
Can Diversity Amongst Learners Improve Online

Object Tracking?

Georg Nebehay1, Walter Chibamu2, Peter R. Lewis2,
Arjun Chandra3, Roman P�ugfelder1, and Xin Yao2

1 Austrian Institute of Technology, Austria
2 CERCIA, School of Computer Science, University of Birmingham, UK

3 Department of Informatics, University of Oslo, Norway
georg.nebehay.fl,roman.pflugfelder@ait.ac.at

wcc081,p.r.lewis,x.yao@cs.bham.ac.uk

chandra@ifi.uio.no

Abstract. We present a novel analysis of the state of the art in object
tracking with respect to diversity found in its main component, an en-
semble classi�er that is updated in an online manner. We employ estab-
lished measures for diversity and performance from the rich literature on
ensemble classi�cation and online learning, and present a detailed eval-
uation of diversity and performance on benchmark sequences in order to
gain an insight into how the tracking performance can be improved.

1 Introduction

We deal with the problem of single-target model-free object tracking in videos,
meaning that a single object is to be tracked and no a priori information about
the object is available. Many authors (e.g. [14,17,24,25]) formulate the task of
object tracking as a binary classi�cation problem, and use ensembles of multiple
learners as binary classi�ers. One of the elements required for accurate predic-
tion in ensembles is error diversity [6]. While measures for diversity have been
considered explicitly in the context of object tracking before [26], in this work,
we take a di�erent path and analyse the diversity in the state of the art object
tracking method TLD (Tracking-Learning-Detection [17]) in order to gain an
insight into how its performance can be improved by manipulating diversity.

As TLD consists of multiple interleaved components, we focus our analysis on
its most in�uential component, a random fern classi�er [23]. While it is not clear
yet whether our �ndings generalize to the original TLD method, or to other
object tracking methods, we do establish a baseline with the analysis of the
random fern classi�er, against which more involved methods can be evaluated
in future. The contributions of this paper are threefold: �rstly, we show how
diversity can be measured in TLD. Secondly, we provide a detailed analysis with
respect to diversity and performance. Thirdly, we hint at ways how performance
might be improved.

This work is structured as follows. In section 2 we discuss related work in
object tracking and machine learning. In section 3 we describe the state of the
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art tracking method TLD. In section 4, we lay out our experimental setup. In
section 5 we present our analysis of diversity and performance, and section 6
gives conclusions and �nal remarks.

2 Related Work

In this section, we �rst review related work in online learning for object track-
ing, and secondly describe existing techniques for the engineering of diversity in
ensembles of learners.

2.1 Online Learning in Object Trackers

Collins et al. [8] were the �rst to employ binary classi�cation in a tracking con-
text, the two classes being the object and the immediate surrounding. They
employ feature selection in order to switch to the most discriminative colour
space from a set of candidates and use mean-shift for �nding the mode of a like-
lihood surface, thereby locating the object. In a similar spirit, Grabner et al. [14]
perform online boosting and Babenko et al. [1] use multiple instance learning
in order to �nd the location of the object. All of these methods use a form of
reinforcement learning, meaning that the prediction of the classi�er is directly
used to update the classi�er. While this approach enables the use of unlabelled
data for training, it typically ampli�es errors made in the prediction phase, thus
leading to a degradation of tracking performance. In [15], this problem is ad-
dressed by casting object tracking as a semi-supervised learning problem, where
only the �rst appearance of the object is used for updating. Both Kalal et al. [17]
and Santner et al. [25] employ an optic-�ow-based mechanism for labelling the
available data in order to reduce the errors made in the prediction phase and
demonstrate superior results.

2.2 Diversity of Ensembles in Object Tracking

In machine learning generally, diverse ensembles of classi�ers often provide bet-
ter prediction accuracy than any of the individual members of the ensemble [6].
Visentini et al. [26] employ a combined measure of diversity and performance
to select classi�ers from a pool for adaptive object tracking. Additionally, di-
versity has been considered more generally in computer vision. Bertolami and
Bunke [2] use diversity measures as indicators for the accuracy of ensemble clas-
si�cation for handwriting recognition. Frinken et al. [13] increase the diversity
of a handwriting recognition system by combining Neural Networks, Maximum
Margin Hidden Markov Models and Hidden Markov Models, and show that high
diversity leads to better results. Levy et al. [19] force classi�ers to learn di�erent
aspects of the data by minimizing correlation between ensemble members and
show improved results on visual recognition problems.



2.3 Engineering Diversity in Online Learning

The literature is abound with methods for encouraging diversity in ensembles.
Attempts at consolidating these methods into taxonomies have also been made
[6, 9], which can provide guidelines for encouraging diversity in di�erent ways.

The taxonomy by Dietterich [9] consolidates ensemble creation methods into
various categories with diversity encouragement being at the heart. For the dis-
cussion in this section, we assume a standard supervised learning problem: a
learning algorithm is presented with a training set S {(x1, y1) . . . (xN , yN )} of
size N for learning some unknown function y = f(x). The learning algorithm
outputs a classi�er, which is a hypothesis hi ∈ H about the true underlying
function f . The various methods found in such taxonomies have been applied
mostly in the o�ine learning mode. They can however be adapted to the online
case (e.g. [21,22]), where training instances continuously arrive one at a time as
a stream of data. A brief overview of the taxonomy now follows:

Bayesian voting. In problems where it is possible to enumerate each hypoth-
esis hi ∈ H, and calculate a prior P (h), the problem of classifying a new
example x amounts to computing P (f(x) = y|S,x) =

∑
h∈H h(x)P (h|S).

This can be viewed as an ensemble consisting of all possible hypotheses in
H, where each hypothesis h is weighted by its posterior probability P (h|S).
However, Bayesian voting fails where it is not possible to enumerate all pos-
sible hypotheses and calculate the prior P (h).

Manipulating training examples. L iterations of the learning algorithm are
run. In each iteration a di�erent subset of the training set S is used to
train the classi�er hi, i = 1 . . . L, thus generating multiple classi�ers, each
trained on a di�erent training set. Example algorithms in this category are
Bagging [3], Cross validated committees, and AdaBoost [12].

Manipulating input features. The input features are divided into feature
subsets, and in each iteration i of the learning algorithm, a classi�er is trained
on a subset(s) of the input features. The random subspace method [16] falls
into this category.

Injecting randomness. Some randomness can be induced into the learning
setup, for example in a neural network ensemble by using di�erent initial
weights, or injecting noise into the input features following bootstrap sam-
pling.

Manipulating output targets. The error-correcting output code technique
[10] manipulates the y labels of the training examples in classi�cation prob-
lems where the number of classes, k, is large. Instead of learning the problem
on the original k classes, in each iteration i = 1 . . . L, the k classes are di-
vided into two subsets A and B (di�erent in each iteration) and the input
data re-labelled 0 and 1 respectively for classes in subsets A and B. This
results in L classi�ers h1 . . . hL. To classify a new data point x, if hi(x) = 0,
then each class in subset A receives a vote and if hi(x) = 1, then each class
in subset B receives a vote. Once all L classi�ers have voted, the class with
the largest prediction is selected as the ensemble output.



Manipulating error functions. Diversity can be explicitly encouraged and
maintained by de�ning and minimising a correlation term between ensem-
ble members. Negative correlation encourages individual members to learn
di�erent parts of the training data (specialisation) allowing the ensemble to
learn the entire training data better than any single or monolithic mem-
ber [20]. Ensemble members are trained simultaneously allowing the mem-
bers to interact and cooperate through a correlation penalty term that is
introduced in the error function such that the individual error of each mem-
ber is negatively correlated to the rest of ensemble errors [7].

Diversity Metrics Several measures for a quantitative assessment of diversity
in ensembles have been proposed in the literature. Kuncheva et al. [18] have
conducted a wide and detailed study of various diversity measures, and conclude
that there is no unique way of measuring diversity, and in general, there is no
direct or distinctive relationship between the diversity of an ensemble and its
accuracy. One of the most commonly used diversity measures, the Q-statistic [18]
is calculated in a pairwise manner for any two classi�ers fi and fj :

Qi,j =
ad− bc
ad+ bc

(1)

The symbols a, b, c, d refer to the number of times
a : fi and fj are correct,
b : fi is correct, fj is incorrect,
c : fi is incorrect, fj is correct,
d : fi and fj are incorrect.

Qi,j is closer to 1 if the output of the classi�ers is not diverse, and is closer to
−1 if their output is diverse. An overall measure for the diversity of an ensemble
of size n is then obtained by averaging all of the pairwise measurements.

3 State of the Art in Object Tracking

3.1 Tracking-Learning-Detection

Kalal et al. [17] propose a solution to the tracking problem which they call
Tracking-Learning-Detection (TLD). TLD consists of two separate components:
A frame-to-frame tracker that predicts the location Lj of the object in frame
Ij by calculating the optical �ow between frames Ij−1 and Ij and transforming
Lj−1 accordingly. Clearly, this approach is only feasible as long as the object is
visible in the scene and fails otherwise. When the object is presumably tracked
correctly (according to certain criteria) the location Lj is used in order to update
a Random Fern classi�er [23] with positive training data from patches close to
Lj and negative data from patches that exceed a distance. This classi�er is then
applied in a sliding-window manner (see �gure 1) in order to re-initialize the
frame-to-frame-tracker after failure. Two additional stages not described here
are used for classi�cation.



Fig. 1: In TLD, a binary ensemble classi�er is used to locate the object of in-
terest by applying it in a sliding-window manner. The ability for multi-scale
detection is achieved by scaling the size of the detection window. Image is from
the SPEVI1dataset.

3.2 Random Fern Classi�er

The Random Fern classi�er [23] operates on binary features f1 . . . fn calculated
on the raw image data. These features are randomly partitioned into groups of
so-called ferns F1 . . . Fm of size s

F1︷ ︸︸ ︷
f1 . . . fs,

F2︷ ︸︸ ︷
fs+1 . . . f2s . . .

Fm︷ ︸︸ ︷
f(m−1)s+1 . . . fms . (2)

Ferns essentially are non-hierarchical trees, meaning that the outcome of each
fern is independent of the order in which features are evaluated. The main rea-
son for favouring ferns over trees is that they can be implemented extremely
e�ciently, an important property for real applications.

3.3 Features

In [23], a feature vector of size s consists of s binary tests performed on gray-
scaled image patches. Each test compares the brightness values of two random
pixels (See �gure 2). The locations of the tests are generated once at startup
and remain constant throughout the rest of the processing. The same set of tests
is used with appropriate scaling for all subwindows. Input images are smoothed
with a Gaussian kernel to reduce the e�ect of noise.

3.4 Random Ferns in TLD

The posterior probability for each fern is

P (y = 1|Fk) =
P (y = 1)P (Fk|y = 1)∑1
i=0 P (y = i)P (Fk|y = i)

. (3)

1 http://www.eecs.qmul.ac.uk/~andrea/spevi.html
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Fig. 2: Feature values depends on the brightness values of pairs of two random
pixels. In this case, the outcome is the binary string 1101.

In TLD, the prior is assumed to be uniform, and the P (Fk|y = i) are modelled
as the absolute number of occurrences #pFk

for positive training data and #nFk

for negative training data. Therefore, the posterior probability becomes

P (y = 1|Fk) =
#pFk

#pFk
+#nFk

. (4)

When #pFk
= #nFk

= 0, then P (y = 1|Fk) is assumed to be 0 as well. Each
training instance is used for training only if it was misclassi�ed in the current
frame. A decision is obtained by employing a threshold θ on the posterior prob-
abilities combined using the mean rule

1

m

m∑
i=1

P (y = 1|Fi) ≥ θ. (5)

4 Experimental Setup

We conduct experiments according to the following novel pattern in order to
assess the diversity and the performance of the Random Fern classi�er in TLD.
For each frame, we closely follow the predict-update cycle of classical online
learning: �rst we let the classi�er predict labels for all subwindows. We then
measure performance and diversity using the ground truth values and update the
classi�er according to the misclassi�ed examples. Each experiment is run 10 times
with di�erent seeds for the random number generator. Over these runs, the mean
and standard deviation of the selected metrics for performance and diversity are
reported. We apply the following modi�cations to the original algorithm [17].
� Majority voting is used instead of the mean rule. Crisp outputs are obtained
by applying the threshold θ on the posterior probabilities of the individual
classi�ers.



� We replace the optic-�ow based tracker with manually labeled ground truth.
� We disregard the two classi�cation stages besides the random fern classi�er.

The �rst modi�cation enables the use of the Q statistic. We perform the last
two modi�cations since we are interested only in the performance limits of the
classi�er. The analysis of this modi�ed version gives us a baseline against which
to evaluate more involved methods in the future.

4.1 Performance Measures

We use the following statistics to measure the performance, based on the occur-
rences of True Positives (TP), False Negatives (FN) and False Positives (FP)
in each frame. TPs, FNs and FPs are found by comparing algorithmic output
to manually annotated ground truth. Recall, given by

Rj =
TPj

TPj + FNj
, (6)

measures the fraction of positive instances that were correctly classi�ed as pos-
itive. Precision, given by

Pj =
TPj

TPj + FPj
, (7)

measures the fraction of examples classi�ed as positive that are truly positive.
The F-measure, given by

Fj =
2RjPj

Rj + Pj
, (8)

as the harmonic mean, combines precision and recall into a single measurement.
We calculate Rj , Pj and Fj for each frame and report their average values R,P, F
over the whole sequence.

As the employed set of subwindows is not exhaustive, there will typically be
no single subwindow of the same location and the same dimension as the manual
annotation. We therefore employ the measure used in the Pascal Visual Object
Challenge [11] for overlap between two bounding boxes B1 and B2, namely,

overlap =
B1 ∩B2

B1 ∪B2
=

I

(B1 +B2 − I)
. (9)

If the overlap between a manual annotation and a subwindow is larger than 0.5,
the subwindow is labelled positive as well.

We employ the Q-statistic (section 2.3) as a measure for diversity in each
frame and report averaged values over the whole sequence. While other diver-
sity measures are available, we chose the Q-statistic as a starting point for our
analysis primarily due to its widespread use. However, we plan to investigate
di�erent measures of diversity in future work.



4.2 Sequences

We employ the following six sequences for conducting our evaluation. These se-
quences were used in [17,27] for evaluating object tracking methods. David (761
frames) shows a person walking from an initially dark setting into a bright room
and undergoing various changes in appearance. Jumping (313 frames) shows a
person jumping rope causing motion blur. Pedestrian 1 (140 frames), Pedes-
trian 2 (338 frames) and Pedestrian 3 (184 frames) show pedestrians being
�lmed by an unstable camera. Car (945 frames) shows a moving car, exposed
to low contrast recording and undergoing multiple occlusions. The appearance
of the car itself stays constant over the run of the sequence.

5 Diversity Analysis of TLD

In this section we present novel analyses of diversity within TLD based object
tracking. Firstly, we explore the e�ect of varying the parameters of the system
on the selected metrics. Secondly, we arti�cially increase diversity in the system
and analyse the resulting e�ects. We use the parameters m = 30, s = 14, θ = 0.5
unless noted otherwise.

5.1 E�ect of Parameters

The parameter m steers the number of classi�ers in the ensemble. Breiman [4]
proved that an ensemble of randomized decision trees does not over�t as more
trees are added, meaning that performance does not decrease. However it is not
clear how m a�ects diversity. In �gure 3 we plot Q and F against m for the
sequence David. Increasing m leads to a convergent behaviour of Q, similar to
the performance metric. Q converges more quickly than the performance metrics.
These �ndings generalize to all sequences.

The parameter θ directly in�uences recall and precision. High values of θ
lead to an improvement of precision, as false positives are �ltered out, and to a
degradation of recall. Low values of θ lead to the inverse e�ect. Intuitively, both
high and low values of θ should lead to a reduction of diversity, as the output
of the individual classi�ers become more similar. In table 1, θ is varied for all
sequences. Surprisingly, Q decreases monotonically as θ is increased. The expla-
nation for this e�ect is that high values of theta lead to many positive instances
being misclassi�ed, and therefore the set of positive training data becomes larger,
causing a reduction of Q.

5.2 Increasing Diversity

In order to arti�cially increase diversity in the ensemble classi�er, we restrict the
location of the binary tests for individual classi�ers to certain parts of the in-
put image, thus decreasing the amount of information shared between them. For
each classi�er we randomly sample a value µj . We then generate the binary tests
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Fig. 3: Both diversity and performance exhibit a convergent behaviour when the
number of ferns m is increased.

from the two-dimensional uniform distribution U(max(0, µj−σ),min(1, µj+σ)).
Brown and Kuncheva [5] show that the majority vote error can be decomposed
into the sum of individual errors (additive term), diversity measured on correctly
classi�ed instances called good diversity (subtractive term) and diversity mea-
sured on misclassi�ed instances called bad diversity (additive term). While the
decomposition of the F measure into analogous Q terms is unknown, the notions
of good and bad diversity are still helpful in our context. For this experiment,
we measure Q both on correctly classi�ed instances (Qgood) and on misclassi�ed
instances (Qbad).

When σ is decreased, we make the following observations for all sequences
in table 2: Q and Qgood decrease strongly. Qbad starts out closely above the
theoretical minimum − 1

m , decreasing only slightly. Depending on the sequence,
performance rapidly decreases at a certain value of σ. Increasing diversity the
way we have seems to increase the error of the individual classi�ers. For low
values of σ, this increase is compensated for by a decreased Qgood, leading to
a stable F . For high values of σ, the errors of the individual classi�ers seem to
outweigh the increased good diversity, leading to a reduction of F .

These observations suggest that we need to �nd a way to encourage diversity
that keeps the individual classi�ers from exhibiting an increased error. Since
Qbad is close to the theoretical minimum, increasing it can help us increase en-
semble performance. Devising a training scheme that is informed by the wrongly
classi�ed instances may be one way of increasing Qbad. Further analysis of the
relationship between Qgood, Qbad, and individual classi�er performance, will shed
more light on ways to encourage diversity that may lead to an increased overall
performance.



Sensitivity threshold θ

Sequence Metric 0.1 0.3 0.5 0.7 0.9

car Q 0.31±0.01 0.29±0.01 0.28±0.01 0.27±0.01 0.26±0.01
P 0.62±0.01 0.76±0.00 0.81±0.00 0.84±0.00 0.86±0.00
R 0.95±0.00 0.92±0.00 0.90±0.00 0.85±0.00 0.73±0.00

david Q 0.21±0.01 0.19±0.01 0.18±0.01 0.17±0.01 0.16±0.01
P 0.28±0.02 0.56±0.01 0.67±0.00 0.74±0.00 0.74±0.01
R 0.82±0.00 0.76±0.00 0.70±0.00 0.58±0.01 0.34±0.01

jumping Q 0.24±0.01 0.22±0.01 0.21±0.01 0.21±0.01 0.20±0.01
P 0.36±0.01 0.59±0.00 0.68±0.00 0.76±0.00 0.78±0.01
R 0.85±0.00 0.77±0.00 0.70±0.00 0.58±0.00 0.35±0.01

pedestrian1 Q 0.30±0.01 0.27±0.01 0.26±0.01 0.26±0.01 0.25±0.01
P 0.23±0.01 0.38±0.01 0.45±0.01 0.53±0.01 0.52±0.01
R 0.53±0.01 0.44±0.01 0.38±0.00 0.26±0.01 0.14±0.01

pedestrian2 Q 0.31±0.01 0.29±0.01 0.28±0.01 0.27±0.01 0.26±0.01
P 0.35±0.01 0.53±0.01 0.62±0.01 0.74±0.01 0.77±0.02
R 0.71±0.01 0.68±0.01 0.65±0.01 0.58±0.01 0.45±0.01

pedestrian3 Q 0.47±0.01 0.45±0.01 0.44±0.01 0.44±0.01 0.42±0.01
P 0.53±0.01 0.68±0.01 0.76±0.01 0.84±0.01 0.87±0.01
R 0.92±0.01 0.87±0.01 0.83±0.01 0.75±0.01 0.57±0.01

Table 1: Increasing θ leads to an increase of diversity due to many positive
instances being misclassi�ed, thus increasing the size of the positive training set.

6 Conclusions and Future Work

In this work, we presented an analysis of the state of the art in object tracking
with respect to diversity and showed how it is in�uenced by the intrinsic param-
eters of its ensemble classi�er. We also showed how diversity can be increased
arti�cially and conclude that performance is reduced due to an increased error
of the individual classi�ers. We plan to look into methods that increase good
diversity while keeping the individual accuracy stable. We also acknowledge the
fact that reducing bad diversity will help increase performance.

A better understanding of the relationship between performance of individ-
ual classi�ers, as well as between good and bad diversity, will help show ways on
how overall performance can be increased. We also plan to explicitly reduce cor-
relation in the system by making use of algorithms similar to minimal correlation
learning [19].

As only misclassi�ed examples are used for training, the classi�er highly
over�ts the training data. This does not to lead to a reduction in performance
as long as sequences contain su�cient training examples. When short sequences
with severe changes in appearance occur, performance is a�ected in a negative
way. The results of Minku et al. [21] suggest that an increased level of diversity
could help in exactly these cases.



Feature locality 1− σ

Sequence Metric 0.1 0.3 0.5 0.7 0.9

car Q 0.28±0.01 0.23±0.01 0.16±0.01 0.10±0.00 0.08±0.00
Qgood 0.27±0.01 0.22±0.01 0.15±0.01 0.10±0.00 0.07±0.00
Qbad 0.01±0.00 0.00±0.00 0.00±0.00 -0.00±0.00 -0.01±0.00
F 0.86±0.00 0.86±0.00 0.86±0.00 0.85±0.00 0.77±0.01

david Q 0.19±0.01 0.17±0.01 0.13±0.01 0.11±0.00 0.11±0.00
Qgood 0.18±0.01 0.16±0.01 0.13±0.01 0.11±0.00 0.10±0.00
Qbad 0.00±0.00 0.00±0.00 -0.00±0.00 -0.00±0.00 0.00±0.00
F 0.69±0.00 0.69±0.00 0.69±0.01 0.67±0.01 0.51±0.01

jumping Q 0.22±0.01 0.20±0.02 0.16±0.02 0.09±0.01 0.07±0.00
Qgood 0.21±0.01 0.19±0.02 0.15±0.02 0.09±0.01 0.07±0.00
Qbad 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00
F 0.70±0.00 0.70±0.01 0.69±0.01 0.66±0.01 0.44±0.02

pedestrian1 Q 0.26±0.01 0.25±0.01 0.21±0.01 0.15±0.01 0.08±0.00
Qgood 0.23±0.01 0.22±0.01 0.18±0.01 0.13±0.01 0.07±0.00
Qbad 0.04±0.00 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00
F 0.41±0.01 0.41±0.01 0.41±0.02 0.40±0.02 0.34±0.02

pedestrian2 Q 0.27±0.01 0.26±0.01 0.21±0.01 0.14±0.01 0.08±0.00
Qgood 0.26±0.01 0.25±0.01 0.20±0.01 0.13±0.01 0.07±0.00
Qbad 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00 0.01±0.00
F 0.66±0.01 0.67±0.01 0.66±0.01 0.62±0.03 0.49±0.04

pedestrian3 Q 0.45±0.01 0.44±0.02 0.38±0.02 0.22±0.01 0.09±0.01
Qgood 0.44±0.01 0.42±0.02 0.37±0.02 0.21±0.01 0.08±0.00
Qbad 0.04±0.00 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00
F 0.81±0.01 0.81±0.01 0.80±0.01 0.77±0.01 0.71±0.02

Table 2: Diversity increases when the locations of the binary tests become more
local. Qbad indicates that diversity in the classi�cation result of misclassi�ed
instances is already very high from the start.
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