
A Modelling and Simulation Environment for
Self-aware and Self-expressive Systems
Tatiana Djaba Nya, Stephan C. Stilkerich

EADS Innovation Works
81663 Munich, DE

email: {tatiana.djabanya, stephan.stilkerich}@eads.net

Peter R. Lewis
CERCIA, School of Computer Science

University of Birmingham, UK
email: p.r.lewis@cs.bham.ac.uk

Abstract—Self-awareness and self-expression are promising
architectural concepts for embedded systems to be equipped
with to match them with dedicated application scenarios and
constraints in the avionic and space-flight industry. Typically,
these systems operate in largely undefined environments and
are not reachable after deployment for a long time or even
never ever again. This paper introduces a reference architecture
as well as a novel modelling and simulation environment for
self-aware and self-expressive systems with transaction level
modelling, simulation and detailed modelling capabilities for
hardware aspects, precise process chronology execution as well as
fine timing resolutions. Furthermore, industrial relevant system
sizes with several self-aware and self-expressive nodes can be
handled by the modelling and simulation environment.

I. INTRODUCTION

Self-awareness and self-expression are promising architec-
tural concepts for embedded systems to be equipped with
to match them with dedicated application scenarios and con-
straints in the avionic and space-flight industry. Systems that
profit from these kind of self-aware and self-expressive capa-
bilities are (1) avionic systems, (2) autonomous flying systems,
(3) special satellites, (4) deep-space mission systems and (5)
exploratory space mission systems. Typically, these systems
are highly dependable, represent a substantial investment,
operate in largely undefined and changing environments that
are impossible to define during system design, and are not
reachable after deployment for a long time or even ever again
[1]. Consequently, it is today’s industrial practice to tremen-
dously over-design these systems with respect to redundancy,
diverse equipment, long operationally proven components and
static breakdown mitigation concepts. Furthermore, all of
these systems have stringent weight, power, size and density
constraints [2]. This significantly limits the overall processing
performance and the kinds of implementable functionality.
Systems with self-aware and self-expressive features can over-
come some of these limitations and offer a completely new
architectural concept to deal with unpredictable environments
through flexible, not pre-defined, sub-system adaptation.

Between research at the conceptional level of self-aware
and self-expressive systems and the level of implementing
first prototypical proof-of-concept demonstrators, there is a
gap to systematically model, simulate and study the behaviour
and performance of particular self-aware and self-expressive
systems. This gap is filled by our novel modelling and simu-

lation environment for self-aware and self-expressive systems.
It offers modularised modelling, transaction level abstraction
and execution, possibilities for detailed hardware modelling,
fine resolution timing and industrial relevant system handling.

This paper is organised as follows: the next section describes
our self-aware and self-expressive reference architecture that
serves as theoretical basis for the implementation of the mod-
elling and simulation environment. Section III introduces the
novel simulation environment that is based on our reference
architecture. All components of the simulation environment,
their dependencies and interconnections are explained. The
execution chronology, simulation time offsets and transaction
flows are described. Finally section IV comments on the
utilisation of the novel simulation environment for avionic and
space-flight applications, while section V concludes this paper.

II. REFERENCE ARCHITECTURE

System self-awareness, and adaptive behaviour based on it,
have long been recognised as enablers for advanced autonomic
behaviour [3]. Appropriate levels and forms of self-awareness
will be essential for systems, which operate for long run times,
in unpredictable and changing environments with minimal
human intervention, while being heavily resource constrained.
Informally, we consider self-awareness to be concerned with
the acquisition and representation of knowledge about a system
by that system. The complementary concept of self-expression
then describes behaviour based on a system’s self-awareness
[4]. In order to lay the foundations for systems that possess
self-awareness and self-expression capabilities, concepts from
psychology and cognitive science are being reinterpreted in
a computational context [4], [5]. This approach has also
been followed to develop other nature-inspired computing
paradigms, which have enjoyed great success in a wide range
of practical applications, despite the frequent lack of the
assurances usually required for engineered systems.

A. Self-aware, Self-expressive Nodes

As part of this effort, and in order to structure the re-
quirements for self-aware, self-expressive systems, a reference
architectural framework for a self-aware, self-expressive node
was developed [6]. This is shown in figure 1, and defines
the high level structure of such a node and its required
conceptual components. Such a node need not be a specific

Monitor /
Controller

(Meta-self-awareness)

State and context
Sensor

Sensor

Sensor

Private
self-awareness

Private
self-awareness

engine

Public
self-awareness

engine

Environment

Other nodes

Self-expression
engine

External actions

Goals
Values

Objectives
Constraints

Actuator

Actuator

Learnt
model(s)

Fig. 1. Reference architecture for a single self-aware and self-expressive node.

physical system, but instead provides a conceptual container
for the system being considered: the element in that context
which is being referred to as self. A node could therefore
be, for example, an autonomous agent, a running thread, a
physical machine or a collective of these. Importantly, the
node represents a level of abstraction at which knowledge
acquisition, representation and behavioural processes occur.

This reference architectural framework builds on standard
agent architectures [7], by clearly identifying conceptual com-
ponents responsible for key processes identified from psycho-
logical literature: self-awareness (knowledge acquisition and
representation) and self-expression (behaviour based on the
system’s knowledge). The architecture deals with the concept
of public and private self-awareness [4], by specifying concep-
tual components for building knowledge from both internal
and external sources of information. Additionally, a meta-
self-awareness [4] component is identified, responsible for
knowledge concerning the system’s own self-awareness and
self-expression processes, and for adapting them as necessary.

B. Online Learning

Due to the unpredictability associated with both deploy-
ment environments and the dynamics within them, one key
challenge in realising self-awareness and self-expression in
computing systems is the appropriate use of effective online
learning schemes. Online learning is applied in two contexts
within a self-aware, self-expressive system: at the adaptation
level and at the meta level [6]. In the reference architectural
framework, online learning algorithms instantiate two concep-
tual components at the adaptation level:

• the self-awareness engines, where sensor data is collected,
analysed and, if appropriate, knowledge obtained from it
is represented.

• the self-expression engine, where behavioural learning
(e.g. action selection and strategy selection) takes place.

Additionally, online learning at the meta level occurs in the
meta-self-awareness component, where models of the node’s
own behaviour are built online, and acted upon.

C. Approach

In attempting to draw general conclusions about the bene-
fits of self-awareness and self-expression for computing and

Fig. 2. Structure of the simulation environment.

engineering, we turn to our understanding of these concepts in
psychology, as well as previous efforts to apply them to com-
puting [4]. A key finding of that survey was that the term self-
awareness has been used in a variety of ways within computer
science and engineering literature. Often however, it refers to
quite disparate ideas, for example to highlight specific self-
monitoring capabilities of a system, to indicate an awareness
by the system of the user or context, or that a component has a
conceptual knowledge of the wider system of which it is part.
The general concept of self-aware computing covers but is
not limited to all of these cases. Our approach is therefore
to design systems based on the flexible node architectural
framework, which defines how self-awareness, self-expression
and meta-self-awareness concepts can be combined to achieve
run time learning and adaptation. This reference architectural
framework allows for a wide range of approaches to be taken,
while ensuring coherence between the three key activities of
self-awareness, self-expression and meta-self-awareness.

III. SIMULATION ENVIRONMENT

The reference architecture introduced in section II serves
as basis for the detailed component implementation of the
modelling and simulation environment. For the general mod-
elling and simulation methodology, features such as overall
simulation performance, scalability and abstraction levels at
which to study self-aware and self-expressive systems have
led to the decision of utilising a Transaction Level modelling
(TLM) approach. A TLM approach typically separates details
of the communication among modules from the details of
the implementation of the modules and details of the overall
communication architecture. The following TLM components
of which a self-aware and self-expressive model (cf. figure 2)
will consist as well as their respective roles in the model - to
match with the defined reference architecture - are identified:

• SENENV: This TLM component represents the internal
and the external sensor environment of the node. Each
node can posses at least one or as many as required
SENENV modules, depending on the concrete system.
Each virtual sensor provides a particular type of in-
formation and initiates write transactions to pass this
information to the TLM component SAE.

• OTHERNODES: A TLM component which receives infor-
mation from other self-aware and self-expressive nodes in

a self-aware and self-expressive system. A particular node
can poses as many OTHERNODES modules as required.

• SAE: Together with LMODEL, this represents the self-
awareness functionality. SAE collects and stores the in-
formation sent by all the internal and external sensors.

• LMODEL: This component represents part of the self-
awareness functionality, which processes the received
sensor information. The separation of the self-awareness
functionality into two components was necessary to co-
ordinate the transactions and overall synchronisation.

• GVOC: This component embodies the predefined Goals,
Values, Objectives and Constraints of the self-aware and
self-expressive node. These values will be provided to the
monitor and the self-expressive engine component.

• MONITOR: The monitor component controls the self-
awareness and self-expressive components. It has the sys-
tem rights to intervene in the node processing, when re-
quired, to redirect or refocus lower level of self-awareness
and self-expression in the node, if the node diverges
substantially from the values of the GVOC component.

• SEE: A component representing the self-expression en-
gine, this component will take decisions about what kind
of actions to take, according to the received data from the
self-aware engine component complex and in detail data
from LMODEL, simultaneously taking GVOC data into
account. It will then communicate his decisions to the
corresponding actuators, which will perform the selected
actions, including any kind of node internal actions.

• ACTUATOR: Represents the internal actuator(s) of the
node. This component is the target of SEE and each self-
aware and self-expressive node can have several actuators,
depending on the concrete system under investigation.

• EXTACTION: This component represents an actuator that
has access to the external environment of a self-aware and
self-expressive node and is, like the actuator component,
the target of the self-expressive engine during transac-
tions. The number of dedicated components depends on
the concrete system under investigation.

• IC1-4: These interconnect components of the model (cf.
figure 2) are used where several initiators communicate
with the same target or an initiator communicates with
several targets over the same transaction type.

Additionally to the described TLM components, there is a
high-level module, which coordinates the initial generation of
the components, the port and socket bindings of a particular
node as well as all of these generation processes for systems
with several self-aware and self-expressive nodes.

A. Processes

In order to describe the detailed functional behaviour of
a TLM component as well as to define the transaction level
behaviour of a component, our approach utilises processes to
encapsulate these actions. The following sections present the
existing processes in our proposed modelling and simulation
environment as well as the implementation of the temporal
decoupling of these processes in the model.

Fig. 3. Transaction groups for the processes A1 (left) and A2 (right WRITE
indicates that the transactions initiated here are write transactions

1) Processes A1 and A2: A1 and A2 are located in the
initiator component GVOC, as shown in figure 3. They transfer
the specified goals, values, objectives and constraints into
the node by calling a blocking transport method. There is
a transaction object for each of both processes. Process A1
transfer data to the MONITOR and process A2 to the component
SEE. A1 and A2 are always the first processes to be executed in
each system-simulation cycle and they always execute without
any suspension till their respective next synchronisation points.

2) Process B: B is located in each of the sensor components
SENENV and OTHERNODE. By means of a blocking transport
method the data is transferred to SAE through the interconnect
component IC1. The memory area of SAE is equally shared by
the sensors in each node and the detailed address translation
is always done by the interconnect component IC1 for each
incoming method call and before the call is forwarded. All
B processes run next after the A1 and A2 processes in every
node and every simulation cycle, and also ahead simulation
time until they reach their next synchronisation point.

Fig. 4. Transaction group for processes B - WRITE indicates that the initiated
transactions are write transactions

3) Process C1 and C2: These processes are embedded in
the LMODEL. C1 is responsible for the linear readout of the
memory space of SAE and the forwarding of that data into
the module for processing. After the processing, LMODEL
decides whether some measures have to be taken in view of the
processing results. Its decision is finally sent to SEE by C2. C1

will always be executed before C2 in each node, during each
simulation cycle and after all B processes were suspended. At
every execution, process C1 creates an immediate notification
and an delta notification. With the delta notification, process
C1 is suspended and with the immediate notification, and an
event belonging to the dynamic sensitivity list of process C2
is notified. Hence, C2 runs immediately after C1 is suspended.

C2 generates a transaction to transfer the results of
LMODEL to SEE. Additionally, C2 executes an immediate no-
tification to inform SEE after the last transaction is completed.
The notified event belongs to the dynamic sensitivity list of
process D, which is next on the set of executable processes.

Fig. 5. Transaction groups for processes C1 (left) and C2 (right). WRITE
and READ indicate the type of transactions generated.

4) Process D: During each execution of D the data received
from the component LMODEL is read out and evaluated for
self-expressive actions. The dedicated self-expressive action is
realised by process D through initiated write transactions to
the corresponding actuators, EXTACTION or ACTUATOR.

Fig. 6. Transaction group of process D

5) Process E1 and E2: Process E1 is responsible for
LMODEL and activated in each node immediately after process
C1. Process E2 is activated directly after process D and is
linked with SEE. In view of the fact that the monitor of the
self-aware and self-expressive node doesn’t have to constantly
monitor the self-expressive and the self-awareness engines,
these processes are activated at each simulation cycle but only
executed at predefined intervals (counter) of simulation cycles.
In case that the counter value is equal to the specified number,
events belonging to the dynamic sensitivity list of process E1
and E2 are notified and the counter is reset. The immediate
notification, which activates process E1, is executed by process
C1 and the one which activates process E2, is executed in D.
At each execution of process E1 it reads the report memory
of LMODEL and E2 reads the report memory of SEE.

Fig. 7. Transaction groups for processes E1 (left) and E2 (right). READ
indicates that the generated transactions are read transactions

6) Synchronisation process F: This process is embedded in
the high-level module of the model. F runs in each simulation
cycle only once and synchronises always immediately after
it has started. The purpose of this process is to ensure that
processes in all nodes of a multi-node self-aware and self-
expressive system end at the same simulation time of a cycle.
This means that the control is yielded back to the simulation
kernel only after all the processes (A - F) of all instantiated
nodes have reached their next synchronisation point.

B. Execution chronology

From the above behavioural descriptions of the processes,
it arises that the processes of a node always run in the same
chronology, cf. figure 8, within a simulation cycle:

A1, A2→ B → {C1→ [E1]→ C2→ [E2]→ D} → F .

Here, processes E1 and E2 run only in specific intervals of
simulation cycles, which must be defined by the user before the
simulation start. For processes in brackets, hereinafter referred
to as process chain, they run alternately after each transaction
until they reach their next synchronisation point.

Fig. 8. Implemented chronology of processes

C. Local time offset

Temporally decoupled processes [8] run always ahead of the
simulation time and need to be suspended for a defined period
of time, namely the local time offset toff . A suspended process
can run again, only when the scheduler has advanced the
simulation time of this same local time offset toff . Based on
that fact, we can deduce that the next execution time tsim,next

of a suspended temporally decoupled process always results
from the sum of the actual simulation time and the local time
offset of this process (tsim,next = tsim,actual + toff).

The local time offset, in turn, results from the sum of latency
times of all the transactions generated by a process between
two synchronisation points. In our model, the latency times
and the number of transactions between the synchronisation
points of a process are automatically calculated during elabora-
tion and generation of the simulation model, such that the local
time offset between two synchronisation points always equals
the global quantum, the point of process synchronisation.
Therefore, the next execution time of a process after his last
synchronisation always results from the sum of the actual sim-
ulation time and the specified global quantum tglob quantum.
Hence we have tsim,next = tsim,actual + tglob quantum.

From the known simulation time of the first execution
of each process (tbeg) and the above formula, we have the
following starting times for the execution of a process
in the 1st simulation cycle:

t0 = tbeg

and in the 2nd simulation cycle:

t1 = tbeg + tglob quantum

Summarising, we have the following start time in the nth
simulation cycle

tn−1 = tbeg + (n− 1) ∗ tglob quantum, mit n ∈ N+ − {0}

With the formula above, we were able to derive the following
general formula for the execution start time ti of a process in
every process cycle n:

ti = tbeg + i∗ tglob quantum; i = n−1, n ∈ N+−{0}

1) Global quantum: When using temporal decoupling, it
is recommended [9, p. 279] that each process uses the same
global time quantum. It should be determined, in accordance
with the whole simulation time period, so that the number
of resulting synchronisations or delta cycles doesn’t exceed
a few hundred thousands (see [9, p. 279]). Let’s assume that
tsim denotes the whole simulation time period, ndelta cycles

the number of delta cycles and nsync the number of synchro-
nisations. The number of synchronisations in the model can
be calculated with the following formula:

nsync =

⌊
tsim

tglob quantum

⌋

Fig. 9. Delta cycles between the synchronisation points in a node

Figure 9 illustrates the delta cycles between two successive
synchronisation points. It results from the execution chronol-
ogy of processes A-F previously described. Using both the
delta cycle illustration above and the previous formula for
the number of synchronisations, we can precisely derive the
formula for the number of delta cycles in the model:

ndelta cycles = (nT ∗ 2 + 6) ∗ nsync ∗ nnodes nr

= (nT ∗ 2 + 6) ∗
⌊

tsim
tglob quantum

⌋
∗ nnodes nr

where nnodes nr ≥ 1 denotes the number of nodes in the
simulated system.

Thus, the following inequality holds:

nsync ≤ 100000 ⇔⌊
tsim

tglob quantum

⌋
≤ 100000

or

ndelta cycles ≤ 100000 ⇔⌊
tsim

tglob quantum

⌋
∗ (6 + nT ∗ 2) ∗ nnodes nr ≤ 100000

Both inequalities lead us to the following formula for the
global quantum:⌊

tsim

tglob quantum

⌋
≤

100000

(6 + nT ∗ 2) ∗ nnodes nr

that is used in our proposed modelling and simulation envi-
ronment.

2) Latency times of the transactions: From the synchroni-
sation condition for temporally decoupled processes it results
that the global quantum is always less or equal to the sum
of the latency times of all executed transactions between two
synchronisation points. Thus:

tglob quantum ≤
nT∑
i=1

ttrans delay,i = toff

where tglob quantum global quantum, nT number of transac-
tions, ttrans delay,i latency of the ith transaction and toff local
time offset.

To determine the execution start times of the processes in
the simulation cycles, we assume that the value of time local
offset is equal to the global quantum; tglob quantum = toff .

Assuming that every transaction has the same latency,
the sum of the latency times in the inequality above can
be substituted by the product obtained when multiplying
the latency of one transaction by the number of executed
transactions between two synchronisation points. We have
tglob quantum ≤ nT ∗ ttrans delay, where ttrans delay denotes
the latency of each transaction.

We can now derive the latency of each transaction gen-
erated by the processes A1, A2 and B’s by ttrans delay =
tglob quantum/nT , where nT denotes the number of transac-
tion per process-cycle.

All sensor data stored in SAE has to be read and evalu-
ated by LMODEL within a simulation cycle. The number of
transactions generated by each of the processes C1 and C2
is given by nTC1,C2

= nTB
∗ nS , where nTC1,C2

: number of
transactions generated in each process cycle by C1 and C2,
nTB

: number of transactions generated in each process cycle
by each process B and nS : the number of sensors in the model.

The same formula applies to the processes E1, E2 and D of
the process chain, because they run in each simulation cycle
as many times as the processes C1 and C2.

By substituting the number of transactions in the previously
derived formula for the latency of processes A1, A2 and B’s,
we obtain the following formula for the latency of each process
in the process chain ttrans delay = tglob quantum/(nTB

∗nS).
The transaction latency times that we are actually looking

for are the latency times tsingle delay of the single transactions.
These are not always equal to the latency times determined
previously, precisely when the generated transactions are
bursts, i.e. when the burst length is greater than one (BL > 1).

So we need the following formula showing the functional
interrelation between the latency of a transaction and the
latency of a single transaction in order to derive the searched
formula:

ttrans delay = tsingle delay∗BL; BL =

⌈
DLmax

(BUSWIDTH/8)

⌉
This leads to the following formula for the latency of the

single transactions in the node for the processes A1, A2 and
B’s as tsingle delay = tglob quantum/(nT ∗ BL) 1

BL and for
the processes C1, C2, E1, E2 and D of the process chain as
tsingle delay = tglob quantum/(nTB

∗ nS ∗BL).
These are the formulas used in the model to automatically

calculate the latency times of the single transactions in each
node of a simulated system. This ensures the preconditioned
execution chronology of the processes and transactions in each
simulation cycle as well as the respective execution start times
of the processes that we defined. All together, this realises
a functional and timing correct simulation of self-aware and
self-expressive systems.

IV. EVALUATION

Both main parts of our advocated approach, the reference
architecture (section II) as well as the modelling and simu-

lation environment (section III), ran through intensive testing
and refinement phases to reach the current stable version.

During a first testing and refinement phase of the modelling
and simulation environment several more generic self-aware
and self-expressive systems composed of just one node or
composed of several nodes have been utilised to optimize
the simulation performance, the execution chronology and
the transaction and event handling of the different processes.
Additionally, the data read, storage and transport mechanisms
have been tested, bug-fixed and optimized to provide an
environment that can handle industrial relevant systems in
simulation run times of a few hours for data input sizes of
several tens of thousands of input samples.

Beside the modelling and simulation work with these
generic systems to test out and optimize the implementation,
we currently use the environment for a self-aware and self-
expressive system that realises novel concepts for fault tol-
erance to overcome one drawback of today’s over-designed
avionic systems. This concrete system is composed of one sin-
gle self-aware and self-expressive node representing an avionic
sub-system with safety critical functionality. Later extensions
will realise several of these nodes that exchange information
to guide the self-aware and self-expressive behaviour locally
at one node and at all system nodes, simultaneously. Due to
running patent applications further details are not possible.

V. CONCLUSION

In this paper we have presented a comprehensive approach
for self-aware and self-expressive systems, including a system-
atic derivation of a reference architecture and a complete mod-
elling and simulation environment that is based on that generic
architectural template. With the defined reference architecture
and the modelling and simulation environment at hand, we are
able to systematically define, simulate and analyse systems
with self-aware and self-expressive capabilities. Initial tests
with multi-node systems and first results of a running project
on alternative fault tolerance avionic concepts with one node
proof our approach and underpin the industrial relevance of
the implemented environment.

Acknowledgement: The research leading to these results has re-
ceived funding from the European Union Seventh Framework Pro-
gram under grant agreement no 257906.

REFERENCES

[1] R. Orsagh, D. Brown, P. Kalgren, C. Byington, A. Hess, and T. Dab-
ney, “Prognostic health management for avionic systems,” in Aerospace
Conference, IEEE , 2006, pp. 1213–1219.

[2] M. Pignol, “COTS-based applications in space avionics,” in DATE 2010,
2010, pp. 1213–1219.

[3] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[4] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon,
J. Torresen, and X. Yao, “A survey of self-awareness and its application
in computing systems,” in Proc. Int. Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW). IEEE Computer Society,
2011, p. 102107.

[5] J. Schaumeier, J. Pitt, and G. Cabri, “A tripartite analytic framework
for characterising awareness and self-awareness in autonomic systems
research,” in Proc. Int. Conference on Self-Adaptive and Self-Organizing
Systems Workshops (SASOW). IEEE Computer Society, 2012, pp. 157–
162.

[6] T. Becker, A. Agne, P. Lewis, R. Bahsoon, F. Faniyi, L. Esterle, A. Keller,
A. Chandra, A. Jensenius, and S. Stilkerich, “EPiCS: Engineering
proprioception in computing systems,” in Computational Science and
Engineering (CSE), 2012 IEEE 15th International Conference on, 2012,
pp. 353–360.

[7] S. J. Russell and P. Norvig, Artificial Intelligence - A Modern Approach,
3rd ed. Pearson Education, 2010.

[8] J. Fitchl, “A loosely coupled parallel LISP execution system,” in Inter-
national Specialist Seminar on the Design and Application of Parallel
Digital Processors, 1988, pp. 128–133.

[9] F. Kesel, Modellierung von digitalen Systemen mit Sys-
temC: Von der RTL- zur Transaction-Level-Modellierung.
Oldenbourg Wissenschaftsverlag, 2012. [Online]. Available:
http://books.google.de/books?id=ADxjNz0inTsC

