
Parametric Optimization of Reconfigurable

Designs Using Machine Learning

Maciej Kurek, Tobias Becker, and Wayne Luk

Department of Computing, Imperial College London

Abstract. This paper presents a novel technique that uses meta-
heuristics and machine learning to automate the optimization of design
parameters for reconfigurable designs. Traditionally, such an optimiza-
tion involves manual application analysis as well as model and param-
eter space exploration tool creation. We develop a Machine Learning
Optimizer (MLO) to automate this process. From a number of benchmark
executions, we automatically derive the characteristics of the parameter
space and create a surrogate fitness function through regression and classi-
fication. Based on this surrogate model, design parameters are optimized
with meta-heuristics. We evaluate our approach using two case studies,
showing that the number of benchmark evaluations can be reduced by up
to 85% compared to previously performed manual optimization.

Keywords: optimization, surrogate modeling, PSO, GP, SVM, FPGA.

1 Introduction

Field programmable gate arrays (FPGAs) allow designs that are customized
to the requirement of the application. Reconfiguration is an additional benefit
which allows the designer to modify designs at run time, potentially increasing
performance and efficiency. Unfortunately, the optimization of reconfigurable de-
signs often requires substantial effort from designers who have to analyze the
application, create models and benchmarks and subsequently use them to opti-
mize the design. This process often involves adjusting multiple design parameters
such as numerical precision, degree of pipelining or number of cores. One could
proceed with automated optimization based on an exhaustive search through de-
sign parameters which are derived from application benchmarks; however, this is
unrealistic since benchmark evaluations involve bitstream generation and code
execution which often takes hours of compute time.

It has been shown useful to construct surrogate models of fitness functions
representing design quality for computationally expensive optimization problems
in various fields [1–5]. As these models are orders of magnitude faster to evaluate
than the actual fitness function, they can substantially accelerate optimization
thus allowing for an automated approach. This is the motivation behind our
development of the MLO tool which we apply to the problem of reconfigurable
designs parameter optimization. In [6] we present initial concepts on optimiz-
ing parameter configuration of reconfigurable designs using surrogate models.

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, pp. 134–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Parametric Optimization with Machine Learning Optimizer 135

We now present the formalism and experimental evaluation for our approach.
The contributions of this paper are:

• A mathematical characterization of the parameter space for reconfigurable
designs as well as a definition of a fitness function based on application
benchmarks (Section 3).

Generic surrogate models to approximate the fitness function using regres-
sion and classification. We combine surrogate models with meta-heuristics to
provide a new MLO algorithm for automated optimization of reconfigurable
designs (Section 4).

•• An evaluation of our MLO approach in two case studies: (a) execution time
of a run-time reconfigurable software-defined radio with varied degree of
parallelism, and (b) and a previously used [6] throughput of a quadrature
based financial application with varied precision (Section 5).

2 Background

When developing reconfigurable applications, designers are often confronted with
a very large parameter space. As a result the parameter space exploration can
take an immense amount of time. A number of researchers approach the problem
of high-cost fitness functions and large design spaces in various fields [1–5] by
having fitness functions combined with fast-to-compute surrogate models pro-
vided by a Gaussian Process (GP) for decreasing evaluation time. However most
current surrogate models only consist of a regressor and do not take into account
possible invalid configurations within the design space. Furthermore, all of them
are evaluated using artificial benchmarks spanned by continuousRn spaces, while
parameter spaces for reconfigurable applications usually also involve discrete di-
mensions (e.g. number of cores). Surrogate models approximating fitness func-
tions by substituting lengthy evaluations with estimations based on closeness in
a design space have been investigated in reconfigurable computing [7]. The work
covers surrogate models for circuit synthesis from higher level languages (HLL),
rather than parameter optimization.

GP is a machine learning technology based on strict theoretical fundamentals
and Bayesian theory [8, 9]. GP does not require a predefined structure, can ap-
proximate arbitrary function landscapes including discontinuities, and includes
a theoretical framework for obtaining the optimum hyper-parameters [4]. An ad-
vantage of GP is that it provides a predictive distribution, not a point estimate.

A Gaussian process is a collection of random variables, any finite set of which
have a joint Gaussian distribution. A Gaussian process is completely specified
by its mean function m(x) and the covariance (kernel) function k(x,x′):

f̂(x) ∼ GP(m(x), k(x,x′)) (1)

The k(x,x′) expresses the covariance between pairs of random variables, and
in regression analysis it expresses the relation between input-output pairs. This



136 M. Kurek, T. Becker, and W. Luk

is based on a training set D of n observations, D = (xi, yi)|i = 1, ...n, where x
denotes an input vector, y denotes a scalar output. The column vector inputs
for all n cases are aggregated in the D × n design matrix X , and the outputs
are collected in the vector y. The goal of Bayesian forecasting is to compute the
distribution p(f̂ |x∗,y, X) of the function f̂ at unseen input x∗ given a set of
training points D. Using Bayes rule, the predictive posterior for the Gaussian
process f̂ and the predicted scalar outputs f̂(x∗) = y∗ can be obtained.

Support Vector Machine (SVM) is a maximum margin classifier, which con-
structs a hyperplane used for classification (or regression) [10]. SVMs use kernel
functions k(x,x′) to transform the original feature space to a different space
where a linear model is used for classification. SVMs are a class of decision ma-
chines and so do not provide posterior probabilities. There is a training set D
of n observations, D = (xi, ti)|i = 1, ...n, where x denotes an input vector, t
denotes a target value. The column vector inputs for all n cases are aggregated
in the D × n design matrix X , and the targets in the vector t. The goal is to
classify an unseen input x∗ based on X and t by computing a decision boundary.

Particle Swarm Optimization (PSO) is a population-based meta-heuristic
based on the simulation of the social behavior of birds within a flock [11]. The
algorithm starts by randomly initializing N particles where each individual is
a point in the X = R × ... × R search space. The population is updated in an
iterative manner where each particle is displaced based on its velocity vid. The
criteria for termination of the PSO algorithm can vary, and usually are deter-
mined by a time budget. The xid represents the dth coordinate of particle i from
the set X∗ of N particles, where particle is a point within X . In the most basic
form of PSO Eq. 2-3 govern movement of particles. r1 ∼ U(0, 1) and r2 ∼ U(0, 1)
are two independent uniformly distributed random numbers, c1 and c2 are ac-
celeration coefficients and pgd and pid are dth coordinates of the global best and
personal best positions. pgd is updated when a new global best fitness is found
and pid is updated when a particle improves over its best fitness.

vid = vid + c1r1(pid − xid) + c2r2(pgd − xid) (2)

xid = xid + vid (3)

3 Optimization Approach

Traditionally, optimization of reconfigurable applications is carried out by build-
ing benchmarks and relevant tools, and the associated analytical models [12, 13].
This involves the following steps:

1. Build application and a benchmark returning design quality metrics.
2. Specify search space boundaries and optimization goal.
3. Create analytical models for the design.



Parametric Optimization with Machine Learning Optimizer 137

4. Create tools to explore the parameter space.
5. Use the tools to find optimal configurations, guided by the models in step 3.
6. If result is not satisfactory, redesign.

In our approach the user supplies a benchmark along with constraints and goals,
and the MLO automatically carries out the optimization (Algorithm 1). Our
approach consists of the following steps:

1. Build application and benchmark returning design quality metrics.
2. Specify search space boundaries and optimization goal.
3. Automatically optimize design with MLO.
4. If result is not satisfactory, redesign or revised time budget and search space.

Our idea of surrogate modeling is illustrated in Fig. 1. The MLO algorithm
explores the parameter space by evaluating different benchmark configurations
as presented in the left figure. The results obtained during evaluations are used
to build a surrogate model which provides a regression of the fitness function
and identifies invalid regions of the parameter space. A meta-heuristic (currently
PSO) guides the exploration of the parameter space using the surrogate model.

Fig. 1. Benchmark evaluations, surrogate model and model guided search

3.1 Parameter Space

The parameter space X of a reconfigurable design is spanned by discrete and
continuous parameters determining both the architecture and physical settings
of FPGA designs. A vector x represents a parameter configuration within the
parameter space X = X1 × ... × XD such that any Xd ⊆ R. If Xd ⊆ Z, its
discretization level is independent of other dimensions. Xd can be bounded with
upper and lower limits Ud, Ld such that for all xd, Ld ≤ xid ≤ Ud. An example of
a continuous parameter is core frequency and an example of a discrete parameter
is the number of compute cores. For all discrete dimensions the step size, which
we define as smallest distance between any two xid’s, can vary. We might only
be able to increase memory width in 16 bits increments.

A discrete parameter space has important implications on the PSO algorithm,
as the equations governing movements of particles Eq. 2-3 are defined for a con-
tinuous Rn space. In Eq. 2 both r1 and r2 are random real numbers, which means
that the resulting velocity component used to update position x cannot be used
if xd is discrete. To discretize the position value of a particle after its movement,



138 M. Kurek, T. Becker, and W. Luk

we round its value and randomize its rounding error (dithering) presented in Eq.
4. By using dithering instead of truncation PSO particles maintain their velocity
component which results in a more thorough exploration.

xdi =

{
�xid� U(0, stepsize) < (xdi mod stepsize )

�xid� U(0, stepsize) ≥ (xdi mod stepsize )
(4)

3.2 Fitness Function

Given a parameter setting x, the benchmark b(x) returns a fitness metric which
constitutes two values: y, the scalar metric of fitness and t, the exit code of
the application. Execution time and power consumption are examples of fitness
measures. There are be many possible exit codes t, with 0 indicating valid x’s.
The designer can choose to extend the benchmark to return additional exit
codes depending on the failure cause, such as configurations producing inaccurate
results or failing to build.

We distinguish three different types of exit codes. The first type is exit code 0
indicating a valid design. The second type of exit codes indicate configurations
that produce results yet fail at least one constraint making them undesirable.
The third type of exit codes is used for configurations that fail to produce any
results. The region of X that defines configurations x that produce y and satisfy
all constraints is defined as valid region V , regions with designs failing at least one
constraint yet producing y are part of failed region F , and the region with designs
failing to produce y is the invalid region I. If x∗ does not produce a valid result,
we assign a value that the designer assumes to be the most disadvantageous.
Depending on whether we face a minimization/maximization problem,s either a
high maxval or low minval value will be assigned.

f(x) =

{
y x ∈ V
maxval ∨minval otherwise

(5)

4 MLO Surrogate Model

We integrate a Bayesian regressor f̂ and a classifier to create a novel surrogate
model for a given fitness function f . As illustrated in Fig 1, the problem we
face is regression of f over V and F as well as classification of X . We make
use of Bayesian regressors to access the probability of prediction of f̂(x∗) of
non-examined parameter configurations x∗. We use classifiers to predict exit
codes of X∗ across X . Regressions are made using the training set obtained from
benchmark execution Dr, while classification is done using the training set Dc.
We invoke regressor(Dr ,x∗) for every particle in x∗ to obtain the regression y∗
and its probability p(y∗|x∗,Dr), which we denote as ρ for simplicity. Class label
t∗ of particle x∗ is predicted by the classifier classifier(Dc,x∗).



Parametric Optimization with Machine Learning Optimizer 139

Algorithm 1. MLO

1: for x∗ ∈ X∗ do
2: x∗.fit← f(x∗) � Initialize with a uniformly randomized set X∗.
3: end for
4: repeat
5: for x∗ ∈ X∗ do
6: y∗, ρ← regressor(Dr,x∗)
7: t∗ ← classifier(Dc,x∗)
8: if ρ < minρ and t∗ = 0 then
9: x∗.fit← y∗
10: else
11: if t∗ = 0 then
12: x∗.fit← f(x∗)
13: else
14: x∗.fit← maxval or minval

15: end if
16: end if
17: end for
18: X∗ ←Meta(X∗) � Iteration of the meta-heuristic
19: until Termination Criteria Satisfied

We present our MLO in Algorithm 1. The algorithm’s main novelty with re-
spect to surrogate-based algorithms is the integration of a classifier to account
for invalid regions of X . We initialize the meta-heuristic of our choice with N
particles X∗ uniformly randomly scattered across X . Each particle has an asso-
ciated fitness x.f it and a position x. For all x∗ predicted to lie in V we proceed
as follows. Whenever ρ returned by the regressor is smaller than the minimum
required confidence minρ we use the y∗; otherwise we assume the prediction to
be inaccurate and evaluate f(x∗). The meta-heuristic will avoid I and F regions
as they are both assigned unfavorable maxval or minval values. We construct
the training sets Dc and Dr as described in Algorithm 2. Whenever b(x∗) is
evaluated, (x∗, t∗) is included within the classifier training set Dc. If exit code is
valid (t∗ = 0), then (x∗, y∗) is added to Dr.

Although the MLO will converge towards an optimum, it is limited by heuris-
tic search restrictions and as such it cannot guarantee to find the global opti-
mum. Hence, it is crucial to specify the termination criteria. Determining MLO
termination criteria is based on the optimization scenario and we present three
possibilities where the user:

1. Has a limited compute time budget.

2. Requires only certain design quality.

3. Needs maximum performance, with a large budget.

A user can have a limited compute time budget when optimizing an application
and the MLO can terminate once the budget has been reached. For example, we
could allocate a number of machines for a 24 hour period. Alternatively, if the



140 M. Kurek, T. Becker, and W. Luk

user only requires a certain performance, the MLO can be run until a config-
uration x is found that meets the required performance, and the optimization
can be terminated. Lastly, if the MLO is used to maximize performance without
a limited compute time budget, the MLO will terminate when the best found
solution does not improve during a pre-defined amount of time.

Algorithm 2. f(x)

1: t, y ← b(x)
2: Dc ← (x, t) � Update the classifier’s training set
3: if t ∈ F or t ∈ V then
4: Dr ← (x, y) � Update the regressor’s training set
5: end if
6: if t ∈ V then
7: return y
8: else
9: return maxval or minval

10: end if

5 Evaluation

We use our approach to optimize two designs which are previously optimized
with custom analytical models. The first application is a run-time reconfigurable
software-defined radio with variable degree of parallelism [13]. The second is a
quadrature-based financial application with variable precision [12], for which we
show how known analytical models can be used to reduce the number of dimen-
sions that need to be explored. We use GPs utilizing an anisotropic exponential
kernel with additive Gaussian noise. We choose SVMs as our classifier with a
Radial Basis Function (RBF) kernel. Due to its simplicity and effectiveness we
use a velocity clamping version of PSO with c1 and c2 set to 2.0. All presented re-
sults are averaged over 20 trials. To evaluate the MLO performance in our three
scenarios, we terminate when the global optimum is reached. We determine the
globally optimal configuration with analytic methods, run the MLO to achieve
the same value and then compare the complexity of both approaches.

As shown in Fig. 2 we create a surrogate model of the fitness function. We
also classify the design space using SVM as shown in the right figure. We see
regions of X with colour distinguishing different exit codes; dark gray for valid
and light gray for inaccurate designs. Black x marks drawn over the design
space represent configurations x which have been evaluated and used to build
the surrogate model. The design space includes white circles which represent
positions of the particles of the PSO algorithm during the iteration when the
image was created.

5.1 Reconfigurable Software-Defined Radio

We construct a benchmark based on studies conducted in [13]. The designer faces
a trade-off between reconfiguration time and number of processing elements p.



Parametric Optimization with Machine Learning Optimizer 141

Larger values of p correspond to designs with higher compute throughput; how-
ever, the chip takes longer to reconfigure and our aim is to find the optimal value
of p. The reconfigurable radio can run at two different chip reconfiguration band-
widths Φconfig of 5MB/s or 300MB/s.

Fig. 2. Reconfigurable radio f (Φconfig = 5MB/s) and its surrogate model

Fig. 3. Reconfigurable radio f (Φconfig = 300MB/s) and its surrogate model

Our parameters are p, Φconfig and core frequency freq. We define the design
space as X = {1−112}×{5, 300}×{freqmin−300}. We change X by varying the
minimum frequency freqmin. Although the problem is three-dimensional, due
to low discretization level of Φconfig we treat it as two separate two-dimensional
optimizations. For the I region constituting timing and FPGA resource over-
mapping regions, we mark the execution time as undesirable. MLO terminates
when x is evaluated within 2MHz range of globally optimal solution.

In Fig. 2 we see how the SVM classifies a fraction of the parameter space as
V and how the surrogate model closely matches the fitness function. We also see
how particles collapse and explore the optimal region p ≈ 4 for Φconfig = 5MB/s.
In Fig. 3 we observe a similar situation but for Φconfig = 300MB/s with the
optimal region p ≈ 20. Again, the surrogate model resembles the fitness function.
The collapse of particles is equivalent to the fine-tuning of the design parameters.
We present a visualization of the optimization in Fig. 4, each pair of figures
representing subsequent iterations. The top figures show the surrogate model,



142 M. Kurek, T. Becker, and W. Luk

Fig. 4. Optimization of f (Φconfig = 300MB/s) after 13, 14 and 22 f evaluations

while the bottom figures represent corresponding visualization of the design space
and its classification. During several initial iterations and f evaluations, the
particles (shown as white circles) are misled by the surrogate model to explore
p ≈ 4 region. In the last figure we see particles guided by an improved surrogate
model moving towards the optimum p ≈ 20 region.

We use the reconfigurable radio benchmark to determine the impact of design
space size on the convergence of the MLO algorithm. In Tab. 1 we see a tendency
of the number of f evaluations to decrease along with the design space size. We
trim design space by increasing the lower limit of admissible frequency freqmin.
This shows that the designer should select a small parameter range as small
design space improves MLO convergence. One outlier of f = 54 in the case
of Φconfig=300MB/s and freqmin=200MHz can be explained with the overall
small sample size. Manual optimization is replaced by MLO, which works with
nearly no manual input but for the initial design space specification.

Table 1. Average number of f evaluations - Reconfigurable radio optimization

Φconfig freqmin 150MHz 200MHz 220MHz
5MB/s 44 37 31

300MB/s 47 54 45

5.2 Quadrature Method-Based Application

In [12] the designer explores trade-off between accuracy and throughput in an
application with three parameters. The first two parameters are mantissa width
mw of the floating point operators and the number of computational cores
cores. Larger number of mw bits increases computation accuracy, but limits the



Parametric Optimization with Machine Learning Optimizer 143

maximum number of cores that can be implemented on the chip due to the
increased size of the individual core. The third parameter is the density factor
df which specifies the density of quadratures used for integral estimation. It is a
software parameter and is independent of the generated bitstream. Density factor
df increases computation time per integration while improving the accuracy of
the results due to finer estimation of the integral.

Fig. 5. Quadrature-based application f and its surrogate model

The optimization goal is to find the design offering the highest throughput
given a required minimum accuracy defined in terms of root mean square er-
ror εrms. The error is defined with respect to results obtained by calculating
a set of reference integrals at the highest possible precision. The MLO termi-
nates when the globally optimal configuration for a given εrms is found. The
F region contains the inaccurate result class, as these benchmark evaluations
can be reused for regression. The design space X is defined as mw × cores× df :
{11−53}×{1−16}×{4−32}.We can explore the whole X in a three-dimensional
scheme or we can reduce the three-dimensional problem into two dimensions us-
ing an analytical resource usage estimation model. Resource usage is linearly
related to cores, and after generating a single core bitstream we can create a
simple analytical resource model which reduces the parameter space to two di-
mensions. Density factor df is a software parameter while mw and cores affect
the bitstream. Varying df only involves software execution, as long as a bitstream
for the given mw is already generated. If we evaluate a design with mw (or mw,
cores) that has not been evaluated before, we generate a new bitstream.

We present a visualization of the two-dimensional optimization in Fig. 5,
where the εrms limit is set to a value of 0.1. The bottom-left corner of V contains
the global optimum which is difficult to determine without additional benchmark
evaluations, as the maximum number of possible cores and therefore throughput
is limited by FPGA resources and as a result is chip dependent. Regions of space
with low df or mw are correctly predicted to offer low accuracy (light gray area).

To measure the algorithms convergence the MLO terminates when the design
with the highest throughput at the specified precision is found. The number of
required f evaluations is shown in Tab. 2. The previously suggested optimization
scheme [12] involves generating bitstreams for the full mw range. Using our MLO
combined with the analytical resource model, we reduce the number of bitstream



144 M. Kurek, T. Becker, and W. Luk

Table 2. Average number of f evaluations - Quadrature application optimization

cores εrms 0.1 0.01 0.001
three-dimensional 138 67 47
two-dimensional 71 43 28

generations as we avoid exploring cores and thus decrease the design space.
Around 20-50% of f evaluations involve bitstream generation. The number has
a high variance between individual runs as the swarm either skips undesirable
configurations or thoroughly explore the whole design space.

The optimization scheme presented in [12] involves generating all possible
bitstreams with cores = 1, and a binary search of the df values. Once the op-
timal (df ,mw) tuple is found, the number of cores can be determined. It also
requires the generation of bitstreams for all mw resulting in 53-11=42 distinct
bitstreams. Furthermore, the number of bitstreams is nearly doubled since af-
ter the first generation, usually a second bitstream generation follows to adjust
cores. Binary search is performed on the df range of 32-4=28 distinct values per
bitstream, which yields on average 2 × �log2 (28)� = 10 benchmark evaluations
per bitstream.

In comparison the MLO performance can be measured both in terms of f eval-
uations and bitstream generations. Using the optimization approach from [12]
we perform a binary search on df range for all mw values resulting on average
10×42 = 420 f evaluations regardless of the εrms limit. As presented in Tab. 2 for
εrms = 0.1 the MLO requires 75 evaluations (85 % less) in the two-dimensional
scheme and 138 (67 % less) in the three-dimensional scheme. The number be-
comes more favorable for the MLO when εrms is reduced as V is decreased and
the MLO needs to explore a smaller area, while average number of f evaluations
in their optimization approach stays constant. Not all f evaluations involve bit-
stream generations: for εrms = 0.1, 50% of f evaluations involve two bitstream
generations resulting in 71 bitstreams compared to 82 bitstreams in [12]. In the
three-dimensional scheme, MLO further decreases number of bitstream genera-
tions, to an average of 69. Our automated approach clearly outperforms manual
design both in terms of f evaluations and bitstream generations, although in the
second case the results are less dominant.

6 Conclusions and Future Work

We have proposed MLO, a novel tool which can determine optimized parameter
configuration of a reconfigurable FPGA design. The MLO can offer superior per-
formance, while reducing effort on analysis and application-specific tool develop-
ment. The main advantage of using the MLO is a shift from manual optimization
to automatic computation. The MLO requires multiple benchmarks for further
evaluation, and there are many opportunities for future work; an example is the
development of new surrogate models that would allow the reduction of required



Parametric Optimization with Machine Learning Optimizer 145

benchmark samples and efficiently address high dimensional examples. There are
numerous cases where level of parallelism, timing and other parameters span tens
of dimensions and would benefit from an effective automated approach.

Acknowledgements. This work is supported by the European Union Seventh
Framework Programme under grant agreement number 248976, 257906, 287804
and 318521, by UK EPSRC, by Maxeler University Programme, and by Xilinx.

References

1. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization
with approximate fitness functions. IEEE Transactions on Evolutionary Compu-
tation 6(5), 481–494 (2002)

2. Ong, Y.S., et al.: Evolutionary optimization of computationally expensive problems
via surrogate modeling. AIAA 41(4), 689–696 (2003)

3. Su, G.: Gaussian process assisted differential evolution algorithm for computation-
ally expensive optimization problems. In: PACIIA, pp. 272–276. IEEE Computer
Society (2008)

4. Guoshao, S., Quan, J.: A cooperative optimization algorithm based on gaussian
process and particle swarm optimization for optimizing expensive problems. In:
CSO, vol. 2, pp. 929–933 (2009)

5. Thi, H.A.L., Pham, D.T., Thoai, N.V.: Combination between global and local
methods for solving an optimization problem over the efficient set. EJOR 142(2),
258–270 (2002)

6. Kurek, M., Luk, W.: Parametric Reconfigurable Designs with Machine Learning
Optimizer. In: FPT (2012)

7. Pilato, C., et al.: Improving evolutionary exploration to area-time optimization of
FPGA designs. J. Syst. Archit. 54(11), 1046–1057 (2008)

8. Seeger, M.: Gaussian processes for machine learning. International Journal of Neu-
ral Systems 14, 69–106 (2004)

9. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press
(2006)

10. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
11. Van Den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. dissertation,

University of Pretoria, South Africa (2002)
12. Tse, A.H.T., Chow, G.C.T., Jin, Q., Thomas, D.B., Luk, W.: Optimising Perfor-

mance of Quadrature Methods with Reduced Precision. In: Choy, O.C.S., Cheung,
R.C.C., Athanas, P., Sano, K. (eds.) ARC 2012. LNCS, vol. 7199, pp. 251–263.
Springer, Heidelberg (2012)

13. Becker, T., Luk, W., Cheung, P.Y.K.: Parametric Design for Reconfigurable
Software-Defined Radio. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds.)
ARC 2009. LNCS, vol. 5453, pp. 15–26. Springer, Heidelberg (2009)


	Parametric Optimization of Reconfigurable
Designs Using Machine Learning

	Introduction
	Background
	Optimization Approach
	Parameter Space
	Fitness Function

	MLO Surrogate Model
	Evaluation
	Reconfigurable Software-Defined Radio
	Quadrature Method-Based Application

	Conclusions and Future Work
	References




