Results

sation time and post-processing time does not increase. The
peak speedup is 72 times and 10 times over the CPU imple-
mentation on a single core and eight cores respectively.

When K > 107, the speedup of the FPGA implementa-
tion decreases slightly and stabilises at around 55 times over
a single core. We find that the increment of execution time
of the FPGA implementation follows a linear pattern but that
of the CPU implementation is slightly below a linear trend
when K > 107. We are unsure about the reason behind this
observation, but a possible explanation is that the compiler
optimised the code with respect to large data.

6. CONCLUSION

This paper presents a hardware architecture for log-likelihood
evaluation to accelerate parameter estimation for Hawkes
point processes. We set up incremental computation rules
and eliminate complex data dependency, resulting in a log-
likelihood evaluation strategy particularly suitable for hard-
ware acceleration. We design a pipelined hardware architec-
ture based on the proposed strategy and optimise it from var-
ious perspectives. Our experimental system implemented in
a Virtex-6 V6-SXT475 FPGA achieves up to 72 times faster
than a single-core CPU, and up to 10 times faster than an
8-core CPU.

We consider our work a first step towards hardware ac-
celeration of Hawkes process modelling. One possible fu-
ture work is to design parameter estimation engines for mul-
tivariate Hawkes processes which can be used to capture the
relationship among multiple random events. Another possi-
ble future work is to integrate this acceleration solution with
predictive systems to forecast future occurrences of events
in situations such as high-frequency trading.
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