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Abstract

Visual tracking has attracted a significant attention in
the last few decades. The recent surge in the number of
publications on tracking-related problems have made it al-
most impossible to follow the developments in the field. One
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of the reasons is that there is a lack of commonly accepted
annotated data-sets and standardized evaluation protocols
that would allow objective comparison of different tracking
methods. To address this issue, the Visual Object Track-
ing (VOT) workshop was organized in conjunction with
ICCV2013. Researchers from academia as well as indus-
try were invited to participate in the first VOT2013 chal-
lenge which aimed at single-object visual trackers that do
not apply pre-learned models of object appearance (model-
free). Presented here is the VOT2013 benchmark dataset
for evaluation of single-object visual trackers as well as
the results obtained by the trackers competing in the chal-
lenge. In contrast to related attempts in tracker benchmark-
ing, the dataset is labeled per-frame by visual attributes that
indicate occlusion, illumination change, motion change,
size change and camera motion, offering a more system-
atic comparison of the trackers. Furthermore, we have de-
signed an automated system for performing and evaluating
the experiments. We present the evaluation protocol of the
VOT2013 challenge and the results of a comparison of 27
trackers on the benchmark dataset. The dataset, the evalu-
ation tools and the tracker rankings are publicly available
from the challenge website1.

1http://votchallenge.net
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1. Introduction
Visual tracking is a rapidly evolving field of computer

vision that has been increasingly attracting attention of the
vision community. One reason is that it offers many chal-
lenges as a scientific problem. Second, it is a part of many
higher-level problems of computer vision, such as motion
analysis, event detection and activity understanding. Fur-
thermore, the steady advance of HW/SW technology in
terms of computational power, form factor and price, opens
vast application potential for tracking algorithms. Applica-
tions include surveillance systems, transport, sports analyt-
ics, medical imaging, mobile robotics, film post-production
and human-computer interfaces.

In this paper, we focus on single-object trackers that
do not apply pre-learned models of the object appearance
(model-free), since they offer a particularly large applica-
tion domain. The activity in the field is reflected by the
abundance of new tracking algorithms presented and evalu-
ated in journals and at conferences, and summarized in the
many survey papers, e.g., [17, 35, 14, 22, 36, 52, 32]. A
review of recent high-profile conferences like ICCV, ECCV
and CVPR shows that the number of accepted tracking pa-
pers has been consistently high (40-50 annually). At the
ICCV2013 conference, for example, 38 papers with the
topic motion and tracking were published. The topic was
the third most popular if measured by the number of ac-
cepted papers.

Evaluation of new tracking algorithms, and their com-
parison to the state-of-the-art, depends on three essential
components: (1) a dataset, (2) an evaluation protocol, and
(3) performance evaluation measures. Indeed, much of the
advances in several computer vision fields, like object de-
tection, classification and segmentation [12], optical-flow
computation [3], can be attributed to a ubiquitous access to
standard datasets and evaluation protocols [43]. Despite the
efforts invested in proposing new trackers, the field suffers
from a lack of established methodology for objective com-
parison.

1.1. Related work

One of the most influential performance analysis efforts
for object tracking is PETS (Performance Evaluation of
Tracking and Surveillance) [53]. The first PETS work-
shop that took place in 2000, aimed at evaluation of visual
tracking algorithms for surveillance applications. How-
ever, its focus gradually shifted to high-level event inter-
pretation algorithms. Other frameworks and datasets have
been presented since, but these focussed on evaluation of
surveillance systems and event detection, e.g., CAVIAR2,
i-LIDS 3, ETISEO4, change detection [19], sports analytics

2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
3http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
4http://www-sop.inria.fr/orion/ETISEO

(e.g., CVBASE5), or specialized on tracking specific objects
like faces, e.g. FERET [39] and [26].

Issues with datasets. A trend has emerged in the single-
object model-free tracking community to test newly pro-
posed trackers on larger datasets that include different real-
life visual phenomena like occlusion, clutter and illumi-
nation change. As a consequence, various authors nowa-
days compare their trackers on many publicly-available se-
quences, of which some have became a de-facto standard
in evaluation of new trackers. However, many of these se-
quences lack a standard ground truth labeling, which makes
comparison of proposed algorithms difficult. To sidestep
this issue, Wu et al. [48] have proposed a protocol for
tracker evaluation on a selected dataset that does not require
ground truth labels. However, this protocol is only appro-
priate for stochastic trackers. Furthermore, authors usually
do not use datasets with various visual phenomena equally
represented. In fact, many popular sequences exhibit the
same visual phenomenon, which makes the results biased
toward some particular types of the phenomena. In their
paper, Wu et al. [49] address this issue by annotating each
sequence with several visual attributes. For example, a se-
quence is annotated as “occlusion” if the target is occluded
anywhere in the sequence, etc. The results are reported only
on the subsets corresponding to a particular attribute. How-
ever, visual phenomena like occlusion do not usually last
throughout the entire sequence. For example, an occlusion
might occur at the end of the sequence, while the poor per-
formance is in fact due to some other effects occurring at
the beginning of the sequence. Thus a per-frame dataset
labeling is required to facilitate a more precise analysis.

Evaluation systems. For objective and rigorous eval-
uation, an evaluation system that performs on different
trackers the same experiment using the same dataset is
required. Most notable and general are the ODViS sys-
tem [23], VIVID [6] and ViPER [11] toolkits. The former
two focus on design of surveillance systems, while the latter
is a set of utilities/scripts for annotation and computation of
different types of performance measures. Recently, Wu et
al. [49] have performed a large-scale benchmark of several
trackers and developed an evaluation kit that allows integra-
tion of other trackers as well. However, in our experience,
the integration is not straightforward due to a lack of stan-
dardization of the input/output communication between the
tracker and the evaluation kit. Collecting the results from
the existing publications is an alternative to using an eval-
uation system that locally runs the experiment. However,
such evaluation is hindered by the biases the authors tend to
insert in their results. In particular, when publishing a paper
on a new tracker, a significant care is usually taken to adjust
the parameters of the proposed method such that it delivers
the best performance. On the other hand, much less atten-

5http://vision.fe.uni-lj.si/cvbase06/

2



tion is given to competing trackers, leading to a biased pref-
erence in the results. Under the assumption that authors in-
troduce bias only for their proposed tracker, Pang et al. [38]
have proposed a page-rank-like approach to data-mine the
published results and compile unbiased ranked performance
lists. However, as the authors state in their paper, the pro-
posed protocol is not appropriate for creating ranks of the
recently published trackers due to the lack of sufficiently
many publications that would compare these trackers.

Performance measures. A wealth of performance mea-
sures have been proposed for single-object tracker evalu-
ation. These range from basic measures like center er-
ror [40], region overlap [31], tracking length [29] and fail-
ure rate [28, 27] to more sophisticated measures, such as
CoTPS [37], which combine several measures into a single
measure. A nice property of the combined measures is that
they provide a single score to rank the trackers. A downside
is that they offer little insight into the tracker performance.
In this respect the basic measures, or their simple deriva-
tives, are preferred as they usually offer a straight-forward
interpretation. While some authors choose several basic
measures to compare their trackers, the recent study [44]
has shown that many measures are correlated and do not
reflect different aspects of tracking performance. In this
respect, choosing a large number of measures may in fact
again bias results toward some particular aspects of track-
ing performance. Thus a better strategy is to apply few less
correlated measures and combine them via ranking lists,
similarly to what was done in the change detection chal-
lenge [19].

VOT2013. Recognizing the above issues, the Visual Ob-
ject Tracking (VOT2013) challenge and workshop was or-
ganized. The goal was to provide an evaluation platform
that goes beyond the current state-of-the-art. In particular,
we have compiled a labeled dataset collected from widely
used sequences showing a balanced set of various objects
and scenes. All the sequences are labeled per-frame with
different visual attributes to aid a less biased analysis of
the tracking results. We have created an evaluation kit in
Matlab/Octave that automatically performs three basic ex-
periments on a tracker using the provided dataset. A new
comparison protocol based on basic performance measures
is also proposed. A significant novelty of the proposed
evaluation protocol is that it explicitly addresses the statis-
tical significance of the results and addresses the equiva-
lence of trackers. A dedicated VOT2013 homepage http:
//votchallenge.net/ has been set up, from which
the dataset, the evaluation kit and the results are publicly
available. The authors of tracking algorithms have an op-
portunity to publish their source code at the VOT homepage
as well, thus pushing the field of visual tracking towards a
reproducible research.

In the following we first review the VOT2013 challenge

(Section 2), the dataset (Section 2.1), the performance mea-
sures (Section 2.2), the VOT2013 experiments (Section 2.3)
and the evaluation methodology (Section 2.4), respectively.
The analysis of the VOT2013 results is provided in Sec-
tion 3 and Section 4 concludes the paper.

2. The VOT2013 challenge
The VOT2013 challenge targets the case in which a user

manually initializes a tracker in the first image of a se-
quence. In case the tracker fails (e.g., drifts away from the
target), the user would reinitialize the tracker at the image of
failure. The tracker is therefore required to predict a single
bounding box of the target for each frame of the sequence.
A failure is automatically detected by comparing the pre-
dicted bounding box with the ground truth annotation, in
case of zero overlap, a failure is proclaimed.

The organisers of VOT2013 provide an evaluation kit
and a dataset for performing objective evaluation of the
trackers. The authors attending the challenge are required
to integrate their tracker into the VOT2013 evaluation
kit, which automatically performs a standardized experi-
ment. The results are analyzed by the VOT2013 evaluation
methodology. For more details on the participation, please
refer to the challenge page6.

For the sake of simplicity of the evaluation kit, the
trackers participating in the VOT2013 challenge have to
be causal and always provide a complete reinitialization
when initialized by the evaluation kit. Causality requires
the tracker to solely process the frames from the initializa-
tion up to the current frame without using any information
from the future frames. If a tracker fails at some point dur-
ing tracking, it is reinitialized by the evaluation kit. A com-
plete reinitialization at time-step t requires that any learned
information, like appearance and dynamics from the previ-
ous frames, should be discarded.

Participants are expected to submit a single set of re-
sults per tracker. Participants who have investigated several
trackers should submit a single result per tracker. Changes
in the parameters do not constitute a different tracker. The
tracker is required to run with fixed parameters on all exper-
iments. The tracking method itself is allowed to internally
change specific parameters, but these have to be set auto-
matically by the tracker, e.g., from the image size and the
initial size of the bounding box, and are not to be set by
detecting a specific test sequence and then selecting the pa-
rameters that were hand-tuned to this sequence.

2.1. The VOT2013 dataset

The VOT2013 dataset includes various real-life visual
phenomena, while containing a small number of sequences
to keep the time for performing the experiments reasonably

6http://votchallenge.net/participation.html
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low. We initially collected a large pool of sequences that
have been used by various authors in the tracking commu-
nity. Each frame of the sequence was labeled with several
attributes and a subset of 16 sequences was selected from
this pool such that the various visual phenomena like occlu-
sion and illumination changes, were still represented well
within the selection.

For most of the selected sequences, the per-frame bound-
ing boxes placed over the object of interest were already
available. Since the bounding boxes were annotated by var-
ious authors, it is difficult to specify a common rule that
guided the annotators. It appears that the bounding boxes
were placed such that large percentage of pixels within the
bounding box (at least > 60%) belonged to the target. In
most cases, this percentage is quite high since the upright
bounding box tightly fits the target. But in some cases,
(e.g., the gymnastics sequence) where an elongated target
is rotating significantly, the bounding box contains a larger
portion of the background at some frames as well. After
inspecting all the bounding box annotations, we have re-
annotated those sequences in which the original annotations
were poor.

To gain a better insight into the performance of trackers,
we have manually or semi-manually labeled each frame in
each selected sequence with five visual attributes that reflect
a particular challenge in appearance degradation: (i) occlu-
sion, (ii) illumination change, (iii) motion change, (iv) size
change, (v) camera motion. In case a particular frame did
not correspond to any of the five degradations, we denoted
it as (vi) non-degraded. Such labeling allows us to compare
the trackers only on the subsets of frames corresponding to
the same attribute. In the following we will use the term
attribute sequence to refer to a set of frames with the same
attribute pooled together from all sequences in the dataset.

2.2. The VOT2013 performance measures

There exists an abundance of performance measures in
the field of visual tracking (e.g., [48, 38, 19, 26, 49]).
The guideline for choosing the performance measures was
the interpretability of the measures while selecting as few
measures as possible to provide a clear comparison among
trackers. Based on the recent analysis of widely-used per-
formance measures [44] we have chosen two orthogonal
measures: (i) accuracy and (ii) robustness. The accu-
racy measures how well the bounding box predicted by the
tracker overlaps with the ground truth bounding box. On
the other hand, the robustness measures how many times
the tracker loses the target during tracking. The tracking
accuracy at time-step t is defined as the overlap between
the tracker predicted bounding boxAT

t and the ground truth
bounding box AG

t

φt =
AG

t ∩AT
t

AG
t ∪AT

t

. (1)

As we will see later, we repeat the experiments multiple
times, which results in multiple measurements of accuracy
per frame. For further processing, the multiple measure-
ments are averaged, yielding a single, average, accuracy per
frame. We can summarize the accuracies in a set of frames
by calculating the average of these over the valid frames.
Note that all frames are not valid for computation of the ac-
curacy measure. In fact, the overlaps in the frames right af-
ter the initialization are biased toward higher overlaps since
the (noise-free) initialization starts at maximum overlap and
it takes a few frames of the burn-in period for the perfor-
mance to become unbiased by the initialization. In a prelim-
inary study we have determined by a large-scale experiment
that the burn-in period is approximately ten frames. This
means that ten frames after initialization will be labeled as
invalid for accuracy computation.

The robustness was measured by the failure rate mea-
sure, which counts the number of times the tracker drifted
from the target and had to be reinitialized. A failure was
detected once the overlap measure (1) dropped to zero. It
is expected that if a tracker fails in a particular frame it will
likely fail again if it is initialized in the next frame. To re-
duce this immediate correlation, the tracker was initialized
five frames after the failure. Again, due to multiple repeti-
tions of the experiment we will have multiple measurements
of failure rate on a given sequence of frames. The average
of these yields an average robustness on a given sequence.

2.3. The VOT2013 experiments

The challenge included the following three experiments:

• Experiment 1: This experiment tested a tracker on all
sequences in the VOT2013 dataset by initializing it on
the ground truth bounding boxes.

• Experiment 2: This experiment performed Experi-
ment 1, but initialized with noisy bounding box. By
noisy bounding box, we mean a randomly perturbed
bounding box, where the perturbation is in order of ten
percent of the ground truth bounding box size.

• Experiment 3: This experiment performed the Experi-
ment 1 on all sequences with the color images changed
to grayscale.

In Experiment 2 there was a randomness in the initial-
ization of the trackers. The bounding boxes were randomly
perturbed in position and size by drawing perturbations uni-
formly from ±10% interval of the ground truth bounding
box size. Trackers that did not use the color information
were allowed to be run only on Experiment 3 and the same
results were assumed also for the Experiment 1. All the ex-
periments were automatically performed by the evaluation
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kit7. A tracker was run on each sequence 15 times to obtain
a better statistic on its performance.

2.4. The VOT2013 evaluation methodology

Our goal was to compare the performance of trackers in
each experiment of Section 2.3 on the six different attribute
sequences from Section 2.1 with respect to the two perfor-
mance measures from Section 2.2. Since we need to es-
tablish how well a tracker performs compared to the other
trackers, we have developed a ranking-based methodology
akin to [9, 12, 19]. In short, within a single experiment,
we rank the trackers separately for each performance mea-
sure on each attribute sequence. By averaging the ranks of
each tracker over the different attributes we obtain the rank-
ing with respect to a performance measure. Giving equal
weight to all performance measures, we obtain the final
ranking on a selected experiment by averaging the corre-
sponding two rankings.

Note that a group of trackers may perform equally well
on a given attribute sequence, in which case they should be
assigned an equal rank. In particular, after ranking trackers
on an attribute sequence, we calculate for each i-th tracker
its corrected rank as follows. We determine for each tracker,
indexed by i, a group of equivalent trackers, which contains
the i-th tracker as well as any tracker that performed equally
well as the selected tracker. The corrected rank of the i-th
tracker is then calculated as the average of the ranks in the
group of equivalent trackers.

To determine the group of equivalent trackers, we require
an objective measure of equivalence on a given sequence. In
case of accuracy measure, a per-frame accuracy is available
for each tracker. One way to gauge equivalence in this case
is to apply a paired test to determine whether the difference
in accuracies is statistically significant. In case the differ-
ences are Gaussian distributed, the Student’s T-test, which is
often used in the aeronautic tracking research [4], is the ap-
propriate choice. However, in a preliminary study we have
observed that the accuracies in frames are not always Gaus-
sian distributed, which might render this test inappropriate.
As alternative, we apply the Wilcoxon Signed-Rank test as
in [9]. In case of robustness, we obtain several measure-
ments of number of times the tracker failed over the entire
sequence in different runs. However, these cannot be paired,
and we use the Wilcoxon Rank-Sum (also known as Mann-
Whitney U-test) instead to test the difference in the average
number of failures.

When establishing equivalence, we have to keep in mind
that statistical significance of performance differences does
not directly imply a practical difference [10]. One would
have to define a maximal difference in performance of two
trackers at which both trackers are said to perform practi-
cally equally well. However, since we could not find clear

7https://github.com/vicoslab/vot-toolkit

means to objectively define this difference, we reserve our
methodology only to testing the statistical significance of
the differences. Note, however, that if such a difference was
available, our Wilcoxon equivalence tests can readily apply
it.

3. The VOT analysis
In this section we analyze the results of the challenge.

We begin with a short overview of the trackers considered
in the challenge and then present and interpret the overall re-
sults. More detailed description of the evaluated trackers as
well as a detailed analysis can be found in the Appendix A
and the VOT2013 homepage8, respectively.

3.1. Description of trackers

We have received 19 entries from various authors in
the VOT2013 challenge. All of these have performed the
baseline Experiment 1, 17 have performed all three ex-
periments, and one performed only Experiment 1 and 3.
The VOT committee additionally performed all three ex-
periments with eight baseline trackers. For these the de-
fault parameters were selected, or, when not available, were
set to reasonable values. Thus a total of 27 trackers were
included in the VOT2013 challenge. In the following we
briefly overview the entries and provide the reference to an
original published paper. In cases where the method was not
officially published, we refer to the Appendix A instead.

We have received two entries that applied back-
ground adaptation and subtraction to localize the target,
MORP (Appendix A.18) and STMT (Appendix A.24). Two
trackers applied key-point features to localize the target,
Matrioska [34] and SCTT (Appendix A.23). Several ap-
proaches were applying global generative visual model
for target localization: the incremental subspace-based
IVT [40], the histogram-based mean-shift tracker MS [7]
and its improved version CCMS (Appendix A.4), two chan-
nel blurring approaches DFT [42] and the EDFT [13], two
adaptive multiple-feature-combination-based AIF [5] and
CactusFl (Appendix A.3), and a sparsity-based PJS-S (Ap-
pendix A.20). Many trackers were based on the discrimina-
tive global visual models. Among these were the multiple-
instance-learning-based tracker MIL [2], the STRUCK [20]
and its derivative PLT (Appendix A.21), the compressive
tracking based CT [55] and its derivative RDET [41], the
sparsity-based ORIA [50] and ASAM (Appendix A.2), and
the graph-embedding-based GSDT [15]. The competi-
tion entries included several part-based trackers as well.
Namely, the generalized Hough-transform-based HT [18],
the LGT [45] and its extension LGT++ [51], and the edge-
based LT-FLO [30]. Some trackers were utilizing optical
flow, e.g., FoT [46], while the TLD [24] combined the local

8http://votchallenge.net/
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Table 1. Ranking results. Highest ranking tracker is marked with red color, the second highest is marked with blue color, and the third
highest is marked with green color. Last row displays a joined ranking for all three experiments, which were also used to order the trackers.
The trackers that have been verified by the VOT committee are denoted by the asterisk (·)∗.

Experiment 1 Experiment 2 Experiment 3
RA RR R RA RR R RA RR R RΣ

PLT∗ 7.51 3.00 5.26 4.38 3.25 3.81 5.90 2.83 4.37 4.48
FoT∗ 4.56 11.15 7.85 5.14 10.84 7.99 3.08 9.19 6.13 7.33
EDFT∗ 9.14 11.04 10.09 8.14 13.61 10.88 6.52 10.66 8.59 9.85
LGT++∗ 15.73 4.25 9.99 13.36 4.14 8.75 15.46 7.34 11.40 10.05
LT-FLO 6.40 17.40 11.90 7.43 14.27 10.85 8.00 12.63 10.31 11.02
GSDT 11.87 11.99 11.93 10.78 12.56 11.67 9.49 9.72 9.60 11.07
SCTT 4.75 16.38 10.56 7.65 16.49 12.07 6.00 16.49 11.24 11.29
CCMS∗ 10.97 10.95 10.96 6.94 8.87 7.91 12.10 18.35 15.23 11.36
LGT∗ 17.83 5.42 11.62 15.38 5.20 10.29 18.63 7.21 12.92 11.61
Matrioska 10.62 12.40 11.51 10.59 14.38 12.48 9.07 13.03 11.05 11.68
AIF 7.44 14.77 11.11 9.17 15.25 12.21 6.60 18.64 12.62 11.98
Struck∗ 11.49 13.66 12.58 13.24 12.64 12.94 9.82 11.20 10.51 12.01
DFT 9.53 14.24 11.89 11.42 15.58 13.50 11.44 11.32 11.38 12.25
IVT∗ 10.72 15.20 12.96 11.36 15.24 13.30 9.17 14.01 11.59 12.62
ORIA∗ 12.19 16.05 14.12 14.00 15.92 14.96 10.56 13.26 11.91 13.66
PJS-S 12.98 16.93 14.96 13.50 14.84 14.17 11.19 14.05 12.62 13.92
TLD∗ 10.55 22.21 16.38 7.83 19.75 13.79 10.03 18.60 14.31 14.83
MIL∗ 19.97 14.35 17.16 18.46 13.01 15.74 15.32 11.17 13.24 15.38
RDET 22.25 12.22 17.23 19.75 10.97 15.36 17.69 9.97 13.83 15.48
HT∗ 20.62 13.27 16.95 19.29 12.61 15.95 20.04 12.90 16.47 16.46
CT∗ 22.83 13.86 18.35 21.58 12.93 17.26 18.92 12.68 15.80 17.13
Meanshift∗ 20.95 14.23 17.59 18.29 16.94 17.62 22.33 15.97 19.15 18.12
SwATrack 15.81 15.88 15.84 13.97 16.06 15.02 27.00 27.00 27.00 19.29
STMT 23.17 21.31 22.24 22.17 19.50 20.84 20.67 16.96 18.81 20.63
CACTuS-FL 25.39 19.67 22.53 24.17 15.46 19.82 22.92 18.33 20.62 20.99
ASAM 11.23 15.09 13.16 27.00 27.00 27.00 27.00 27.00 27.00 22.39
MORP 24.03 27.00 25.51 24.31 26.00 25.15 27.00 27.00 27.00 25.89

motion estimates with discriminative learning of patches for
object re-detection.

3.2. Results

The results are summarized in Table 1 and visualized by
the A-R rank plots inspired by the A-R score plots [44],
which show each tracker as a point in the joint accuracy-
robustness rank space. For more detailed rankings and plots
please see the VOT2013 results homepage. At the time of
writing this paper, the VOT committee was able to ver-
ify some of the submitted results by re-running parts of
the experiments using the binaries of the submitted track-
ers. The verified trackers are denoted by (·)∗ in Table 1.
Looking at the baseline results (Experiment 1), the track-
ers ranked lowest are MORP, CACTuS-FL and STMT. The
low performance of MORP and STMS is not surprising,
since they both apply adaptive/dynamic background sub-
traction, which tends to be less robust in situations with
non-static camera and/or the background. The CaCtus-FL

is a more sophisticated tracker, however, the tracker does
not work well for the objects that significantly move with
respect to the image frame. The top performing trackers on
the baseline are PLT, FoT, LGT++, EDFT and SCTT. The
PLT stands out as a single-scale detection-based tracker that
applies on-line sparse structural SVM to adaptively learn a
discriminative model from color, grayscale and grayscale
derivatives. The tracker does not apply a motion model and
does not adapt the size of the target. On the other hand,
the FoT, LGT++ and EDFT do apply a motion model. All
of these trackers, except for EDFT, can be thought of as
part-based models. In particular, the PLT applies a sparse
SVM, FoT is an array of Lucas-Kanade predictors that are
robustly combined to estimate the object motion, the visual
model in LGT++ is a weakly coupled constellation of parts
and SCTT uses a sparse regression for target localization.
Here, we can consider sparse methods as part-based meth-
ods with parts organized in a rigid grid. The target local-
ization in PLT, FoT and EDFT is deterministic, while the
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Figure 1. The accuracy-robustness ranking plots with respect to the three experiments. Tracker is better if it resides closer to the top-right
corner of the plot.

LGT++ and SCTT are stochastic trackers.
When considering the results averaged over all three ex-

periments, the top-ranked trackers are PLT and FoT, fol-
lowed by EDFT and LGT++. The A-R ranking plots in Fig-
ure 1 offer further insights into the performance of trackers.
We can see that, in all three experiments, the PLT yields
by far the largest robustness. In the baseline experiment,
the two trackers that fairly tightly follow the PLT are the
LGT++ and the original LGT. We can see that we have the
same situation in experiment with noise, which means that
these three trackers perform quite well even in noisy initial-
izations in terms of robustness. However, when considering
the accuracy, we can see that the top performing tracker on
the baseline is in fact FoT, tightly followed by SCTT and
a RANSAC-based edge tracker LT-FLO. In the experiment
with noise, the FoT tracker comes second best to PLT, sug-
gesting a bit lower resilience to noisy initializations. This
might speak of a reduced robustness of the local motion
combination algorithm in FoT in case of noisy initializa-
tions. Considering the color-less sequences in Experiment
3, the PLT remains the most robust, however, the FoT comes
on top when considering the accuracy.

Figure 2 shows the A-R ranking plots of the Experi-
ment 1 separately for each attribute. The top ranked track-
ers in the averaged ranks remain at the top also with re-
spect to each attribute, with two exceptions. When consid-
ering the size change, the best robustness is still achieved by
PLT, however, the trackers that yield best trade-off between
the robustness and accuracy are the LGT++ and the size-
adaptive mean shift tracker CCMS. When considering oc-
clusion, the PLT and STRUCK seem to share the first place
in the best trade-off.

In summary, the sparse discriminative tracker PLT seems
to address the robustness quite well, despite that it does not
adapt the target size, which reduces its accuracy when the
size of the tracked object is significantly changing. On the
other hand, the part-based trackers with a rigid part constel-

lation yield a better accuracy at reduced robustness. The
robustness is increased with part-based models that relax
the constellation, but this on average comes at a cost of sig-
nificant drop in accuracy.

Apart from the accuracy and robustness, the VOT evalu-
ation kit also measured the times required to perform a rep-
etition of each tracking run. From these measurements, we
have estimated the average tracking speed of each tracker
(Table 3). Care has to be taken when interpreting these re-
sults. The trackers were implemented in different program-
ming languages and run on different machines, with differ-
ent levels of code optimization. However, we believe that
these measurements still give a good estimate of the track-
ers practical complexity. The trackers that stand out are the
PLT and FoT, achieving speeds in range of 150 frames per
second (C++ implementations).

Table 2. Degradation difficulty for the six visual attributes: camera
motion (camera), illumination change (illum.), object size change
(size), object motion change (mot) and non-degraded (nondeg).

camera illum. occl. size mot. nondeg
Acc. 0.57 0.57 0.58 0.42 0.57 0.61
Fail. 1.58 0.56 0.66 0.93 0.85 0.00

Next we have ranked the individual types of visual degra-
dation according to the tracking difficulty they present to
the tested trackers. For each attribute sequence we have
computed the median over the average accuracies and fail-
ure rates across all the trackers. This median scores were
the basis for the attribute ranking. The ranking results com-
puted from Experiment 1 are presented in Table 2. These re-
sults confirm that the subsequences that do not contain any
specific degradation present little difficulty for the trackers
in general. Most trackers do not fail on such intervals and
achieve best average overlap. On the other hand, camera
motion is the hardest degradation in this respect. One way
to explain this is that most trackers focus primarily on ap-
pearance changes of the target and do not explicitly account
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Experiment 1, camera motion

AIF
ASAM
CACTuS−FL
CCMS
CT
DFT
EDFT
FoT
HT
IVT
LGT++
LGT
LT−FLO
GSDT
Matrioska
Meanshift
MIL
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ORIA
PJS−S
PLT
RDET
SCTT
STMT
Struck
SwATrack
TLD

Figure 2. The accuracy-robustness ranking plots of Experiment 1 with respect to the six sequence attributes. The tracker is better if it
resides closer to the top-right corner of the plot.

for changing background. Note that camera motion does
not necessarily imply that the object is significantly chang-
ing position in the image frame. In terms of accuracy the
hardest degradation is the changes of object size. This is
reasonable as many trackers do not adapt in this respect and
sacrifice their accuracy for a more stable visual model that
is more accurate in situations where the size of the target
does not change. Occlusions and illumination changes are
apparently less difficult according to these results. Note,
however, that occlusion does pose a significant difficulty to
the trackers but the numbers do not indicate extreme diffi-
culty. This might be because the occlusions in our dataset
are short-term and partial at best.

4. Conclusion

In this paper we have reviewed the VOT2013 challenge
and its results. The VOT2013 contains an annotated dataset
comprising many of the widely used sequences. All the se-
quences have been labeled per-frame with attributes denot-
ing various visual phenomena to aid a more precise analysis
of the tracking results. We have implemented an evaluation
kit in Matlab/Octave that automatically performs three ba-
sic experiments on the tracker using the new dataset. A new

comparison protocol based on basic performance measures
was also proposed. We have created a publicly-available
repository and web page that will host the VOT2013 chal-
lenge (dataset, evaluation kit, tracking results, source code
and/or binaries if the authors choose so). The results of
VOT2013 indicate that a winner of the challenge according
to the average results is the PLT tracker (Appendix A.21).
However, the results also show that trackers tend to special-
ize either for robustness or accuracy. None of the track-
ers consistently outperformed the others by all measures at
all sequence attributes. It is impossible to conclusively say
what kind of tracking strategy works best in general, how-
ever, there is some evidence showing that robustness tends
to be better for the trackers that do not apply global models,
but rather split the visual models into parts.

The absence of homogenization of the single-tracking
performance evaluation makes it difficult to rigorously com-
pare trackers across publications and stands in the way of
faster development of the field. We expect that the homoge-
nization of performance evaluation will not happen without
involving a critical part of the community and without pro-
viding a platform for discussion. The VOT2013 challenge
and workshop was an attempt toward this goal. Our future
work will be focused on revising the evaluation kit, dataset
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Table 3. Performance, implementation and evaluation environment
characteristics.

FPS Implem. Hardware
PLT 169.59 C++ Intel Xeon E5-16200
FoT 156.07 C++ Intel i7-3770
EDFT 12.82 Matlab Intel Xeon X5675
LGT++ 5.51 Matlab / C++ Intel i7-960
LT-FLO 4.10 Matlab / C++ Intel i7-2600
GSDT 1.66 Matlab Intel i7-2600
SCTT 1.40 Matlab Intel i5-760
CCMS 57.29 Matlab Intel i7-3770
LGT 2.25 Matlab / C++ AMD Opteron 6238
Matrioska 16.50 C++ Intel i7-920
AIF 30.64 C++ Intel i7-3770
Struck 3.46 C++ Intel Pentium 4
DFT 6.65 Matlab Intel Xeon X5675
IVT 5.03 Matlab AMD Opteron 6238
ORIA 1.94 Matlab Intel Pentium 4
PJS-S 1.18 Matlab / C++ Intel i7-3770K
TLD 10.61 Matlab Intel Xeon W3503
MIL 4.45 C++ AMD Opteron 6238
RDET 22.50 Matlab Intel i7-920
HT 4.03 C++ Intel i7-970
CT 9.15 Matlab / C++ Intel Pentium 4
Meanshift 8.76 Matlab Intel Xeon
SwATrack 2.31 C++ Intel i7
STMT 0.24 C++ Intel Xeon X7460
CACTuS-FL 0.72 Matlab Intel Xeon X5677
ASAM 0.93 Matlab Intel i5-2400
MORP 9.88 Matlab Intel i7

as well as challenges through the feedbacks gained from the
community.
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A. Submitted trackers
In this appendix we provide a short summary of all track-

ers that were considered in the VOT2013 competition.

A.1. Tracking with an Adaptive Integrated Feature
(AIF)

Submitted by:

Weihua Chen weihua.chen@nlpr.ia.ac.cn
Lijun Cao ljcao@nlpr.ia.ac.cn
Junge Zhang jgzhang@nlpr.ia.ac.cn
Kaiqi Huang kqhuang@nlpr.ia.ac.cn

AIF tackles the discriminative learning problem in low
resolution, lack of illumination and clutter by presenting an
adaptive multi-feature integration method in terms of fea-
ture invariance, which can evaluate the stability of features
in sequential frames. The adaptive integrated feature (AIF)
consists of several features with dynamic weights, which
describe the degree of invariance of each single feature. The
reader is referred to [5] for details.

A.2. Adaptive Sparse Appearance Model Tracker
(ASAM)

Submitted by:
B. Bozorgtabar behzad.bozorgtabar@canberra.edu.au
Roland Goecke roland.goecke@ieee.org

ASAM accounts for drastic appearance changes by mod-
elling the object as a set of appearance models. An online
algorithm is used based on a discriminative and generative
sparse representation. A two-stage algorithm is used to ex-
ploit both the information of the example in the first frame
and successive observations obtained online.

A.3. Competitive Attentional Correlation Tracker
using Shape and Feature Learning (CACTuS-
FL)

Submitted by:
Sebastien Wong sebastien.wong@dsto.defence.gov.au
Adam Gatt adam.gatt@dsto.defence.gov.au
Anthony Milton Anthony.Milton@IEEE.org
Dale Ward Dale.Ward@unisa.edu.au
David Kearney david.kearney@unisa.edu.au

CACTuS-FL tackles model drift of the object by addi-
tionally tracking sources of clutter and then assigning ob-
servations to the tracks that best describe the observations.
This tracker augments the work described in [16].

A.4. Color Correspondences Mean-Shift (CCMS)

Submitted by:
Tomas Vojir vojirt1@fel.cvut.cz
Jir Matas matas@cmp.felk.cvut.cz

The Color Correspondences Mean-Shift tracker max-
imizes a likelihood ratio of similarity between the tar-
get model and the target candidate and the similarity be-
tween the target candidate and the background model for
each color (histogram bin) separately by a standard Mean-
Shift iteration (as proposed by Comaniciu et al. [7]). The
weighted mean of the correspondences is then used as a mo-
tion estimation. This process is iterative and runs for each
frame until it converges or until the maximum number of
iteration is reached.
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A.5. Compressive Tracking (CT)

Submitted by:
VOT2013 Technical Committee

The CT tracker uses an appearance model based on fea-
tures extracted from the multi-scale image feature space
with data-independent basis. It employs non-adaptive ran-
dom projections that preserve the structure of the image
feature space of objects. A very sparse measurement ma-
trix is adopted to efficiently extract the features for the ap-
pearance model. Samples of foreground and background
are compressed using the same sparse measurement ma-
trix. The tracking task is formulated as a binary classi-
fication via a naive Bayes classifier with online update in
the compressed domain. The reader is referred to [55] for
details and to http://www4.comp.polyu.edu.hk/
˜cslzhang/CT/CT.htm for code.

A.6. Distribution Fields for Tracking (DFT)

Submitted by:
Michael Felsberg michael.felsberg@liu.se

A common technique for gradient descent based track-
ers is to smooth the objective function by blurring the
image. However, blurring destroys image information,
which can cause the target to be lost. DFT intro-
duces a method for building an image descriptor using
distribution fields, a representation that allows smooth-
ing the objective function without destroying information
about pixel values. The reader is referred to [42] and
to http://people.cs.umass.edu/˜lsevilla/
trackingDF.html for code.

A.7. Enhanced Distribution Fields for Tracking
(EDFT)

Submitted by:
Michael Felsberg michael.felsberg@liu.se

The EDFT is a novel variant of the DFT [42]. EDFT
derives an enhanced computational scheme by employing
the theoretic connection between averaged histograms and
channel representations. The reader is referred to [13] for
details.

A.8. Flock of Trackers (FoT)

Submitted by:
Tomas Vojir vojirt1@fel.cvut.cz
Jiri Matas matas@cmp.felk.cvut.cz

The Flock of Trackers (FoT) estimates the object mo-
tion from the transformation estimates of a number of local
trackers covering the object. The reader is referred to [46]
for details.

A.9. HoughTrack (HT)

Submitted by:

VOT2013 Technical Committee
HoughTrack is a tracking-by-detection approach based

on the Generalized Hough-Transform. The idea of Hough-
Forests is extended to the online domain and the center
vote based detection and back-projection is coupled with a
rough segmentation based on graph-cuts. This is in con-
trast to standard online learning approaches, where typi-
cally bounding-box representations with fixed aspect ratios
are employed. The original authors claim that HoughTrack
provides a more accurate foreground/background separa-
tion and that it can handle highly non-rigid and articu-
lated objects. The reader is referred to [18] for details
and to http://lrs.icg.tugraz.at/research/
houghtrack/ for code.

A.10. Incremental Learning for Robust Visual
Tracking (IVT)

Submitted by:
VOT2013 Technical Committee

The idea of the IVT tracker is to incrementally learn a
low-dimensional subspace representation, adapting online
to changes in the appearance of the target. The model up-
date, based on incremental algorithms for principal com-
ponent analysis, includes two features: a method for cor-
rectly updating the sample mean, and a forgetting factor to
ensure less modelling power is expended fitting older ob-
servations. The reader is referred to [40] for details and to
http://www.cs.toronto.edu/˜dross/ivt/ for
code.

A.11. Local-Global Tracking (LGT)

Submitted by:
Luka Čehovin luka.cehovin@fri.uni-lj.si
Matej Kristan matej.kristan@fri.uni-lj.si
Aleš Leonardis ales.leonardis@fri.uni-lj.si

The core element of LGT is a coupled-layer visual
model that combines the target global and local appear-
ance by interlacing two layers. By this coupled constraint
paradigm between the adaptation of the global and the local
layer, a more robust tracking through significant appearance
changes is achieved. The reader is referred to [45] for de-
tails.

A.12. An enhanced adaptive coupled-layer visual
LGTracker++ (LGTracker++)

Submitted by:
Jingjing Xiao shine636363@sina.com
Rustam Stolkin r.stolkin@cs.bham.ac.uk
Aleš Leonardis ales.leonardis@fri.uni-lj.si

LGTracker++ improves the LGT tracker [45] in the cases
of environment clutter, significant scale changes, failures
due to occlusion and rapid disordered movement. Algo-
rithmically, the scale of the patches is adapted in addition
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to adapting the bounding box. marginal patch distributions
are used to solve patch drifting in environment clutter. a
memory is added and used to assist recovery from occlu-
sion. situations where the tracker may lose the target are
automatically detected, and a particle filter is substituted for
the Kalman filter to help recover the target. The reader is re-
ferred to [51] for details.

A.13. Long Term Featureless Object Tracker (LT-
FLO)

Submitted by:
Karel Lebeda k.lebeda@surrey.ac.uk
Richard Bowden r.bowden@surrey.ac.uk
Ji Matas matas@cmp.felk.cvut.cz

LT-FLO is designed to track texture-less objects. It sig-
nificantly decreases reliance on texture by using edge-points
instead of point features. The tracker also has a mechanism
to detect disappearance of the object, based on the stabil-
ity of the gradient in the area of projected edge-points. The
reader is referred to [30] for details.

A.14. Graph Embedding Based Semi-Supervised
Discriminative Tracker (GSDT)

Submitted by:
Jin Gao jgao10@nlpr.ia.ac.cn
Junliang Xing jlxing@nlpr.ia.ac.cn
Weiming Hu wmhu@nlpr.ia.ac.cn
Xiaoqin Zhang xqzhang@nlpr.ia.ac.cn

GSDT is based on discriminative learning, where pos-
itive and negative samples are collected for graph embed-
ding. GSDT adopts graph construction based classifiers
without the assistance of learning object subspace gener-
atively as previous work did. The tracker also uses a new
graph structure to characterize the inter-class separability
and the intrinsic local geometrical structure of the samples.
The reader is referred to [15] for details.

A.15. Matrioska

Submitted by:
Mario Edoardo Maresca mariomaresca@hotmail.it
Alfredo Petrosino petrosino@uniparthenope.it

Matrioska decomposes tracking into two separate mod-
ules: detection and learning. The detection module can use
multiple keypoint-based methods (ORB, FREAK, BRISK,
SURF, etc.) inside a fallback model, to correctly local-
ize the object frame by frame exploiting the strengths of
each method. The learning module updates the object
model, with a growing and pruning approach, to account
for changes in its appearance and extracts negative samples
to further improve the detector performance. The reader is
referred to [34] for details.

A.16. Meanshift

Submitted by:
VOT2013 Technical Committee

Meanshift uses a feature histogram-based target repre-
sentation that is regularized by spatial masking with an
isotropic kernel. The masking induces spatially-smooth
similarity functions suitable for gradient-based optimiza-
tion, hence, the target localization problem can be formu-
lated using the basin of attraction of the local maxima.
Meanshift employs a metric derived from the Bhattacharyya
coefficient as similarity measure, and use the mean shift
procedure to perform the optimization. The reader is re-
ferred to [7] for details.

A.17. MIL

Submitted by:
VOT2013 Technical Committee

MIL is a tracking-by-detection approach. MIL uses
Multiple Instance Learning instead of traditional su-
pervised learning methods and shows improved robust-
ness to inaccuracies of the tracker and to incorrectly
labeled training samples. The reader is referred to
[2] for details and to http://vision.ucsd.edu/

˜bbabenko/project_miltrack.shtml for code.

A.18. Object Tracker using Adaptive Background
Subtraction and Kalman Filter (MORP)

Submitted by:
Hakki Can Karaimer cankaraimer@iyte.edu.tr

MORP basically works in three major steps: (i) pixels
are assigned to foreground by taking the difference between
the next image frame and the current background. MORP
uses an effective global thresholding technique in this step.
The current background is computed by averaging image
frames at the beginning of the tracking process and after the
first ten frames (adaptive background subtraction) . (ii) fore-
ground pixel (blobs) are processed by morphological open-
ing with a disc whose diameter is six pixels, then a mor-
phological closing with a disc whose diameter is ten pixels.
Blobs whose area is less than eight by eight pixel are elimi-
nated. After this step, the biggest remaining blob is selected
as the blob to be tracked. (iii) according to the detected blob
position and velocity, the next position of the object is cal-
culated by using a Kalman filter.

A.19. Online Robust Image Alignment (ORIA)

Submitted by:
VOT2013 Technical Committee

The ORIA tracker treats the tracking problem as the
problem of online aligning a newly arrived image to previ-
ously well-aligned images. The tracker treats the newly ar-
rived image, after alignment, as being linearly and sparsely
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reconstructed by the well-aligned ones. The task is accom-
plished by a sequence of convex optimization that mini-
mizes the L1 norm. After that, online basis updating is
pursued in two different ways: (1) a two-stage incremen-
tal alignment for joint registration of a large image dataset
which is known a prior, and (2) a greedy online alignment
of dynamically increasing image sequences, such as in the
tracking scenario. The reader is referred to [50] for details.

A.20. Patchwise Joint Sparse-SOMP (PJS-S)

Submitted by:
Ali Zarezade zarezade@ce.sharif.edu
Hamid R. Rabiee rabiee@sharif.edu
Ali Soltani-Farani a soltani@ce.sharif.edu
Ahmad Khajenezhad khajenezhad@ce.sharif.edu

PJS-S models object appearance using a dictionary com-
posed of target patches from previous frames. In each
frame, the target is found from a set of candidates via a
likelihood measure that is proportional to the sum of the
reconstruction error of each candidate patch. The tracker
assumes slow changes of object appearance, hence target
and traget candidates are expected to to belong to the same
subspace. PJS-S imposes this intuition by using joint spar-
sity inducing norms, to enforce the target and previous best
candidates to have the same sparsity pattern. The reader is
referred to [54] for details.

A.21. Single scale pixel based LUT tracker (PLT)

Submitted by:
Cher Keng Heng Hengcherkeng235@gmail.com
Samantha Yue Ying Lim yueying53@gmail.com
Zhi Heng Niu niuzhiheng@gmail.com
Bo Li libohit@gmail.com

PLT runs a classifier at a fixed single scale for each test
image, to determine the top scoring bounding box which
is then the result of object detection. The classifier uses a
binary feature vector constructed from color, grayscale and
gradient information. To select a small set of discrimina-
tive features, an online sparse structural SVM [20] is used.
Since the object can be non-rigid and the bounding box
may be noisy, not all pixels in the bounding box belong to
the object. Hence, a probabilistic object-background seg-
mentation mask from color histograms is created and used
to weight the features during SVM training. The resulting
weighted and convex problem can be solved in three steps:
(i) compute the probability that a pixel belongs to the object
by using its color. (ii) solve the original non-sparse struc-
tural SVM and (iii) shrink the solution [21], i.e. features
with smallest values are discarded. Since the feature vec-
tor is binary, the linear classifier can be implemented as a
lookup table for fast speed.

A.22. Random Diverse Ensemble Tracker (RDET)

Submitted by:
Ahmed Salahledin ahmed.salaheldin.hussein@gmail.com
Sara Maher m.a.elhelw@googlemail.com
Mohamed ELHelw s.m.elkerdawy@gmail.com

RDET proposes a novel real-time ensemble approach to
tracking by detection. It creates a diverse ensemble using
random projections to select strong and diverse sets of com-
pressed features. The reader is referred to [41] for details.

A.23. Structural Convolutional Treelets Tracker
(SCTT)

Submitted by:
Yang Li fliyang89@zju.edu.cn
Jianke Zhu jkzhug@zju.edu.cn

SCTT is a generative tracker, which is mainly inspired
by convolutional treelets keypoint matching algorithm [47].
SCTT employs a two-layer treelets [1] to extract the im-
age features from the input video frames. The proposed
two-layer structural framework is able to improve the rep-
resentation power of treelets by dividing image into smaller
pieces while reducing the feature dimensionality. Once im-
age features are extracted, LSST-distance [8] is calculated
and the patch with the smallest distance as the tracked target
is selected. Note that the reconstruction error is under the
Laplace distribution in LSST-distance, which is more robust
to partial occlusions. When SCTT finds the nearest patch
with LSST-distance in image, a similarity update threshold
is set. As treelets require fewer samples than PCA, only
those patches with high confidence are added into the up-
dating process. Thus, the proposed updating strategy is very
robust to the noises.

A.24. Spatio-temporal motion triangulation based
tracker (STMT)

Submitted by:
Sebastien Poullot poullot.sebastien@free.fr
Shin’ichi Satoh satoh@nii.ac.jp

STMT is based on a two layer process: camera motion
estimation then object motion estimation. The process flow
begins by registering two frames, yielding the camera mo-
tion. Successive image frames are aligned, candidate ob-
jects are obtained by frame differencing and association is
established either by the intersection of bounding boxes or
by employing a SIFT matching.

A.25. Struck

Submitted by:
VOT2013 Technical Committee

Struck presents a framework for adaptive visual object
tracking based on structured output prediction. By ex-
plicitly allowing the output space to express the needs of
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the tracker, need for an intermediate classification step is
avoided. The method uses a kernelized structured out-
put support vector machine (SVM), which is learned on-
line to provide adaptive tracking. The reader is referred
to [20] for details and to http://www.samhare.net/
research/struck/code for code.

A.26. An Adaptive Swarm Intelligence-based
Tracker (SwATrack)

Submitted by:
Mei Kuan Lim imeikuan@siswa.um.edu.my
Chee Seng Chan cs.chan@um.edu.my
Dorothy Monekosso dorothy.monekosso@uwe.ac.uk
Paolo Remagnino p.remagnino@kingston.ac.uk

SwATrack deems tracking as an optimisation problem
and adapted the particle swarm optimisation (PSO) algo-
rithm as the motion estimator for target tracking. PSO
is a population based stochastic optimisation methodology,
which was inspired by the behavioural models of bird flock-
ing. The reader is referred to [33] for details.

A.27. TLD

Submitted by:
VOT2013 Technical Committee

TLD explicitly decomposes the long-term tracking task
into tracking, learning, and detection. The detector localizes
all appearances that have been observed so far and corrects
the tracker if necessary. The learning estimates the detec-
tor errors and updates it to avoid these errors in the future.
The reader is referred to [25] for details and to https:
//github.com/zk00006/OpenTLD for code.

References
[1] B. N. A. Lee and L. Wasserman. Treelets - an adaptive

multi-scale basis for sparse unordered data. Ann. Appl. Stat.,
2(2):435–471, 2008.

[2] B. Babenko, M.-H. Yang, and S. Belongie. Robust object
tracking with online multiple instance learning. IEEE Trans.
Pattern Anal. Mach. Intell., 33(8):1619–1632, 2011.

[3] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black,
and S. R. A database and evaluation methodology for optical
flow. Int. J. Comput. Vision, 92(1):1–31, 2011.

[4] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with
Applications to Tracking and Navigation, chapter 11, pages
438–440. John Wiley & Sons, Inc., 2001.

[5] W. Chen, L. Cao, J. Zhang, and K. Huang. An adaptive com-
bination of multiple features for robust tracking in real scene.
In Vis. Obj. Track. Challenge VOT2013, In conjunction with
ICCV2013, 2013.

[6] R. Collins, X. Zhou, and S. K. Teh. An open source tracking
testbed and evaluation web site. In Perf. Eval. Track. and
Surveillance, 2005.

[7] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object
tracking. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 25(5):564–577, 2003.

[8] H. L. D. Wang and M.-H. Yang. Least soft-threshold squares
tracking. In In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR 2013), Port-
land, June 2013.
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[10] J. Demšar. On the appropriateness of statistical tests in ma-
chine learning. In Workshop on Evaluation Methods for Ma-
chine Learning in conjunction with ICML, 2008.

[11] D. Doermann and D. Mihalcik. Tools and techniques for
video performance evaluation. In Proc. Int. Conf. Pattern
Recognition, page 167170, 2000.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes (voc)
challenge. Int. J. Comput. Vision, 88(2):303–338, June 2010.

[13] M. Felsberg. Enhanced distribution field tracking using
channel representations. In Vis. Obj. Track. Challenge
VOT2013, In conjunction with ICCV2013, 2013.

[14] P. Gabriel, J. Verly, J. Piater, and A. Genon. The state of
the art in multiple object tracking under occlusion in video
sequences. In Proc. Advanced Concepts for Intelligent Vision
Systems, page 166173, 2003.

[15] J. Gao, J. Xing, W. Hu, and X. Zhang. Graph embedding
based semi-supervised discriminative tracker. In Vis. Obj.
Track. Challenge VOT2013, In conjunction with ICCV2013,
2013.

[16] A. Gatt, S. Wong, and D. Kearney. Combining online fea-
ture selection with adaptive shape estimation. In Image and
Vision Computing New Zealand (IVCNZ), 2010 25th Inter-
national Conference of, pages 1–8. IEEE, 2010.

[17] D. M. Gavrila. The visual analysis of human movement:
A survey. Comp. Vis. Image Understanding, 73(1):82–98,
1999.

[18] M. Godec, P. M. Roth, and H. Bischof. Hough-based track-
ing of non-rigid objects. Comp. Vis. Image Understanding,
117(10):1245–1256, 2013.

[19] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ish-
war. Changedetection.net: A new change detection bench-
mark dataset. In CVPR Workshops, pages 1–8. IEEE, 2012.

[20] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured
output tracking with kernels. In D. N. Metaxas, L. Quan,
A. Sanfeliu, and L. J. V. Gool, editors, Int. Conf. Computer
Vision, pages 263–270. IEEE, 2011.

[21] C.-K. Heng, S. Yokomitsu, Y. Matsumoto, and H. Tamura.
Shrink boost for selecting multi-lbp histogram features in ob-
ject detection. In Comp. Vis. Patt. Recognition, pages 3250–
3257, 2012.

[22] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual
surveillance of object motion and behaviors. IEEE Trans.
Systems, Man and Cybernetics, C, 34(30):334–352, 2004.

[23] C. Jaynes, S. Webb, R. Steele, and Q. Xiong. An open de-
velopment environment for evaluation of video surveillance
systems. In PETS, 2002.

13

http://www.samhare.net/research/struck/code
http://www.samhare.net/research/struck/code
https://github.com/zk00006/OpenTLD
https://github.com/zk00006/OpenTLD


[24] Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning: Boot-
strapping binary classifiers by structural constraints. In
Comp. Vis. Patt. Recognition, pages 49–56. IEEE, 2010.

[25] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-
detection. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 34(7):1409–1422, 2012.

[26] R. Kasturi, D. B. Goldgof, P. Soundararajan, V. Manohar,
J. S. Garofolo, R. Bowers, M. Boonstra, V. N. Korzhova, and
J. Zhang. Framework for performance evaluation of face,
text, and vehicle detection and tracking in video: Data, met-
rics, and protocol. IEEE Trans. Pattern Anal. Mach. Intell.,
31(2):319–336, 2009.

[27] M. Kristan, S. Kovacic, A. Leonardis, and J. Pers. A two-
stage dynamic model for visual tracking. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B, 40(6):1505–
1520, 2010.

[28] M. Kristan, J. Perš, M. Perše, M. Bon, and S. Kovačič. Mul-
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