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Abstract

There are strong indications that musical sound and body motion are related. For instance,
musical sound is often the result of body motion in the form of sound-producing actions, and
muscial sound may lead to body motion such as dance. The research presented in this dis-
sertation is focused on technologies and methods of studying lower-level features of motion,
and how people relate motion to sound. Two experiments on so-called sound-tracing, meaning
representation of perceptual sound features through body motion, have been carried out and
analysed quantitatively. The motion of a number of participants has been recorded using state-
of-the-art motion capture technologies. In order to determine the quality of the data that has
been recorded, these technologies themselves are also a subject of research in this thesis.

A toolbox for storing and streaming music-related data is presented. This toolbox allows
synchronised recording of motion capture data from several systems, independently of system-
specific characteristics like data types or sampling rates.

The thesis presents evaluations of four motion tracking systems used in research on music-
related body motion. They include the Xsens motion capture suit, optical infrared marker-based
systems from NaturalPoint and Qualisys, as well as the inertial sensors of an iPod Touch. These
systems cover a range of motion tracking technologies, from state-of-the-art to low-cost and
ubiquitous mobile devices. Weaknesses and strengths of the various systems are pointed out,
with a focus on applications for music performance and analysis of music-related motion.

The process of extracting features from motion data is discussed in the thesis, along with
motion features used in analysis of sound-tracing experiments, including time-varying features
and global features. Features for realtime use are also discussed related to the development of a
new motion-based musical instrument: The SoundSaber.

Finally, four papers on sound-tracing experiments present results and methods of analysing
people’s bodily responses to short sound objects. These papers cover two experiments, present-
ing various analytical approaches. In the first experiment participants moved a rod in the air
to mimic the sound qualities in the motion of the rod. In the second experiment the partici-
pants held two handles and a different selection of sound stimuli was used. In both experiments
optical infrared marker-based motion capture technology was used to record the motion. The
links between sound and motion were analysed using four approaches. (1) A pattern recogni-
tion classifier was trained to classify sound-tracings, and the performance of the classifier was
analysed to search for similarity in motion patterns exhibited by participants. (2) Spearman’s
p correlation was applied to analyse the correlation between individual sound and motion fea-
tures. (3) Canonical correlation analysis was applied in order to analyse correlations between
combinations of sound features and motion features in the sound-tracing experiments. (4) Tra-
ditional statistical tests were applied to compare sound-tracing strategies between a variety of
sounds and participants differing in levels of musical training. Since the individual analysis
methods provide different perspectives on the links between sound and motion, the use of sev-
eral methods of analysis is recommended to obtain a broad understanding of how sound may
evoke bodily responses.
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Chapter 1

Introduction

This chapter introduces the motive for and foundation of this research. Research objectives are
stated and the thesis outline presented at the end of the chapter.

1.1 Motive

Have you ever been listening to music and suddenly noticed that your foot is tapping along with
the beat? Have you felt the need to put all your energy into that invisible drum kit that surrounds
you when nobody is watching? And have you stretched your neck as far as you can to try to
sing a pitched tone, or frowned to reach a really low one? I have done all of these and also, as
a musician | have experienced how my body moves a lot when I play — much more than what
is necessary just to produce the tones I am playing. Moving along with the music and lifting
my instrument to emphasise salient phrases adds something to the musical experience that is
difficult to explain in words. These things have puzzled me, and made me pursue a path that has
emerged in music research in the recent decades, where music-related body motion is studied
in order better to understand how music is perceived and processed in mind and body, and why
music plays such a large role in the lives of so many people.

My own background is interdisciplinary. I have always been interested in music and started
playing and composing music when I was a child. During my years as a Musicology student at
the University of Oslo I became increasingly intrigued by research questions of music percep-
tion and cognition, and how music-related body motion could provide some of the answers to
these. After finishing my Master studies in Musicology, where I focused on music cognition and
technology, I started this PhD project in Informatics in 2008. Initially my interest for Informat-
ics was mainly as a means of studying music-related body motion, where quantitative methods
like pattern classification and machine learning might be used to learn more about music cog-
nition. However, while my strong interest in music cognition persisted, I also developed a great
fascination for research questions in computer science and the quantitative methods themselves.
If music-related body motion can help us understand more about music, how can quantitative
methods and technologies assist in this research, and when do these techniques fall short?
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1.2 Multimodality

An important term in music cognition is multimodality. The Oxford Dictionaries defines the
term modality as ‘a particular form of sensory perception’, citing visual and auditory modali-
ties as examples [Oxford Dictionaries: “Modality”]. In human-computer interaction, the term
has been defined as ‘a type of communication channel used to convey or acquire information’
[Nigay and Coutaz, 1993]. In the human body, these communication channels are formed by
the sense organs, the nerve tracts, the cerebrum, and muscles [Schomaker et al., 1995]. Corre-
spondingly, multimodality is the capacity to communicate along different types of communica-
tion channels [Nigay and Coutaz, 1993]. A conversation is a typical example of a multimodal
phenomenon, where information is communicated through the spoken words as well as bod-
ily gestures. As will be discussed in Section 2.3, there are also certain examples in human
perception of interaction between the modalities, a phenomenon known as cross-modality.

This thesis takes as given that music is multimodal, meaning that music can be communi-
cated through several modalities. Obviously the auditory modality is one of these, but music
is more than what we hear. In most cases musical sound is the result of bodily motion in
the form of sound-producing actions. Music also often results in body motion such as dance,
foot-tapping, head-nodding or the playing of air-instruments. It has been suggested that mu-
sical sound affords motion, and therefore that by studying the way people move to music, we
can gain knowledge about how music is perceived [Clarke, 2005, Godgy, 2010, Leman, 2008].
Other important non-auditory aspects of music are sensations of effort, and visual and tactile
cues, as can be seen by the many metaphors that are used to describe musical sound, e.g. ‘sharp’,
‘mellow’, ‘soft’, ‘bright’, ‘dark’, ‘aggressive’, ‘smooth’ [Godgy, 2003].

A focus on the multimodality of music is one of the characteristics of the field of System-
atic Musicology. This field is primarily empirical and data-oriented [Parncutt, 2007]. Thus,
systematic musicologists conducting research on music and motion often work with quantified
representations of both sound and motion data. Quantitative motion data may involve measure-
ment with sensors or cameras, where the positions of limbs are measured at a fixed sampling
rate. Furthermore, abstractions of the positional measurements can be gained by calculating the
distances between various limbs, or the velocity and acceleration of the limbs. Similar abstrac-
tions can be made for audio data, for instance calculating representations of an audio signal that
matches some perceptual model of our auditory system. Ways of quantifying and processing
sound and motion data will be covered in more detail in the following chapters.

Quantitative data may be of great help to researchers, for instance in capturing nuances of
sound and motion that are too subtle for humans to perceive. However, David Huron [1999]
recommends that researchers in this be cautious in concluding that a quantitative result is equiv-
alent to the ground truth. He illustrates his point with the rise of musical notation. Musical
scores are in principle a quantification of music, and it inspired and facilitated the growth of
music theory in the West. However, music notation, says Huron, is not the same as music. It is
a simplification, unable to cover the full complexity of music. Consequently, although quanti-
tative methods may facilitate research on music and motion, it is important to not to disregard
qualitative analysis in such experiments.
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1.3 Interdisciplinarity

As mentioned, my own background is interdisciplinary, and so is the research that is presented
in this thesis. In many ways, interdisciplinarity is necessary to capture the full complexity
of a multimodal concept such as music: In the Arts and Music Theory we find a tradition
of describing for instance the aesthetics of music, and representations of musical pieces from
many centuries ago in the form of musical scores. Acoustics and Biology tell us how sound is
produced as physical vibrations in a musical instrument, and how these vibrations pass through
the air and into our auditory system, where it eventually ends up as nerve impulses that are sent
to the brain by tiny hair cells in the cochlea. Neuroscience and Psychology provide means of
understanding how sound is processed cognitively, and how it is connected to other modalities.
Biomechanics provides means of describing how people move to music, and Mathematics and
Information Technology provide tools for capturing and analysing music-related data. This list
could be extended further, but my purpose here is merely to show that researchers in Systematic
Musicology must wear many hats, being music theorists, psychologists, acousticians, etc., while
keeping a focus on both quantitative and qualitative methods.

The readership of this thesis is not assumed to have knowledge of the methods and ter-
minology of the several research disciplines of Systematic Musicology. For this reason the
terminology, methods and technologies in Chapters 2, 3, and 4, will be presented in such a way
that it is accessible without expert knowledge of quantitative research methods, or with limited
knowledge of sound and music.

1.4 Aims and Objectives

The main research objective of this thesis is to:

develop methods and technologies for studying links between musical sound and
music-related body motion

This objective may further be divided into three sub-objectives:

Data handling:
to develop solutions for storing and streaming synchronised music-related data

Evaluation of motion tracking technologies:
to evaluate the quality of motion tracking systems used for analysing music-related
motion

Sound-action analysis:
to evaluate existing and develop new methods and techniques of analysing bodily
responses to short sound excerpts

Studies of music-related motion require tools and methods of analysis that are able to handle
the multidimensionality that this area presents. Music-related data may involve audio, musical
scores, MIDI-data, annotations, video, motion capture data from various systems, and more.
When researchers want to work with some or all of these at the same time, the ability to handle
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a large amount of data with different sampling rates and number of dimensions is essential.
Preferably, it should be possible to make synchronised recordings of all of these data types,
and to play back the data later, just as easily as one would play back a video on a camcorder.
Furthermore, evaluation of existing technologies for studying body motion is essential: what
degree of precise measurement is possible with high-end motion tracking equipment? And
what about low-end tracking technologies like the sensors that are found in ubiquitous mobile
technology?

One way of studying music-related body motion is to observe how people move while lis-
tening to music. If the body motion is measured quantitatively, for instance by a motion tracking
system, effective analysis methods are required. Not all methods of analysing time series can be
applied to multidimensional music-related data. Nor is it given that the methods capable of han-
dling multidimensionality can provide as detailed analysis results as those that cannot. Another
approach to studying music-related body motion turns the process around. Development of
new musical instruments that use body motion to produce sound can teach us how people want
to interact with music, and thus also provide knowledge of how properties of bodily motion
correspond to sonic properties.

This thesis tries to answer some of the questions posed above, with a main focus on the
use of optical marker-based motion tracking technology, and how the data obtained from this
can be used to analyse correspondences of sound and motion. I present experiments referred
to as sound-tracing, where a number of people have moved one or two rigid objects in the air,
following the perceptual features of short sound objects. Some of the research could be extended
to full-body motion and longer segments of music. However, a focus on short sound objects
and simple action responses has enabled the application and evaluation of multiple analysis
methods, as well as development of new technologies.

1.5 Thesis Outline

This thesis is a collection of papers and thus the eight included research papers constitute the
research contribution of the thesis. The first part of the thesis offers an overview of the work
that has been carried out and is structured as follows: Chapters 2, 3, and 4 introduce relevant
background, including some basic theory on perception and cognition of sound and music in
Chapter 2, an overview of technologies of motion tracking in Chapter 3, and a presentation of
analytical methods that are applied in the thesis in Chapter 4. Chapter 5 presents an overview
of the contents of the research papers, as well as individual summaries and abstracts for each
paper. Subsequently, Chapter 6 discusses the findings of the papers and presents conclusions
and pointers for future work. Finally, the eight research papers are included at the end of the
thesis.

The source code of the software that 1 have developed as part of this thesis is included
digitally, together with the sound files that have been designed for the empirical studies. These
will be made available online in the archive for digital publications at the University of Oslo
(DUO),' and they are also available from my personal web page.’

"http://www.duo.uio.no/
’http://folk.uio.no/krisny/files/knThesisAttachment.zip


http://www.duo.uio.no/
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Chapter 2
Music Cognition

The term music cognition refers to mental processes of perception and processing of music. As
argued in the previous chapter, music is multimodal. Consequently, cognitive musical processes
must involve not only sound perception, but also a motor modality. Still, sound is obviously an
important element of music and, as will be explained in the presentation, there exists evidence
for links between sound perception and motor processes in the brain. Discussion of sound
constitutes a good point of departure for the presentation of music cognition.

2.1 Sound Descriptors

Sound and music may be described in many different ways. In daily speech, music is commonly
described in terms of adjectives, such as ‘groovy’ or ‘smooth’, or in terms of an experienced
emotional content in the music, e.g. ‘sad’ or ‘passionate’. Other common ways of describing
sound is through metaphors, such as ‘bright’, ‘warm’, ‘big’ [Lakoff and Johnson, 1980, Eitan
and Timmers, 2010], or through genre labels, such as ‘opera’, ‘hip-hop’ or ‘jazz’. While all
of these sound descriptors connote sound properties, the terms do not give precise information
about the sound signal. For this reason, lower-level quantitative features are often used in sound
analysis to enable more precise descriptions of nuances in the sound.

When working with quantitative sound features, it is important to be aware of the distinction
between physical and perceptual features. The former describe sound in terms of physical
parameters like sound pressure level or the spectral content of the sound wave. Perceptual
sound features are designed to describe sound as we hear it, typically by applying a perceptual
model that take into account certain limitations of our auditory system.

A sound signal may physically be described as a sum of sinusoidal components with respec-
tive frequencies and amplitudes. This is illustrated in Figure 2.1 where the sum of 8 sinusoidal
components makes up an audio wave that resembles a sawtooth wave. As such, a sound wave
may not only be described as a function of time, but also of frequency. A sound signal in the
time domain is usually referred to as a waveform, and a signal in the frequency domain is known
as a spectrum.

The time domain signal is commonly separated into shorter segments, known as frames,
before features are calculated for each segment. The segments are extracted by multiplying
the audio signal with a window function, which smooths the beginning and end of the frame.
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Figure 2.1: The figure shows how the sum of 8 sinusoidal waves resembles a sawtooth wave. The
spectrum of the signal is displayed on the right.
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Figure 2.2: Audio features are calculated by segmenting the audio waveform into frames. Each frame is
multiplied by a window function to smooth the beginning and end.
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Features are calculated upon the waveform and the spectrum within each frame as displayed in
Figure 2.2. In this manner time-varying sound descriptors are obtained.

A number of excellent tools for extracting sound features from an audio signal have been
developed, and many of them are available free of charge, such as the standalone applications
Praat [Boersma and Weenink, 2012], Sonic Visualiser [Cannam et al., 2010], and Spear [Kling-
beil, 2005], and the MIR Toolbox [Lartillot et al., 2008] and the Timbre Toolbox [Peeters et al.,
2011] for Matlab.

A detailed listing of specific audio descriptors is beyond the scope of this thesis. Accord-
ingly, the information presented here will concern a limited number of examples. For a compre-
hensive list of physical and perceptual audio descriptors, please refer to Geoffroy Peeters and
others’ work on audio features [Peeters, 2004, Peeters et al., 2011]. Adopting terminology put
forward by Every [2006], the features I have worked with in the experiments presented in this
thesis include dynamic, harmonic, and spectral:

Dynamic features describe the energy of the sound. An example of a physical dynamic feature
is the root-mean-square value of the audio signal within a frame. This feature is an im-
portant component of the perceptual feature loudness. Loudness is not only dependent on
energy, but also on the spectral distribution of sound energy [Mathews, 1999a].

Harmonic features concern the periodicity of an audio signal. The frequency whose integer
multiples best describe the content of the signal spectrum is known as the fundamental
frequency of a harmonic signal. This value may be the same as the zero-crossing fre-
quency of the waveform. Pitch is a perceptual feature which is closely related to the
fundamental frequency. However, the perceived pitch can be lower than the actual spec-
tral content of the sound (so-called missing fundamental), or in cases with insufficient
harmonic content in the audio spectrum, there might not be a perceivable pitch at all
[Pierce, 1999].

Spectral features describe the distribution of spectral content in the sound. Within a frame,
we can for instance calculate the spectral centroid, denoting the barycentre of the spec-
trum (illustrated in Figure 2.3), or the spectral flux, denoting the degree of change in
the spectrum between the current and previous timeframe. The perceptual feature timbre
is to a large extent dependent on spectral content. However, this feature is intrinsically
multidimensional, and therefore difficult to quantify. Efforts have been made to develop
multidimensional ordering of the timbres of musical instruments [Grey, 1977, McAdams
et al., 1995], and methods of analysing timbre through synthesising sound [Risset, 1991].
These methods provide good foundations for reasoning about timbre, but many other as-
pects of sound will influence this perceptual sound feature, and thus it is not trivial to
design a comprehensive model of timbre [Mathews, 1999b].

Low-level sound features as presented above are useful in describing sound signals. Some
also describe the perception of sound, by employing a model that simulates limitations in our
auditory system. The methods outlined above show how features can be calculated through a
bottom-up approach, where the time-domain signal is transformed and processed in order to
obtain new representations of the signal.
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== Spectral Centroid

Figure 2.3: Simple illustration of how the spec-
tral centroid changes when high-frequency con-
tent is filtered out from the signal.

frequency (Hz)

Antonio Camurri has presented a multilayered model for musical signals, outlined in Fig-
ure 2.4 [Camurri et al., 2005, Camurri and Moeslund, 2010]. The model illustrates how music
can be described at higher levels than the features presented thus far. The basic physical signals
(Layer 1) can be represented in terms of low-level continuous features (Layer 2). Furthermore,
the signals can usefully be segmented into shorter meaningful units, such as musical phrases
or sonic objects (Layer 3). At Layer 4, we find concepts and structures which contain emo-
tive and expressive content of the music. An ideal model of musical signals would we able to
translate between all of these layers, so that emotive content could be analysed from physical
signals (bottom-up), and physical signals could be synthesised from emotive or metaphorical
descriptions (top-down).

Layer 4: High-level features. Emotions, metaphors, expressivity

Ty

Layer 3: Mid-level features. Segmented units, musical phrases, trajectories

ty

Layer 2: Low-level features. Statistical measures, signal processing.

Ty

Layer 1: Physical signals. Audio signals, motion data.

Figure 2.4: My illustration of Camurri’s multilayered model for musical signals [Camurri et al., 2005,
Camurri and Moeslund, 2010]. With sophisticated signal processing techniques, it should be possible to
move between the different layers.

In sound perception, we are not consciously aware of quantitative perceptual features. Rather,
our focus is on understanding the continuous auditory input at one of the higher levels, as events
and objects, in order to make sense of our surroundings. This will be discussed further in the
next section.

2.2 Sound Perception

We all have some understanding of what sound is. We experience it and interact with it every
day. We know that clapping our hands together will produce sound, and we can even predict in
detail what the hand clap will sound like. We have obtained this so-called ecological knowledge
by interacting with our bodies in the world [Gibson, 1979, Clarke, 2005]. Our experience with
sound enables us to infer the causes of the sounds that we hear, and to determine the direction
of, and distance from the sound sources. Albert Bregman [1990] presented a comprehensive
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theory on Auditory Scene Analysis, describing how we make sense of our surroundings based
on auditory input. He investigated a number of principles according to which auditory input
is grouped and segregated into so-called streams. We can distinguish the sound of a passing
vehicle from the voice of a person we are talking to, and even distinguish their voice from the
voices of many others in the same room. Furthermore, from auditory input we are able to tell
with quite high precision, the gender and age of people around us, as well as the size of passing
vehicles and in which direction they are going, and many other details about our surroundings.

The foundations for Bregman’s work were laid by a number of German researchers and
psychologists in the 19th and early 20th century. Herman von Helmholtz, Wilhelm Wundt and
Franz Brentano conducted pioneering work in the fields of Psychoacoustics, Psychology, and
Phenomenology, respectively [Leman, 2008]. Later the German gestalt psychologists formu-
lated a series of principles for grouping and segmentation of visual stimuli. In the second half
of the 20th century, as the technologies for recording, manipulating and playing back sound im-
proved, a large number of researchers contributed to the field of psychoacoustics. In particular,
Leon van Noorden’s [1975] work on how the perception of tone sequences dependents critically
on tempo, and Stephen McAdams’ [1984] work on spectral fusion were important contributions
to Bregman’s work.

2.2.1 Discrete Attention

It is commonly accepted that we do not all the time pay equal attention to all parts of the sound
waves that reach us but that we are able to focus our attention on certain parts of the auditory
scene. Edmund Husserl’s phenomenology described consciousness as a phenomenon consisting
of a series of discrete now-points in time [Husserl, 1964]. Every conscious “now” is not only
an infinitely short time period along a continuous timeline. The “now” also contains awareness
of events that occurred just before the present and expectations of what will happen in the near
future. This notion in many ways coincides with George A. Miller’s concept of chunks, which
is an explanation of how the continuous input to our sensory system is re-coded and perceived
as discrete, holistic units [Miller, 1956].

In his work on the aesthetics for musique concrete the French composer and theorist Pierre
Schaeffer claimed that music is not perceived as a continuous phenomenon, but rather in terms
of sonic objects, which are discrete perceptual units, defined by some apparent cause [Schaeffer,
1966]. A cause may be an intentional sound-producing action, such as hitting a drum with a
mallet, or a naturally occurring event such as the howling sound that is heard when the wind
blows past a resonating object. Schaeffer challenged the traditional way of listening to music.
He claimed that music should be listened to by disregarding the causes of the sonic objects, and
rather focusing on lower-level features of the sound [Schaeffer, 1966].

Schaeffer’s approach to sonic objects is in contrast to the bottom-up approach to sound
features that was presented in Section 2.1. Schaeffer started with the sonic object and defined
types of object according to their onset characteristics and pitch contour. He further inspected
low-level features of the different types of object through a number of experiments with sound
recordings on magnetic tape, where he manipulated the recordings by cutting them apart and
gluing together in new orders, and by increasing and decreasing the speed of the tape [Schaeffer
and Reibel, 1967]. If we see this method in light of Camurri’s model, we note that Schaeffer’s
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approach to sonic features, unlike the previously introduced bottom-up approach, is a top-down
approach. The typology of sonic objects was used as a point of departure, and Schaeffer studied
the different types in order to find the features that defined them.

It is well established that sound is processed cognitively as discrete perceptual units and
that we are unable simultaneously to be aware of the entire range of physical sound waves that
reach us [Alain and Arnott, 2000, Shinn-Cunningham, 2008]. Whether we choose to focus
on the perceptual units as short ‘sonic objects’, or sequences of these that are grouped and
segregated into ‘auditory streams’, they are often identified by stemming from the same cause.
Thus several researchers have suggested that we may learn more about the workings of sound
perception by looking at more than the auditory modality, and start analysing the causes of
sound objects. In music the causes of sound objects are usually human bodily motion in the
form of sound-producing actions. This will be covered in the next section.

2.3 Music and Motion

Body motion is an important aspect of music. Several researchers have developed taxonomies to
describe various types of music-related motion all of which show how tightly connected music
and motion are, e.g. [Cadoz and Wanderley, 2000, Wanderley and Depalle, 2004, Jensenius,
2007a, Jensenius et al., 2010]. These types of motion span from the sound-producing actions
of performers on musical instruments to the bodily expression of musical structures through
dance, and even our unconscious foot-tapping or head-nodding when listening to music. The
combination of music and motion has been the main focus of a large number of recent academic
publications, including anthologies edited by Wanderley and Battier [2000], Gritten and King
[2006, 2011], Altenmiiller et al. [2006], and Godgy and Leman [2010].

Experimental psychologists have shown that our understandings of perceived phenomena
might not be obtained through one sensory modality alone, but often through a combination
of modalities [Stein and Meredith, 1993, Vroomen and de Gedler, 2000]. This phenomenon is
usually referred to as cross-modality. A good example is the so-called McGurk effect, which
explains how we rely on multiple modalities to interpret a spoken syllable. McGurk and Mac-
Donald [1976] showed that when perceivers saw a video of a person saying ‘gaga’ combined
with hearing a person saying ‘baba’, the spoken word was perceived as ‘dada’. Combinatory
effects of audition and vision have been the main focus of research on cross-modal perception,
but evidence for an interaction between these modalities and a motor modality has also been
found. This has contributed to the idea of embodied music cognition which has emerged among
music researchers in the last decades [Leman, 2008].

An embodied approach to music cognition entails regarding music as not only an auditory
phenomenon, but recognising that the human body is an integral part of our experiences of
music [Leman, 2008]. This idea builds upon Gibson’s ecological approach to visual perception,
known as embodied cognition [Gibson, 1979], and later the theories of motor perception which
suggest that perceived phenomena are understood through ecological knowledge of how our
own bodies interact with the environment, for instance that we understand speech by projecting
the phonemes that we hear onto our own experience with producing phonemes in our vocal
system [Liberman and Mattingly, 1985].
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2.3.1 Evidence from Neuroscience

In the early 1990’s neuroscientists made a discovery that supported the theories of motor per-
ception. A type of neuron, called mirror neurons were discovered in the premotor cortex of the
brains of macaque monkeys [Pellegrino et al., 1992, Gallese et al., 1996]. These neurons were
found to activate not only when the monkeys performed a learned task, but also when observ-
ing the experimenter perform the same task. This was later also shown to be true for auditory
stimuli, suggesting that the monkey would understand the sound by imagining performing the
action that created the sound [Kohler et al., 2002].

In music research motor activity in the brain has been shown in musicians and non-musicians
imagining musical performance, and even when just listening to music [Haueisen and Kndsche,
2001, Langheim et al., 2002, Meister et al., 2004, Lahav et al., 2007]. And the other way round;
activity in the auditory cortex has been found in piano players watching a silent video of piano
performance [Haslinger et al., 2005]. These and other findings have inclined researchers to
claim that by studying musical activity in more detail, we can learn more about neuroscience in
general [Zatorre, 2005, Zatorre and Halpern, 2005].

2.3.2 Sonic Objects are also Action Objects

Interestingly, Schaeffer’s theory of sonic objects included a typology based on sound excitation.
He described sonic objects as impulsive, sustained, or iterative. Building on the above men-
tioned work in phenomenology, psychoacoustics, and embodied cognition, Rolf Inge Godgy
[2004, 2006] linked these categories to so-called gestural imagery, and claimed that visualising
or imagining action trajectories is essential to our perception of music. Such trajectories can be
seen as a covert mirroring of sound-producing actions [Cox, 2006, Godgy et al., 2006a].

Sonic objects and sound-producing actions share the property of being chunked holistic
units taken from a continuous phenomenon (sound and motion, respectively). In both modal-
ities, grouping and segmentation of units follow the gestalt principles [Bregman, 1990, Klapp
and Jagacinski, 2011]. Limitations of our attention and short-term memory [Poppel, 1997, Sny-
der, 2000] and motor abilities [Schleidt and Kien, 1997] constrain these units to about the 0.5
to 5 seconds range. Godgy [2011] suggested a model on which sound and action are analysed
at three timescale levels:

* Sub-chunk level, meaning continuously varying sound and motion features.
* Chunk level, meaning holistically perceived units in the 0.5-5 seconds range.

* Supra-chunk level, meaning sequences of concatenated chunks, such as a musical phrase,
that consist of several sonic objects.

Sound excitations can coincide with the chunk level, but multiple sound onsets can also
be found within a single chunk. This is often best observed by looking closer at the sound-
producing actions. For a rapid piano scale, the fast finger actions fuse together into superordi-
nate trajectories in the elbow and shoulder joints [Godgy et al., 2010]. And similarly, for violin
bowing actions, increased bowing frequency will cause so-called phase transitions, where the
principal source for the bowing changes from the elbow joint to the wrist joint [Rasamimanana
et al., 2009].
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Godgy [2011] argued that chunking of music-related actions happens in terms of goal-
points. In sound-production, such goal-points can exist at the time of excitation, or in the
case of multiple excitations within a chunk, at a salient point in the sequence of excitations.
Before and after each goal-point are trajectories leading to it and back again. Musicians prepare
the trajectory to the next goal-point before hitting the previous goal-point, and consequently a
series of chunks will have overlapping trajectories — an effect known as coarticulation [Godgy
et al., 2010]. Picture, for instance, how a mallet is struck against a drum. The mallet bounces
off the membrane and a drummer will typically initiate a new stroke before the rebound has
stopped. If the stroke that follows is on a different drum, the coarticulation between strokes will
involve preparatory, so-called ancillary, motion in order to move the mallet to the next drum,
e.g. by turning the body or by raising the elbow and shoulder in the direction of the other drum.

2.4 Summary

This chapter has shown that music perception is multimodal. Musical sound can be studied by
looking at features extracted from the sound signal, either as continuously varying features at
the sub-chunk level, or as holistically perceived chunks, or sequences of these. Furthermore,
musical sound can be studied by observing the motion people make to music, as an overt expres-
sion of the covert mirroring of sound-producing actions that occurs when we listen to music. A
natural follow-up question to this is how motion can be studied in a controlled manner. This is
addressed in the next chapter.



Chapter 3

Motion Capture

When working with music and body motion it is essential to be able to convey information
about how someone or something moves. In daily speech we use words such as ‘walking’,
‘rolling’, ‘turning’, etc., to achieve this. These words, however, do not provide precise descrip-
tions of motion. More detailed representations of motion can be gained through visualisation
techniques, such as a video recording, or through a sequence of photographs, drawings or sto-
ryboards [Jensenius, 2007a].

Motion capture (mocap) involves the use of a sensing technology to track and store move-
ment. In principle, a pencil drawing on a piece of paper can be called motion capture, since
the pencil lead is testimony of the hand motion of the person that made the drawing. However,
the most common use of the term refers to tracking and representation of motion in the digital
domain.

3.1 Motion Capture Basics

Figure 3.1 shows how motion capture may be divided into three main parts: (1) sensing the
motion, (2) processing the sensor data, and (3) storing the processed data. Together, parts 1
and 2 are referred to as motion tracking. Rather than being stored, tracking data may be used
directly, for instance in realtime interactive applications. Most commercial implementations
of tracking technologies include the option of storing data, and so the terms motion tracking
system and motion capture system are often used interchangeably.

Motion Tracking

|

|

|

| . sensordata .
| Sensing > Processing
|

|

\

Figure 3.1: Motion tracking involves sensing motion and processing the sensor data. When motion data
are stored in order to apply post-processing later, the process is known as motion capture.
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3.1.1 From Sensor Data to Motion Data

The sensing part of a motion capture system involves measuring some aspect of the motion.
This could be done by a large variety of sensors, such as a simple potentiometer or an array
of advanced video cameras. In principle, the sensor data can be stored or used directly. How-
ever, these data are rarely interesting in themselves, as they typically provide sensor-specific
measurements, e.g., resistance in a potentiometer or colour information of camera pixels. Con-
sequently the processing part of a motion capture system translates the raw sensor data into
information that describes the motion more significantly, for instance as low-level measures of
position or orientation or derivatives of these, such as velocity, acceleration or rotation. Further-
more, certain systems provide motion data specific to the object that is tracked, such as joint
angles in a human body.

For positional and orientational measurements the term degrees of freedom' (DOF) de-
notes the number of dimensions that are tracked. For instance, 2DOF position would mean
the position on a planar surface, and 3DOF position would be the position in three-dimensional
space. The description 6DOF is normally used to denote a measurement of an object’s three-
dimensional position and three-dimensional orientation. 6DOF-tracking is sufficient to repre-
sent any position and orientation.

3.1.2 Tracked Objects

Tracking can be applied to point-like objects, such as small spherical markers. These are treated
as points without volume, and as such only their position (not orientation) can be tracked.
A fixed pattern of several markers can be used to identify a rigid object. Rigid objects are
non-deformable structures whose orientation and position can be tracked. Furthermore, by
combining multiple rigid bodies and defining rules for the rotations and translations that can
occur between them it is possible to create a kinematic model. Such a model may, for instance,
represent the human body with the various constraints of the different joints. Such models can
even fill in missing data: say, if the data from the lower arm are missing, but the data from
the hand and the upper arm are present, the missing data can be estimated by following the
kinematic model. Kinematic models might not need position measurements of the different
parts: a set of joint angles for the body can be sufficient for a well-defined model. Examples of
a marker, a rigid object and a kinematic model are shown in Figure 3.2.

A more formal discussion of how position and orientation can be represented will follow
in Section 3.3. First, we shall have a look at the different technologies that are used in motion
tracking.

3.2 Motion Tracking Technologies

There is a large variety of motion tracking technologies. The most advanced technologies are
capable of tracking motion with very high precision at very high sampling rates. The largest

'This should not be confused with the statistical variable degrees of freedom (df), which is used to denote the
size of a tested data set in standardised statistical tests such as #-tests and ANOVAs (see Section 4.2). Furthermore,
in biomechanics and robotics degrees of freedom (DOF) is usually used to denote the number of rotary and linear
joints in kinematic models [Rosenbaum, 2001, Spong et al., 2006].
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Marker Rigid object Kinematic model

Figure 3.2: The position of a marker can be tracked in three dimensions. A rigid object also allows

tracking of orientation. A kinematic model describes the relative position and orientation of connected
rigid objects, for instance by joint angles.

appliers of these are the film and gaming industries where they are used for making life-like
animations, and researchers who study biomechanics for rehabilitation and sports purposes. At
the other end of the scale are ubiquitous low-cost sensor technologies that most people use daily
in their mobile phones, laptops, game controllers, and so forth.

This section will give an overview of tracking technologies. The presentation below follows
a classification of tracking technologies used by Bishop et al. [2001] where the different systems
are sorted according to the physical medium of the technology. The technologies presented in
this section include acoustic, mechanical, magnetic, inertial and optical tracking.

Several aspects of each technology will be presented. A description of the sensor technology
as well as the algorithms involved in processing the sensor data constitute the technical details of
the technology. Furthermore, the technologies differ in use and should be described in terms of
the data they provide to the user, as well as their limitations and advantages in various tracking
settings. What is more, in the context of this thesis it is interesting to discuss the use of the
technologies in musical settings, such as the study of music-related motion or in interactive
music systems.

3.2.1 Acoustic Tracking

Acoustic tracking systems calculate position upon the wavelength of an acoustic signal and
the speed of sound. Systems based on time of flight measure the time between the sending
of a signal from a transmitter and its being picked up by a receiver, and systems based on
phase coherence measure the phase difference between the signal at the transmitter end and
the receiver end [Bishop et al., 2001]. The speed of sound in air at 20 °C is about 343 m/s,
but it varies with air pressure and temperature. It may therefore be difficult to acquire precise
measurements from acoustic tracking systems. A single transmitter combined with a single
receiver gives the distance between the two, or in other words the position of the receiver in
a sphere around the transmitter. By adding more transmitters the 3D position of the receiver
can be found.” Figure 3.3 shows how combined distance measurements from two transmitters
narrows the possible positions of the receiver down to a circle.

2In addition to tracking the receiver position it is also possible to track the position of the transmitter. In this
case adding more receivers would enable finding the 3D position.



16 Chapter 3. Motion Capture

Figure 3.3: Distance measurements from two acoustic trans-
mitters can determine the position of a receiver to be some-
where along a circle.

Acoustic systems usually work in the ultrasonic range and can therefore be used in music-
related work without interfering with the musical sound. Still, these systems are not widely
used in this area. Among the few examples of those using acoustic tracking are Impett [1994],
Vogt et al. [2002] and Ciglar [2010], who included ultrasound sensors in the development of
digital musical instruments.

3.2.2 Mechanical Tracking

Mechanical tracking systems are typically based on some mechanical construction which mea-
sures angles or lengths between the mechanical parts by using bend sensors or potentiometers.
These systems can be worn on the body, for instance by implementing sensors in an exoskeleton
or a glove, to obtain a model of the joint angles in the whole body or the hand.

There are other implementations of mechanical tracking systems in which the system is not
placed on the body but rather contains a base unit placed at a fixed position in the room. Two
examples are input devices such as the ‘Phantom Omni’ and the ‘Gametrak’ game controller,
sketched in Figure 3.4. The Phantom Omni consists of a movable arm with several joints whose
angles are measured by encoders. The Gametrak measures the position of a satellite unit which
is attached to the base by a nylon cord. The extension of the nylon cord as well as the angle of
the cord are measured, providing positional information for the end of the cord.

e
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Sensable Phantom Omni Gametrak game controller

Figure 3.4: Two mechanical motion tracking devices. Left: The Phantom Omni senses the position of
the tip of the arm. Right: the Gametrak game controller senses the position of the tip of the nylon cord.
The arrows show the measured angles and lengths.

Mechanical tracking has been popular in music-related work, particularly for the purpose of
developing new musical interfaces. Various exoskeleton implementations have been developed
[e.g., de Laubier, 1998, Jorda, 2002, de Laubier and Goudard, 2006] and also a number of
glove-instruments [e.g., Fels and Hinton, 1993, Ip et al., 2005, Hayafuchi and Suzuki, 2008,



3.2. Motion Tracking Technologies 17

Fischman, 2011, Mitchell and Heap, 2011]. Furthermore, Zadel et al. [2009] implemented a
system for solo laptop musical performance using the Phantom Omni, and Freed et al. [2009]
explored a number of musical interaction possibilities for the Gametrak system.

3.2.3 Magnetic Tracking

Magnetic tracking systems use the magnetic field around a sensor. Passive magnetometers can
measure the direction and strength of the surrounding magnetic field, the simplest example
being a compass which uses the Earth’s magnetic field to determine the orientation around
the Earth’s radial vector. The field varies slightly across the Earth’s surface, but this can be
compensated for without much effort [Welch and Foxlin, 2002]. Passive magnetometers are
widely used in combination with inertial sensors, which will be covered in the next section.

More advanced magnetic systems use an active electromagnetic source and a sensor with
multiple coils. These systems are based on the principle of induction, which explains how an
electric current is induced in a coil when it is moved in a magnetic field. To obtain 6DOF
tracking a magnetic source with tree coils is used, each perpendicular to the two others [Raab
et al., 1979]. Similarly, each sensor consists of three perpendicular coils. The position and
orientation of each sensor can be calculated as a function of the strength of the induced signal
in each sensor coil [Bishop et al., 2001]. An illustration of the Polhemus Patriot system is shown
in Figure 3.5.

Sensor, containing three perpendicular
Source, sequentially setting up three coils where voltages are induced by the
perpendicular magnetic fields magnetic fields from the source

Figure 3.5: The Polhemus Patriot system sets up three perpendicular magnetic fields and tracks the
position and orientation of up to two sensors.

Magnetic trackers are able to operate at high sampling rates (more than 200 Hz) with high
theoretical accuracy.” However, the systems are sensitive to disturbances from ferromagnetic
objects in the tracking area. Vigliensoni and Wanderley [2012] showed that the distortion is
acceptably low at close distances from the magnetic source. But if a larger area is to be covered,
it is necessary to compensate for the distortion of the tracking field [Hagedorn et al., 2007].
This, as concluded by Vigliensoni and Wanderley, may be particularly true for spaces used for
musical performance, which often contain ferromagnetic objects. On the positive side, these
trackers do not require a clear line-of-sight between the source and the sensor, meaning that the
sensors can be hidden under clothes etc.

3 According to the technical specifications of the Polhemus Liberty system the positional and orientational
resolution decrease with increased distance between the source and the sensor. As long as the distance between
the sensor and the source is less than 2 m, the system displays submillimeter accuracy [Polhemus Inc.].
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Magnetic trackers have been used for analysis of music-related motion by a number of
performers and researchers. Trackers from Polhemus have been the most popular, used by
e.g. Marrin and Picard [1998], Lin and Wu [2000], Marshall et al. [2002], Ip et al. [2005],
Marshall et al. [2006], Maestre et al. [2007] and Jensenius et al. [2008].

3.2.4 Inertial Tracking

Inertial tracking systems include those based on accelerometers and gyroscopes. These sensors
are based on the physical principle of inertia. Accelerometers measure acceleration based on
the displacement of a small “proof-mass” when a force is exerted to the accelerometer. Gravity
will contribute to displacement of the proof-mass, and thus the data measured by accelerometers
contain the acceleration that is due to gravity (9.8 m/s?) and any acceleration applied by a user
[Bishop et al., 2001]. Gyroscopes apply a similar principle but measure rotational changes.
Vibrating parts in the gyroscope resist any torque that is applied to it, and by using vibrating
piezoelectric tuning forks in the gyroscopes an electrical signal is emitted when torque is applied
[Bishop et al., 2001]. To obtain 6DOF tracking three accelerometers and three gyroscopes are
used, with each sensor mounted perpendicularly to the other two.

Inertial tracking systems have certain strong advantages over all the other tracking tech-
nologies. Firstly, they are completely self-contained, meaning that they do not rely on external
sources such as acoustic ultrasound sensors or cameras which require line-of-sight. Secondly,
the sensors rely on physical laws that are not affected by external factors such as ferromagnetic
objects or light conditions. Thirdly, the sensors are very small and lightweight, meaning that
they are very useful in portable devices; and finally, the systems have low latencies and can be
sampled at very high sampling rates [Welch and Foxlin, 2002].

Orientation is gained from inertial tracking systems by integrating the data from the gyro-
scopes. Any change in orientation also means a change in the direction of the gravity force
vector. Position is calculated by first adjusting for any change in the gravity vector, and then
integrating the accelerometer data twice [Bishop et al., 2001].

Estimating position from accelerometer data leads us to the downside of inertial sensors;
namely drift. Even a minor error in data from the gyroscope or the accelerometer will cause
a large error in positional estimates. As noted by Welch and Foxlin [2002], a fixed error of 1
milliradian in one of the gyroscopes would cause a gravity compensation error of 0.0098 m/s?,
which after 30 seconds would mean a positional drift of 4.5 metres. For this reason, Welch and
Foxlin [2002] conclude, inertial systems work best when combined with other technologies.

Figure 3.6 shows one example of combining inertial sensors with other technologies, namely
the Xsens MVN suit [Roetenberg et al., 2009]. The suit uses 17 sensors called MTx, fixed at
predefined positions on the suit, each containing an accelerometer, a gyroscope and a magne-
tometer (compass). By combining the sensor signals with a kinematic model, which restricts the
positions and orientations of each body segment in relation to the other segments, a full-body
model is constructed.

The Xsens MVN suit has been tested and evaluated for use in musical interaction by Skogstad
et al. [2011], and actual implementations of the suit in musical interactive systems have been
presented by Maes et al. [2010], de Quay et al. [2011] and Skogstad et al. [2012c].

Accelerometers and gyroscopes are now implemented in smart phones and laptops every-
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Figure 3.6: The Xsens suit consists of 17 MTx sensors combining
inertial sensors and magnetometers. Full body motion capture is
obtained through the use of a kinematic model.

where, and the use of inertial sensors in musical performance and research is widespread. This
can be seen from the number of laptop orchestras and mobile phone ensembles that have ap-
peared in the recent years [e.g., Trueman et al., 2006, Dannenberg et al., 2007, Wang et al.,
2008, Bukvic et al., 2010, Oh et al., 2010].

3.2.5 Optical Tracking

Optical motion tracking systems are based on video cameras and computer vision algorithms.
The systems of this type range more widely than do the other types in terms of quality and cost,
and various implementations of optical tracking technologies can appear very different to the
user.

Optical Sensing

Various types of video camera are used in optical motion tracking. In principle, any digital
video camera can be used — in fact, one of the most affordable sensors for conducting motion
tracking is a simple web camera. Cameras used in optical motion tracking are either (1) regular
video cameras, (2) infrared (IR) video cameras, or (3) depth cameras.

Ordinary video cameras sense light in the visible part of the electromagnetic spectrum. Each
pixel in the camera image contains a value corresponding to the amount of light sensed in that
particular part of the image. Colour information in each pixel can be represented by using
multiple video planes, with the pixel values in each plane representing e.g. the levels of red,
green and blue.

Infrared cameras sense light in the infrared part of the electromagnetic spectrum, meaning
light with wavelengths above those visible to humans. Some infrared cameras can capture
heat radiation, e.g., from humans, but the most common use of infrared cameras in tracking
technologies is in a slightly higher frequency range. This is achieved by using some active
infrared light source, and either capturing the light from this source directly or as reflections
on the tracked objects. Typical implementations consist of a group of infrared light-emitting
diodes (LEDs) positioned near the infrared camera and capturing the reflection of this light as
it is reflected from small spherical markers.
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Depth cameras provide a layer of depth information in addition to the regular two-dimensional
image. These cameras use some technology in addition to the regular video camera. One ap-
proach is time-of-flight cameras, which embed an infrared emitter whose light is reflected off
the objects in the field of view. The distance to each pixel is calculated on the speed of light,
i.e. the infrared light returns sooner in the case of objects that are closer [Iddan and Yahav, 2001,
Ringbeck, 2007]. Another approach, as used in Microsoft’s Kinect sensor, is to project a fixed
pattern of infrared light and analyse the deformation of this pattern as it is reflected on objects
at different distances from the sensor [Freedman et al., 2010].

When not provided by the camera itself depth information can be gained through the use of
stereo cameras. This involves two cameras mounted next to each other, providing two similar
images as shown in Figure 3.7. The figure shows how depth information is found as a correlation
function of sideways shifting of the images. The more shift that is required for maximum
correlation, the closer to the camera are the pixels in the image. For more details on stereo
vision techniques, please refer to [Siegwart and Nourbakhsh, 2004].
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Figure 3.7: Basic illustration of depth extraction from stereo vision

Computer Vision

After obtaining the video data various processing is applied to the video stream. The video
processing that is performed in optical tracking systems is primarily dependent on two factors:
(1) whether or not the tracking is based on markers and (2) the camera configuration. But in any
case the first processing step is to remove unwanted information from the video, i.e. separate
the foreground from the background.

When depth information is available the foreground can be isolated by thresholding the
depth values, or if we know the colour of the tracked objects, thresholds can be set on the colour
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values for each pixel. Other techniques include background subtraction, i.e. using a prerecorded
background image as reference and detecting any new objects in the image by subtracting the
background image from the current image, and frame difference, meaning subtracting the pre-
vious video frame from the current video frame in order to observe changes in the video image.
After the first segmentation step, filtering can be applied and a blob-size* threshold can be set
in order to remove noise and constrain the tracking to objects of a certain size.

It is useful to distinguish between optical tracking systems that use markers and those that
do not. Markerless tracking involves tracking whatever is present in the field of view of the
camera, e.g2. a human body or some object being moved around. The blobs that are detected
can be measured in terms of size, centroid, principal axis etc., and these measures can again be
matched to some predefined model such as that of a human body, in order to obtain more useful
tracking data.

Marker-based tracking technology locates the position of usually spherical or hemispherical
markers which can be placed at points of interest. For instance, a human arm can be captured
by placing markers on the shoulder, elbow and wrist, or full-body motion tracking can be per-
formed by using larger marker-setups such as Vicon’s Plug-in Gait model. Types of marker
include active light/IR-emitters and passive reflective markers which reflect light from an exter-
nal source. In the case of passive markers the external light sources are typically infrared LEDs
mounted around the camera lens.

In marker-based tracking each camera in the system produces a 2D black image with white
pixels where markers are observed. This allows efficient separation of the markers from the
background by thresholding the pixel values. Furthermore, the markers are treated as points,
meaning that only the centroid of each blob is of interest. All in all, this makes the processing
of video in marker-based systems quite efficient.

The use of a single camera can provide 2D tracking, or in the case of depth-cameras pseudo-
3D tracking — meaning that objects that are hidden behind others in the camera’s field of
view are not tracked. By using more cameras positioned around the tracked objects full 3D
tracking can be obtained. The tracking system is calibrated in order to determine the position
and orientation of each camera, usually by moving a calibration wand, meaning a rigid structure
with a predefined set of markers attached, around in the tracking area. From the points that are
captured simultaneously in multiple cameras the position and orientation of each camera are
calculated using so-called direct linear transformation [Robertson et al., 2004]. Figure 3.8
shows how the 3D-positions of markers that are seen by multiple cameras can be calculated.

Music-Related Applications

Several systems have been developed for conducting markerless motion capture aimed at music
research and musical performance, such as EyesWeb [Camurri et al., 2000], The Musical Ges-
tures Toolbox [Jensenius et al., 2005], and the cv.jit library for Max [Pelletier]. Max objects
have also been developed to estimate periodicity in a video image [Guedes, 2006] and create
a skeleton model based on video input [Baltazar et al., 2010]. For analysis of marker-based
motion capture data Toiviainen’s MoCap Toolbox is very useful [Toiviainen and Burger, 2011]

A blob is a group of adjacent pixels in an image matching some criterion. In this case the pixels in the blob
would match the criterion of having colour values within a certain range.
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a) The cameras see a marker in their field of view b) Each camera shows a corresponding image,
where the marker position is given in two
dimensions

Camera 1 Camera 2 Camera 3

Camera 1 Camera 2 Camera 3
¢) Since the position and orientation of each camera d) The marker is found in the intersection between
is known, as well as its field of view, a 3D vector on the 3D vectors
which the dot must be locted can be determined.
Camera 2 Camera 1 Camera 2 Camera 3
O

Figure 3.8: Illustration of how 3D marker positions can be calculated by an optical marker-based system.

and includes methods of feature extraction and visualisation which will be further presented in
Sections 3.5 and 4.1.

Optical tracking has been popular in analysis of music-related motion. Sofia Dahl [2000,
2004] and later Bouénard et al. [2008] used marker-based motion capture of drummers to ob-
serve details of accents in percussion performance. Furthermore, Marcelo M. Wanderley and
others studied how musical performance of clarinettists was perceived in different movement
conditions [Wanderley, 2002, Wanderley et al., 2005, Nusseck and Wanderley, 2009]. Marker-
based motion capture has also been applied in studies of string performance [Ng et al., 2007,
Rasamimanana et al., 2009, Schoonderwaldt and Demoucron, 2009] and piano performance
[Godgy et al., 2010, Thompson and Luck, 2012]. There are also several examples of the use of
optical motion capture to analyse the motion of listeners and dancers [e.g., Camurri et al., 2000,
2003, 2004, Jensenius, 2007a, Leman and Naveda, 2010, Luck et al., 2010a, Toiviainen et al.,
2010, Burger et al., 2012, Jensenius and Bjerkestrand, 2012].

The use of optical tracking in musical performance has also been explored. Various frame-
works and guidelines for sonification of tracking data have been presented by Bevilacqua et al.
[2002], Dobrian and Bevilacqua [2003], Wanderley and Depalle [2004], Kapur et al. [2005],
Verfaille et al. [2006], Koerselman et al. [2007], Eckel and Pirro [2009], Grond et al. [2010],
Skogstad et al. [2010] and Jensenius [2012c]. Furthermore, several implementations of optical
tracking in sound installations or interactive music systems have been presented, e.g., by Leslie
et al. [2010], Yoo et al. [2011], Bekkedal [2012], Sentiirk et al. [2012] and Trail et al. [2012].
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3.3 Tracking Data

Before discussing methods of working with tracking data, I shall briefly present some details of
position and orientation representation.

3.3.1 Coordinate Systems

The data obtained from tracking systems constitute either a description of the tracked object in
relation to some external reference point or in relation to its own previous state. In many cases
the reference used is a global coordinate system® (GCS) which can sometimes be defined by
the user during the calibration of the tracking system, or determined by the position of some
hardware, such as a camera or an electromagnetic source [Robertson et al., 2004].

Rigid objects can be assigned a local coordinate system (LCS) as shown in Figure 3.9. The
LCS is fixed on the object and the axes of the LCS follow the object when it is translated and
rotated in space. As will be explained below the orientation of the rigid object can be measured
as the orientation of the LCS in relation to the GCS. Similarly, joint angles in a kinematic model
are given as the orientation of one rigid object relative to another.

Local
coordinate
system

0

>

Figure 3.9: A global coordinate system (GCS) is often defined during calibration. Position and orienta-
tion measurements are given in relation to the GCS as the position and orientation of a local coordinate
system (LCS) with respect to the GCS.

If no global coordinate system is defined, but a local coordinate system exists, the current
position and orientation can be reported by reference to the previous position and orientation in
a local coordinate system. In principle this also enables definition of a pseudo-global coordinate
system at the start of the tracking, and estimation of trajectories in relation to this. However,
as mentioned above in the section on inertial sensors, such systems are often sensitive to drift,
which means that the error in the estimated position and orientation will increase over time.

3.3.2 Representing Orientation

We can find the position of a rigid object by the coordinates of the origin of the LCS in the
GCS. Similarly, we can find the orientation of the rigid object by looking at the orientation of
the axes of the LCS compared with the axes of the GCS. Figure 3.10 shows how the elements

3 Also called a laboratory coordinate system, Newtonian frame of reference, or absolute reference system.
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of a 2D rotation matrix® are found by projecting the axes of the LCS (x;y:) onto the axes of the
GCS (z0yp): When the orientation is of the angle #, the projection of the x-axis of the LCS is at
point (cos 6, sin #) in the GCS, and the projection of the y-axis is at (— sin 6, cos ).

Yo
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\ yd .
AN 7 R0 T1-To Y1 To cosf —sinf
\, 4 = = .
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Figure 3.10: 2D (planar) rotation. The rotation from coordinate system 0 to coordinate system 1 (written
RY) is found by projecting the axes of system 1 onto system 0. The notation on the right shows how this
is written as a rotation matrix.

In case of a 3D rotation a 3 x 3 rotation matrix is used. As for the 2D rotation, the rotation
matrix is found by projecting the axes of the new coordinate system onto the original system.
Figure 3.11 shows how the rotation matrix is found for a rotation of # around the z, axis,
followed by a rotation of v/ around the x; axis. The rotation matrix for the first rotation (RY), is
found by projecting the axes x1, y1, 21 onto xg, Yo, 2o:

T1-Xo Y1-To 21 To cos) —sinf 0
RV=\zi-yo vi-yo 21-x0| = |sinf cosf 0
120 Y120 <1-°%0 0 0 1

and similarly R}, describing the second rotation, is:

T2 -T1 Yz2:T1 2T 1 0 0
Ry= |z9-y1 y2-91 2-91| = |0 cosyp —sing
To- 21 Yo-21 2921 0 sinYy cosy

Finally, the rotation matrix R, denoting a rotation from the initial state to the final state can be
found by multiplying the two first rotation matrices:

cosf) —sinfcosy sinfsiny
RY=R'R) = |sinf cosfcosy) —sinfsiny
0 sin cos Y

Any rotation can be represented by performing three sequential rotations around one axis
of the coordinate system in this manner. This is the basis for representing orientation by Euler
angles, where three angles are used. Euler angles require a specification of axes about which
the rotations revolve. For instance, ZYZ Euler angles (6, v, ¢) refer to a rotation of # around the
z-axis, followed by a rotation ¢ around the y-axis and a rotation ¢ around the z-axis.

A rotation matrix can also be referred to as Direction Cosine Matrix (DCM) or Orientation Matrix.
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Figure 3.11: 3D rotation made up from two sequential rotations around one axis of the coordinate
system. The final rotation matrix RY is found by multiplying R} and Ri. Any 3D rotation can be
represented by three sequential rotations in this manner.

For more details of coordinate systems, representations of orientation, and working with
kinematic models, please refer to [Robertson et al., 2004] and [Spong et al., 2006].

3.4 Post-Processing

3.4.1 Tracking Performance

The quality of tracking data provided by the different systems never affords a perfect represen-
tation of the real motion. As with all digital data their spatial and temporal resolutions are not
infinite and depend on a number of factors related to computational power and limitations in the
sensor technology. In addition to the research included in this thesis, Vigliensoni and Wander-
ley [2012] and Jensenius et al. [2012] have compared motion tracking systems and evaluated
their use in musical interaction by measuring accuracy, precision and the temporal stability of
the data rate.

The spatial resolution depends on a digitization of a continuous phenomenon. To use a
familiar example, a video camera is limited by the number of subdivisions that are measured
for the image, i.e. the number of pixels. Furthermore, minor errors in the calibration process
can severely affect the spatial resolution [Jensenius et al., 2012]. Also, external factors such as
ferromagnetic objects causing disturbance to magnetic trackers can influence the measurements.

The spatial accuracy and precision of tracking systems can be assessed by looking at noise
and drift. Both can be calculated from a static measurement over a period of time. A simple
linear regression can be applied to obtain an estimate of a static drift in the system. Or, if the
drift is not constant, a better estimate may be obtained by filtering and downsampling the data
and observing the extent of change in the data per timeframe.

The level of noise can be measured by the standard deviation (SD) of a static (i.e. without
motion) measurement over a time period. If multiple dimensions are tracked, the vector norm of
the SDs for each dimension is used. This value is equivalent to the root mean square (RMS) of
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the distance from the mean position. One example is given in Figure 3.12 where the calculated
noise level is equal to the radius of the circle. Jensenius et al. [2012] also suggested other
measures for noise level, including the total spatial range covered and the cumulative distance
travelled by a static marker.

5
. . . 2.5
Figure 3.12: Illustration of how noise can be
calculated as the standard deviation of a static
position recording. The individual dots display Y position 0
300 position samples (randomly generated for o !
this example), and the circle has a radius equal 5
to the standard deviation of the position samples. '
-5

-5 -2.5 0 2.5 5
X position

Time is another important performance measure of tracking systems. The systems usually
operate at a fixed sampling rate, ranging from a few frames per second up to several thousand
frames per second for certain systems [Welch and Foxlin, 2002]. Varying amounts of processing
are needed for each timeframe. This processing takes time and thus limits the sampling rate.
There may also be time limitations in the sensor technology, such as a regular video camera
working in low light conditions, which needs increased shutter time to capture each image.

When tracking data are to be used in real time, temporal stability is important. This is
mainly evaluated by latency and jitter, which in the development of musical interfaces must be
kept to a minimum to give the impression of a direct link between the motion and sound [Wessel
and Wright, 2002]. The latency of an interactive system is the time delay from when a control
action occurs until the system responds with some feedback, for instance the time from when a
synthesiser key is pressed until sound is heard. In realtime tracking, latency will increase when
processing such as filtering and feature extraction is applied. Any network connection used to
stream data between devices will also induce latency. Jitter means any temporal instability in
the time interval between data frames. In other words, absence of jitter would mean that the
data samples are perfectly periodic.

3.4.2 Gap-Filling

Motion capture recordings may contain gaps, meaning missing frames in the data. This is
mostly the case with optical systems, where a marker can be occluded by an arm or moved out
of the tracking volume, but can also occur with other systems due, for instance, to packet drops
when data are sent over a network.

Gaps in the data can be gap-filled by interpolating between two points, or by extrapolating
from a single point if the missing data are at the beginning or end of the recording. Interpolation
and extrapolation are achieved by calculating data values at the missing frames from a function
where the measured data are used as input. Three interpolation techniques are shown in Fig-
ure 3.13. Gap-filling is useful for short gaps, but for longer gaps the trajectory within the gap
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may not be possible to estimate mathematically. Such recordings must be treated as incomplete
and must sometimes be removed from the dataset.

Original data with gap ! Nearest neighbour interpolation

0.5 0.5

-0.5 -0.5

Linear interpolation Spline interpolation

05 05
0 0
-05 -05

-1 -1

Figure 3.13: Three techniques for gap-filling: nearest neighbour, linear and spline.

3.4.3 Smoothing

Smoothing can be performed by a moving average or by more sophisticated digital filters. The
moving average filter has the advantage of being easy to implement, but it may sometimes
attenuate desired signal information and leave unwanted parts of the signal unchanged. The
M -point moving average filter is implemented by averaging the past M samples:

1 M—1
Y = M kz_; Ti—k

where y; is the filtered output signal at time 7, = is the unfiltered input signal, and M is the
number of points for which the moving average is calculated [Smith, 1997].

Better and faster smoothing can be obtained by using more advanced digital filters [Robert-
son et al., 2004]. Low-pass filters are used to attenuate unwanted noise in the high-frequency
range of the spectrum, above the so-called cut-off frequency. The frequency band above the
cut-off frequency is called stopband, and the region below this frequency is called passband.
The cut-off is never absolute, meaning that there is a transition band between the stopband and
passband, as shown in Figure 3.14.

Finite impulse-response (FIR) filters implement separate weights (coefficients) for each of
the samples in an M -point input signal.

M—1
Y = E ApTi—
k=0

where a contains the coefficients for weighting the last A/ samples of . Moving average filters
are a special case of FIR filters, where all coefficients are equal to 1/M.
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Figure 3.14: The passband, transition band, cut-off frequency and stopband of a digital low-pass filter.

In contrast to FIR filters, infinite impulse response (IIR) filters also include weighted ver-
sions of the filter output in the calculation. An IIR filter that considers M input samples and N
output samples is given by

M-1 N
Yi = Z apTik + Z bkYi—k
k=0 k=1

where b contains the coefficients for the last N samples of y [Smith, 1997]. IIR filters generally
produce narrower transition bands but induce phase distortion, meaning that different parts
of the frequency spectrum pass through the filter at different rates. Several standardised filter
designs exist, and Matlab-functions for determining the filter coefficients of these are available.’

3.5 Feature Extraction

As presented above, there are considerable differences between tracking technologies. Never-
theless, many of the same techniques can be applied to data from different systems. As with the
sound features described in Section 2.1, motion features are calculated to obtain more useful
information from the raw motion data provided by the tracking system.

The use scenario of the motion data determines the preprocessing and feature extraction
that can be applied to motion data. Specifically, when motion tracking is applied to interactive
systems where the motion data are used in real time, it is usually important to keep the latency
as low as possible. Some processing techniques require a buffering of the signal which induces
latency, so trade-offs must often be made between advanced feature extraction algorithms and
the amount of latency.

3.5.1 Differentiation

By using basic calculus techniques velocity and acceleration can be determined from a stream
of position data. These are examples of the most basic feature extraction methods for motion
data. The simplest way of estimating velocity from position data is to calculate the difference
between the current and previous positions (known as the first finite difference), multiplied by

the sampling rate:
S — Si—1

At
Te. g. the Matlab functions firl, fir2, butter, cheby1, cheby2, and ellip

Vi =
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where v; is the velocity at time ¢ and s is the position in metres. At is the time between suc-
cessive samples (in seconds), and is found by 1/f where f is the sampling rate in Hz [Robertson
et al., 2004]. More accurate calculations can be obtained by the central difference method; how-
ever, this induces one more sample delay, which could be undesirable in realtime applications:

_ Si+1 — Si—1

Ui T oA

A similar calculation can be made to estimate acceleration from velocity data, and jerk from
acceleration data. Such differentiations amplify noise that is present in the signal and therefore
data smoothing should be applied before the derivatives are calculated.

3.5.2 Transformations

A stream of position data or its derivatives can be transformed in various ways. By projecting
data onto new coordinate systems we can obtain information on relations between tracked ob-
jects. The position of a person’s hand can, for instance, be projected onto a local coordinate
system with the centre in the person’s pelvis. This would provide information of the position of
the hand relative to the body, independently of whether the person is standing up or lying down.

The dimensionality of the data can, furthermore, be reduced, for instance by calculating the
magnitude of a multidimensional vector. The absolute velocity of a three-dimensional velocity
stream, for instance, is given by the magnitude of the X, Y and Z components of the velocity
vector. This value is useful in describing the speed of an object, without paying attention to
direction of the velocity vector.

3.5.3 Motion Features

Using basic differentiation and transformation techniques on a raw motion signal is a simple
way of calculating salient motion features. This is particularly useful in realtime applications,
where low latency is important. Without the need to consider the motion data as representations
of human body motion, we can calculate features such as quantity of motion by summing the
absolute velocities of all the markers, or contraction index by calculating the volume spanned
by the markers.

A different type of feature can be found by taking into account the labels of the data in the
motion capture signal. If two markers represent the two hands of a person, the feature hand
distance can easily be calculated. Similarly, three markers representing the wrist, elbow and
shoulder can be used to calculate the arm extension. More sophisticated motion features can be
found by taking into account models of the mass of various limbs. One such is the ‘Dempster
model’ [Robertson et al., 2004] which allows calculation of the kinetic or potential energy of
the body or a single limb, or estimation of the power in a joint at a certain time.

The features may be purely spatial, meaning that they describe positional data without con-
sidering how the motion unfolds over time. Examples of this are contraction index and potential
energy. Other features are spatiotemporal, meaning that they describe how the motion unfolds
in space over time. Difference calculations such as the derivative of hand distance are typical
examples of this. Finally, a feature such as periodicity is a temporal feature, where the spatial
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aspect is not described.

Meinard Miiller [2007] has proposed a robust set of 7 generic kinematic features for human
full body motion. The features are based on relations between joints, which make them work
independently of the global position and orientation of the body. Furthermore, the features are
boolean® which greatly reduces the amount of processing needed to use the features e.g. for
search and retrieval in motion capture databases. I present his set of generic features below,
with illustrations in Figure 3.15.

F,ane defines a plane by the position of three joints and determines whether a fourth joint is in
front of or behind this plane. This may be used, for instance, to identify the position of
the right ankle in relation to a plane spanned by the centre of the hip, the left hip joint and
the left ankle. If a value 1 is assigned when the foot is in front of the plane, and O when it
is behind, a normal walking sequence would show an alternating 0/1 pattern.

F.pane Specifies a vector by the position of two joints and a position along the vector where
a plane normal to the vector is defined. For instance, a plane that is perpendicular to
the vector between the hip and the neck, located at the head, can be used to determine
whether the right hand is raised above the head.

Fungie Specifies two vectors given by four joints and tests whether the angle between them is
within a given range. For instance, the vector between the right ankle and right knee
and the vector between the right knee and the right hip could be used to determine the
extension of the right knee joint.

Fra.st specifies a single joint and assumes a value of 1 if the velocity of the joint is above a
chosen threshold.

F.ove defines a vector between two joints and assumes a value of 1 if the velocity component
of a third joint is positive in the direction of the defined vector.

F.move defines a plane between three joints and assumes a value of 1 if the velocity component
of a fourth joint is positive in the direction of the vector normal to the plane.

Fiouer, measures the distance between two joints or body segments and assumes a value of 1 if
the distance is below a certain threshold.

From the 7 generic features Miiller has defined 39 features which contain specific infor-
mation about the joints and thresholds used. In Miiller’s research these are used to recognise
various full-body actions such as performing a ‘cartwheel” or a ‘squat’. The 39 boolean fea-
tures make up a feature matrix which describes a single recording. A computer system is used
to define so-called motion templates, which are real-valued prototypes of the feature matrices
that correspond to a certain action. The motion templates are learned by the system by inputting
a number of labelled data examples. Motion templates can be used to identify new versions of
the same action by using dynamic time warping and a distance function which matches the in-
put data to the learned motion templates. Miiller also provides a way of visualising the motion
templates, which is shown in the next chapter.

8Boolean means that the possible values are either O or 1.
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plane

nmove

Figure 3.15: Illustrations of Miiller’s generic kinematic features. The yellow marks denote the joints
or vectors that are used in the illustrated implementation of the feature. Refer to the main text for
explanation.

3.5.4 Toolboxes

The MoCap Toolbox for Matlab, developed at the University of Jyviskyld, includes a variety
of feature extraction algorithms for motion capture data [Toiviainen and Burger, 2011]. This
includes functions for calculating derivatives, filtering, cumulative distance and periodicity, and
models that take the weight of body segments into account, enabling the calculation of potential
and kinetic energy. Furthermore, the toolbox has implemented algorithms for calculating the
eigenmovements of a full body motion capture segment by using principal component analysis
(PCA) [Duda et al., 2000]. PCA is a method of data reduction applied by projecting the original
data onto a set of principal components. The first principal component is defined as the vector
on which the data in a data set can be projected to explain as much of the variance in the data set
as possible. The second principal component is perpendicular to the first and explains as much
of the remaining variance as possible. Toiviainen et al. [2010] showed the utility of PCA in
motion analysis for a set of motion capture recordings with 3D positions of 20 joints, equivalent
to 60 data series. By keeping only the 5 highest ranked principal components, 96.7 % of the
variance in the data was explained. The analysis allowed the researchers to distinguish between
periodicities in various parts of the body of the subject, and to observe relations between the
motion in the different segments.

Other tools have been developed for extracting features from video data and can in principle
be used with sensors as simple as an ordinary web camera. Antonio Camurri’s EyesWeb soft-
ware is designed for extracting features from motion data in real time [Camurri et al., 2004].
The software can extract a body silhouette from a video signal, and a number of features can be
calculated, most notably the quantity of motion and contraction index. These have been shown
to be pertinent to the experience of emotion in dance [Camurri et al., 2003].
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Quantity of Motion is calculated as the number of moving pixels in the silhouette and reflects
the overall motion in the image.

Contraction Index denotes the extension of the body and can be estimated by defining a rect-
angular bounding region around the silhouette (area of motion) and comparing the total
number of pixels within this area with the number of pixels covered by the body silhou-
ette.

The Musical Gestures Toolbox, developed by Alexander Refsum Jensenius, includes some
of the features that are implemented in the EyesWeb software [Jensenius, 2007a]. This software
is implemented in Max as modules in the Jamoma framework [Place and Lossius, 2006], and
unlike EyesWeb it is open source. The toolbox includes modules for preprocessing video,
calculating features such as the quantity of motion, area of motion, the barycentre of the motion
in the image, and also smoothing and scaling of the data. The toolbox also contains numerous
modules for visualising motion, which will be covered in Section 4.1.

3.6 Storing and Streaming Music-Related Data

We can distinguish between two main use scenarios for tracking data. Firstly, as explained in
Section 3.1, motion capture involves storing the tracking data in order later to apply analysis or
import the data in animation software. Secondly, realtime tracking involves using the tracking
data directly, within a very short time period after the motion occurs. Realtime tracking is used,
for instance, in interactive systems such as motion-based computer games like Microsoft Kinect.
When a user performs an action it is reflected in the movement of an avatar some milliseconds
later, after the necessary processing has been completed.

In music-related contexts tracking data are often just one part of the total amount of data
involved. In addition to motion data, music-related data include video, audio and symbolic
representations of musical sound such as MIDI-data or sensor data from electronic musical
instruments. Furthermore, music researchers and performers use features that are extracted
from the tracking data. These may be simple, time-varying transformations, such as relations
between body limbs, or distinct events such as sound-producing actions or musical phrases and
also higher-level features such as descriptions of the emotive content of the music. The diversity
of these data is challenging: sampling rates range typically from 44.1 kHz for audio and down
to less than one event per second for event-based data such as MIDI, and dimensionality varies
from a single number per sample for audio data to more than one million pixel values for one
frame of video data. An overview with some typical examples of music-related data, adopted
from [Jensenius et al., 2008], is presented in Table 3.1. Thus for storing data we need a format
that can to handle the different data types, and for streaming we need a protocol that enables
simple routing of the different types of data in realtime applications.

3.6.1 The Gesture Description Interchange Format

Most commercial mocap systems provide proprietary file formats for storing tracking data,
with the option to export the data to a more open format. These solutions are sufficient in most
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Table 3.1: The data types used in the experiment presented by Jensenius et al. [2008]. The different
numbers of sensors, sampling rates, bit resolutions and channels per device are challenging to handle
with standard protocols for storing and streaming tracking data.

Input Sampling rate Sensors Channels Bit resolution
Accelerometer 60 Hz 9 3 DOF 32
Polhemus tracking 60 Hz 2 6 DOF 32
Bioflex EMG 100 Hz 2 1 DOF 7
High-speed video 86 Hz 1 320 x 240 8
Audio 44100 Hz 1 2 (Stereo) 16
MIDI Event-based 1 3 7

motion capture settings. However, in research on music and motion the standard formats often
fall short since they are not able to handle the wide variety of data at hand [Jensenius, 2007a].

Jensenius et al. [2006b] proposed the Gesture Description Interchange Format (GDIF) as a
multi-layered approach to structuring music-related data. The various layers in GDIF contain
different representations of the data, with the most basic acquisition layers containing raw sen-
sor data, and sensor data where some simple processing (e.g. filtering) has been applied. Next,
the descriptive layers describe the motion in relation to the body, in relation to a musical instru-
ment or in relation to the environment. Then the functional and meta layers contain descriptions
of the functions of the various actions in a recording (sound-producing, communicative, etc.),
and abstract representations, higher-level features and metaphors.

GDIF was mainly proposed as a concept and idea for structuring music-related data, and not
as a file format per se. In a panel session at the International Computer Music Conference in
2007 the Sound Description Interchange Format (SDIF) was suggested as a possible format for
the implementation of GDIF [Jensenius et al., 2007]. As shown in Figure 3.16, SDIF tackles the
challenge of synchronising data with different sampling rates by organising the data into time-
tagged frames in individual streams [Wright et al., 1998]. SDIF also allows data with different
dimensionality in the individual streams. The use of SDIF as a storage format for music-related
data has been explored by several researchers [e.g., Jensenius et al., 2008, Peters et al., 2009,
Bresson and Schumacher, 2011] and is currently the most used format in GDIF development.
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More recently researchers in the SIEMPRE EU FP7 ICT project have developed a system
that allows synchronised recordings of data from several devices using SMPTE time-coding
[Gillian et al., 2011]. An XML-based file format and synchronisation protocol has been devel-
oped for storing synchronised recordings of audio, video and text-based sensor and mocap data.
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The system also includes a solution for uploading recordings to a server, and visualisation tools
for video, motion capture, sensor data and audio using EyesWeb. A similar database solution
for classifying and performing search and retrieval of music-related actions has been proposed
by Godgy et al. [2012], and is currently under development at the University of Oslo.

3.6.2 Open Sound Control

One application of realtime tracking in music is in interactive systems such as digital musical
instruments or other interactive sound installations. This may entail streaming the data from a
tracking system and mapping features extracted from the data to a synthesiser. Adopting terms
from Miranda and Wanderley [2006], the motion data and extracted features are referred to as
gestural variables and the parameters available for controlling the sound output of the synthe-
siser are called synthesis parameters. With the large amount of data that is communicated, and
also with different representations of the data, it is important to have a structure for communi-
cating between gestural variables and synthesis parameters.

The Open Sound Control (OSC) protocol, introduced by Wright and Freed [1997], has be-
come the leading protocol for communicating music-related data in research on novel musical
instruments. A main idea in OSC is to structure music-related data hierarchically, for instance
to facilitate mapping between gesture variables and synthesis parameters in digital musical in-
struments. The hierarchical structure is reflected in the so-called OSC-address which is sent
together with the data. Each level is separated in the OSC-address by a slash “/”. One example
could be the following OSC-namespace for synthesis parameters in a musical instrument:

« /synthesiser/1/oscillator/1/frequency
« /synthesiser/1l/oscillator/1l/amplitude
« /synthesiser/1/oscillator/2/frequency
« /synthesiser/1l/oscillator/2/amplitude

Here, ‘/synthesiser’ is at the top level, and the ‘/1’ indicates that we are referring to
the first of possibly several synthesisers. The ‘/frequency’ and ‘/amplitude’ of two
oscillators can be controlled. Thus to set the frequency of the first oscillator to 220 Hz, we
would use the control message ‘/synthesiser/1/oscillator/1/frequency 220’.

Synthesis parameters are only one aspect of OSC messages. OSC is also a good way of
structuring gesture variables. The Qualisys motion tracking system’ has native support for
OSC, and researchers have developed applications for interfacing with several other tracking
systems via OSC, e.g. Vicon,'” Nintendo Wii,!! and Xsens MVN [Skogstad et al., 2011]. For
full body motion capture data examples of OSC addresses might include:

« /hand/left/velocity

« /head/position

http://www.qualisys.com
Ohttp://sonenvir.at/downloads/qvicon2osc/
Uhttp://www.osculator.net/
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Various tools have been developed for using OSC-formatted data in the development of mu-
sical instruments, for instance the Open Sound Control objects for Max provided by CNMAT.
The Digital Orchestra Toolbox, developed by Joseph Malloch et al. [2007], also includes a
mapping tool that simplifies mapping between OSC-formatted gesture variables and synthesis
parameters. Malloch’s mapping tool was later included in Jamoma which also includes several
other tools for mapping between control data and sound [Place et al., 2008].

3.7 Summary

This chapter has introduced a variety of motion tracking technologies with a main focus on
optical infrared marker-based motion tracking. Some general concepts in motion tracking have
been introduced. Tracked objects include markers, rigid objects or kinematic models, and the
type of object defines the type of tracking data provided. Positions and orientations can be
described in relation to a global or local coordinate system defined by the tracked object itself
or by another object.

The chapter also introduced basic processing techniques for motion data, including gap-
filling and smoothing. Some feature extraction techniques were introduced, with basic differen-
tiation and transformation, and Miiller’s motion features as examples of how boolean features
can be extracted from relation of body limbs. Further, some features available in toolboxes for
working with music-related motion were introduced. Finally, I presented some of the challenges
of storing and synchronising music-related data, and basic theory on how motion tracking can
be used in real time for musical applications.

2http://cnmat .berkeley.edu/downloads
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Chapter 4

Methods of Analysis

Chapter 3 having explained how motion can be captured by various tracking technologies, this
chapter will introduce the methods that have been applied in the thesis to analyse correspon-
dences between sound and body motion. Several of the methods presented here are well-known,
and more comprehensive details of these methods can be found in most textbooks on statistics.
In my own analysis I have used existing software to run statistical tests and for classification,
and therefore only a basic introduction to the methods is offered here, as a background to the
analysis results and assessments that are made in the papers included in this thesis.

Stanley S. Stevens [1966] introduced the term cross-modality matching, denoting the pro-
cess of matching some sensory input in two modalities. Steven’s use of the technique involved
an experiment in which participants were asked to adjust the sound level of a tone to match the
strength of a vibration applied to their finger, and the other way around — adjusting the strength
of the vibration according to the apparent loudness of the tone. The analyses presented in sev-
eral of the papers included in this thesis are based on a variant of the cross-modality matching
approach, in studies referred to as sound-tracing. Experiment participants were asked to match
their body motion to some auditory input (i.e. to ‘trace the sound’). Analysis of the data involves
comparing features of the sound objects used as stimuli with features of the recorded motion.

Most of the sound stimuli used in the experiments have durations of less than 5 seconds and
each constitutes a single sound object. The relations between sound and motion are analysed on
a chunk timescale level and a sub-chunk timescale level (ref. the discussion in Section 2.3.2),
but not as multiple concatenated chunks. Analysis at the sub-chunk timescale level is concerned
with comparing features that contain numerical values in each timeframe. Borrowing terminol-
ogy from Peeters et al. [2011], I refer to them as time-varying features. Other features describe
an entire object; for instance, the mean acceleration of an action or the categorical labelling of
a sound object as ‘pitched’. These features consist of a single value or a single description for
an entire object and are referred to as global features. Figure 4.1 displays various examples of
the two main feature types involved.

4.1 Visualisation of Motion Data

A requirement of analysis of music-related data is to have good visualisation techniques. In
addition to providing qualitative assessments from tracking data, good visualisation techniques
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Figure 4.1: A sound object with a corresponding action (sound-tracing) and feature examples. Time-
varying features contain separate values for each frame, and global features are either overall numerical
calculations based on the time-varying features or non-numerical classifications of the objects.

facilitate conveying analysis results to other researchers, project funders and the general public.
Further, visualisations are an essential aid in developing hypotheses that can be tested quantita-
tively [Moore and McCabe, 2006]. Displaying motion data over time is not trivial, particularly
because of the large number of dimensions that a motion capture recording typically contains.
In some cases a simple plot of absolute velocity over time is sufficient, but if 3D marker posi-
tions, velocities and accelerations are to be displayed for multiple markers, a timeline plot soon
becomes unreadable. This section will cover the background of the visualisations I have used
in my own work, including two techniques that I have developed.

4.1.1 The Challenge of Motion Data Visualisation

Motion data span both time and space, and it is important to have visualisation techniques that
cover both of these domains. Time is one-dimensional, and spatial position three-dimensional,
and in the end we want techniques that display all these dimensions on a two-dimensional
medium, namely paper.

A straight forward and quite common way of plotting motion data is with time on the hori-
zontal axis and position the vertical axis. In Figure 4.2 this is shown for a single marker on the
right wrist of a pianist. The plot provides precise temporal information and when zooming in it
is also easy to read the precise position of the wrist at a certain time.

Although Figure 4.2 gives precise information about the motion of the hand marker, dividing
the original single trajectory into three lines seem to run counter to intuition. Furthermore,
motion data usually consists of more than a single marker, and attempting to plot all the markers
in a mocap recording on a timeline is in most cases too cumbersome. Figure 4.3 shows this, by
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Figure 4.2: A common way of plotting three-dimensional marker data in time and space.
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Figure 4.3: Plots of X, Y and Z positions of 24 markers from motion capture of a short piano per-
formance. Although the plot provides some impression of salient moments (e.g. between 14 and 15
seconds), it is too complex to provide any detailed information.

plotting the X, Y and Z positions of all the 24 markers of the same piano performance.

Several visualisation techniques are able to present marker data in a more intuitive manner
than Figure 4.2, and there are also techniques for displaying full-body motion without the need
of plots as in Figure 4.3. There is often a trade-off between intuition and precise representa-
tions of time and space in these techniques. It takes time to become familiar with some of the
methods, while others can be understood without any explanation.

Returning to the terms introduced in Section 2.3.2, we can relate the visualisation techniques
to three timescale levels: sub-chunk, chunk and supra-chunk. Visualisations at the sub-chunk
level display motion in an instant, or over a very short period of time. Such visualisations
typically show a static pose and therefore the spatial aspect is important. At the supra-chunk
level visualisations of long time periods may often be at the expense of spatial information. In
some visualisations at the chunk level the time-span is reduced enough to be able to combine
good representations of both time and space.

The relation between visualisations and the three timescale levels is particularly evident in
the visualisation techniques implemented in the Musical Gestures Toolbox [Jensenius, 2007a]
which was introduced in Section 3.5.3. I shall illustrate these techniques before continuing with
visualisation techniques for three-dimensional motion data.

4.1.2 Motion in Video Files

Jensenius’ tools for analysing motion in video contain several techniques for visualising motion
[Jensenius, 2012a]. The toolbox is based on differentiating and filtering video frames, and
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algorithms for visualising the video as it unfolds over time. Three of the methods are listed
below and are illustrated in Figure 4.4.

Motion images display the changes in the current from the previous video frame. Various fil-
tering and thresholding techniques can be applied to remove unwanted noise from the
motion image.

Motion history images display a combination of several motion images extracted from a se-
quence of video frames, for instance by averaging the pixel value across all of the motion
images. Jensenius implemented various ways of calculating motion history images, which
all show different qualities of the analysed video.

Motiongrams are displayed by collapsing each motion image frame down to one-dimensional
images, either horizontal or vertical. The collapsing is done by averaging the pixel values
across one of the dimensions. The one-dimensional image that is produced is plotted on
a timeline and provides a visual impression of the evolution of motion in the video.

Avg. motion image Motion history image

Original image Pre-processed Motion image

Motiongram

———  Vertical motion ——

Figure 4.4: Jensenius’ techniques for visualising motion. (Adapted from [Jensenius, 2012b])

In the images shown in Figure 4.4 the motion image shows which part of the body is moving
in this instant. The image shows precisely which pixels are different between two successive
frames of video data, and is a sub-chunk visualisation of motion. The motion history image
shows a slightly longer timespan, providing a quite intuitive description of the spatial trajectory
of the hand. However, the image does not show precisely which pixels have changed in each
timeframe. Finally, a motiongram can be made for longer segments of movement, and motion
can be displayed with as high temporal precision as the framerate of video file. However, the
spatial information has been reduced, since the motiongram can only display one dimension at
a time. Furthermore, the motiongram is less intuitive than the motion history image, because
most people are not used to looking at one-dimensional images unfolding over time.
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(a) (b)

Figure 4.5: The figure shows the 24 markers in the piano recording plotted in Figure 4.2 and Figure 4.3,
displaying the head, torso and arms with interconnected lines as well as the feet. (a) illustrates a pose
without time-information and can be seen as a cross-section of Figure 4.3 at time = 4 seconds. (b) shows
how multiple sequential poses can be superimposed to display trajectories over a time-period.

4.1.3 3D Motion Data

In the case of 3D motion capture data the various suppliers of motion tracking equipment pro-
vide proprietary environments for visualising their data." This may involve a 3D view of mark-
ers with interconnected lines. It is also normal to be able to show marker trajectories for the
past and coming frames in the 3D view. Furthermore, the programs typically contain timeline
views of the individual markers with position, velocity and acceleration. These visualisations
are useful in getting an initial overview of the motion data; however, the solutions are inade-
quate if we want to apply various processing techniques to the data that are not implemented in
the proprietary motion capture software.

Toiviainen’s MoCap Toolbox provides a variety of scripts for plotting motion data [Toivi-
ainen and Burger, 2011]. Individual marker positions and processed data can be plotted on
timelines, and marker positions in any timeframe can be plotted in point-light displays, as
shown in Figure 4.5(a). Such point-light displays have been shown to retain salient percep-
tual information about the motion, allowing people to recognise the gender of a person, or the
affect of bodily gestures [Kozlowski and Cutting, 1977, Pollick et al., 2001]. The toolbox also
includes a feature for collecting a sequence of such poses in a video file. By using image pro-
cessing software the point-light displays can be put together into an intuitive visualisation of
motion trajectories at the chunk-level. Figure 4.5(b) shows an example of this where multiple
sequential poses have been superimposed.

The supra-chunk level can be illustrated through basic Matlab functions by plotting the
position in each timeframe in a scatterplot. However, the plot quickly becomes too complex
when more than a single marker is included. Figure 4.6 shows how the position of the same

le.g. Naturalpoint Arena for OptiTrack, Xsens MVN Studio, and Qualisys Track Manager
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marker as in Figure 4.2 can be plotted in a more intuitive manner than with the time-series
plot. Again, there is a trade-off between precise data and intuition — position and temporal
information are present in the plot but cannot be read as precisely as in the time-series plot of
Figure 4.2. Supra-chunk trajectory plots are useful for observing how a single marker moves
over a longer time period and I have made these for one of our lab publications so far [Jensenius
et al., 2012].
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Figure 4.6: The trajectory of a single marker can be shown in 2D or 3D plots. Time can be shown
by colour-coding the trajectory. The marker shown in the plots is the same right wrist marker as in
Figure 4.2.

4.1.4 High-Dimensional Feature Vectors and Multiple Data Series

When it is desirable to visualise an entire full-body mocap recording or a set of time-varying
features describing the data, colour information can be used to indicate the position of each
marker, or the magnitude of the features.

Meinard Miiller [2007] used colour information to visualise 39 features in his motion tem-
plates. In this technique each feature is assigned a separate row in a matrix and the time-frames
are shown in the columns. This allows studying a high number of dimensions on a timeline,
and provides an overview of patterns in the mocap data. An example is shown in Figure 4.7.

1

F
Features 05

Time

Figure 4.7: Example of Miiller’s visualisation technique for motion templates, showing the ten first
features (not based on actual data). The top two rows show values that alternate between 0 and 1,
something that could represent some feature of the left and right foot respectively in a walking pattern.
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A similar technique can also be used to show positions of a larger number of markers by as-
signing the markers to individual rows and projecting the spatial coordinates onto a colourspace
[Jensenius et al., 2009]. Figure 4.8 shows a so-called mocapgram of the 24 markers in the same
piano performance as used in the plots above. Marker names following Vicon’s plugin gait’
convention are shown on the left. The XYZ coordinates have been projected onto red, green
and blue, respectively and the values in each row are normalised. Although we can not tell the
precise position of the markers from the plot, certain clear patterns can be seen — for instance
the large trajectories in the right arm (RELB,RWEI,RHAO,RHATI) at 22, 33 and 40 seconds. Note
also the almost binary pattern in the right toe (RTOE) when the sustain pedal is pressed.

marker name

L S
10 . 35 40 45

Figure 4.8: Mocapgram showing 3D position coordinates mapped onto a colourspace.

In my own research I needed to display the results of a large number of motion capture
sequences in order to show general tendencies in the data. I developed mocapgrams further, in
a script in Matlab for visualising data [Kozak et al., 2012, Nymoen et al., 2012]. Figure 4.9 is
adopted from Paper VII, and shows how multiple motion capture recordings can be compared
(in this case only 5 recordings). The use of these plots in the paper involved comparing motion
capture data with a sound stimulus. The stimulus started 0.5 seconds after the start of the motion
capture recording and ended 0.5 seconds before the recording ended. As shown in the figure
the value of each data series is given as a shade of grey, here normalised between 0 and 1. The
mean value of the 5 data series at each time-frame is shown as a dashed line, with two dotted
lines showing the standard deviation. The units for the mean value plot are on the left axis.
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Figure 4.9: Mocapgram example, adopted from [Nymoen et al., 2012].

2http ://fourms.wiki.ifi.uio.no/MoCap_marker_names
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The mocapgrams do not give precise information on the value in each time-series since the
different shades of grey may be difficult to distinguish. However, the temporal information is
as precise as in any time-series plot, and the plots facilitate illustration of the distribution of a
large number of time-series. Figure 4.10 shows an example of how this technique can display a
larger number of mocap recordings. The figure shows the absolute acceleration of a rigid object
in 122 recordings, all of which are sound-tracings of sound objects with impulsive onsets.
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4.1.5 Realtime Visualisation

The MoCap Toolbox is an excellent tool for working with recorded motion capture data. How-
ever, I missed an interactive 3D visualisation functionality, which could allow playing back mo-
tion capture data at different tempi, synchronised with sound files, with support for scrubbing
back and forth in the recording and looping short segments of the motion capture data. I there-
fore implemented an addon to Toivianen’s MoCap toolbox, which allows 3D display of motion
capture data with scrubbing, looping, zooming, rotating and tempo adjustments, synchronised
with audio. The implementation with an example recording is available for download at the
fourMs website, along with a video that demonstrates the functionality.® Figure 4.11 shows a
screenshot of this tool in action, and more details on the tool are provided in Section 5.3.

While visualisations of sound and motion features are useful, they are rarely a sufficient
means of analysis. The sections below cover various quantitative methods that can be applied
in experiments on correspondences between sound and motion features.

4.2 Statistical Tests

We can use visualisation techniques or simple statistical measures such as mean and standard
deviation to get an indication of differences between various groups of data. However, the indi-
cations obtained from inspecting visualisations alone should preferably be tested quantitatively.
Take as an example a comparison of the body mass of male Danish and Swedish citizens. Just
by walking around the streets of Denmark and Sweden we could get a visual impression of the
difference (or similarity) between the two populations, but to check the accuracy of our impres-
sion we would need to measure the body mass of the people. Since we cannot possibly measure

3http://fourms.uio.no/downloads/software/mcrtanimate
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Figure 4.11: My implementation of interactive 3D animation for Toiviainen’s MoCap Toolbox.

this for every male person in these countries, we select a subset from each country, called a
sample. 1f the samples consist of a hundred Danes and a hundred Swedes chosen at random, the
mean mass of the Danes and Swedes will probably be different by a small amount, and there
will be some variation within the groups of Swedes and Danes. If the difference between the
means is large and the variation within each group is small, we can be quite certain that there
is a difference between the populations. However, if the difference is small and the variation
within each group is large, we cannot generalise the result to count for the entire Danish and
Swedish populations.

Similar problems are commonly faced in many research areas. Various statistical tests can
be used to assess the statistical significance of the difference between two samples. In other
words these tests estimate the probability that there is a difference between two populations
based on a sample drawn from the populations. In some of my papers results from t-test* and
analysis of variance (ANOVA) are reported. The tests have been applied to compare global
motion features for various groups of motion capture recordings; for instance, to assess the
statistical significance of the difference between onset acceleration for sound-tracings related
to sounds with a soft onset and sounds with an impulsive onset.

The statistical tests discussed here assume that the data samples in each set are normally
distributed. The results from the tests are thus exactly correct only for normal populations,
something which is never the case in real life [Moore and McCabe, 2006]. If we use a larger
sample size, the standard deviations of the set will approach the true standard deviation of the
population. Thus the robustness of statistical tests increases with the sizes of the samples that are
tested. Moore and McCabe [2006] state that even clearly skewed (i.e. not normally distributed)
populations can be tested with 7-tests when the sample size is larger than 40.

4Also called Student’s t-test, after the inventor W. Gosset who was prevented by his employer from publishing
under his own name. He published this technique under the pseudonym “Student” [Moore and McCabe, 2006].
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4.2.1 t-test

A t-test can be used to test the statistical significance of the difference between random samples
from two populations. The process involves defining a null hypothesis, stating that the means
of the populations are equal, and this null-hypothesis is verified or falsified upon the #-test. For
the sake of comparing results between experiments three measures are provided when reporting
the results of ¢-tests: (1) The degrees of freedom (df)’ is calculated from the sample size, and
describes the number of values that are free to vary. (2) The #-statistic is calculated from the
sample sizes as well as the standard deviations and mean values of the samples. (3) The p-value
is the probability that the null-hypothesis is true, and is derived from the #-statistic.

The p-value denotes the probability that the two samples stem from populations with equal
mean values. The sizes, means and standard deviations of the samples are used to estimate this
probability. The p-value is used to infer whether the difference between the two distributions
1s statistically significant. A significance level (o) 1s defined and if p is less than this value, the
result is said to be statistically significant at level a. Typical levels for o are between 0.001 and
0.05 [Moore and McCabe, 2006].

4.2.2 Analysis of Variance

In many cases Analysis of Variance (ANOVA) rather than the 7-test is applicable. Like the #-
test ANOVA tests for statistically significant differences between groups, but can take multiple
groups into account. In other words while a #-test can be used to assess the statistical signif-
icance of the difference in rwo sample means, an ANOVA can be applied to test whether the
observed difference in mean values of several groups is statistically significant.

Furthermore, ANOVA allows measurement of the significance of several factors, or features,
at once. For instance, in the example with Danes and Swedes presented above, the age of those
measured could be added in the analysis. This would allow us to infer whether there is a
difference in body mass between Danes and Sweden and, further, whether age is related to
mass.

ANOVAs do not use the z-statistic but rather an F-statistic. This statistic is based on the
variations within each group and between the groups [Moore and McCabe, 2006]. In addition
to the F-statistic the degrees of freedom and the p-value are specified when reporting ANOVA
results.

4.3 Correlation

In real life we daily encounter variables that are related. The value of the volume knob on a
hi-fi system is related to the sound level of the output, and the number of floors in a building is
related to the number of steps in the stairs. If we want to determine whether or not there is a
relation between two variables in a data set and how strong the relation is, we need a measure
to describe how the variables correlate.

Correlation is a measure of the direction and strength of the relationship between two quan-
titative variables [Moore and McCabe, 2006]. The value of a correlation is between -1 and 1,

SNot to be confused with the term degrees of freedom (DOF) in motion tracking.
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where a correlation of 1 denotes a full dependence between the two variables, and -1 denotes a
full negative dependence between the variables.

Several methods are available for determining correlation coefficients. Firstly, the Pearson
correlation coefficient measures the linear dependence between variables. When the two vari-
ables are plotted on separate axes in a scatterplot a Pearson correlation coefficient of 1 means
that all the samples in the two variables follow a straight ascending line, and similarly a correla-
tion coefficient of -1 shows as a straight descending line, as shown on the left in Figure 4.12 [Zou
et al., 2003]. Non-linear correlations may also exist, for instance if one of the input variables
stems from a skewed distribution. This is particularly true in music-related research, where sev-
eral sound features scale logarithmically (e.g. loudness and pitch). For non-linear relations, the
Spearman p measure is more applicable than the Pearson correlation. Non-linearity is achieved
by ranking (ordering) the input variables and calculating the Pearson correlation from the rank,
rather than the variable value [Spearman, 1904]. The result is that a continuously rising or
falling tendency in a scatter plot will have correlation coefficients of 1 and -1 respectively, as
shown on the right in Figure 4.12.

Pearson correlation Spearman p

A correlation =1 A correlation = -1 A correlation =1 A correlation = -1

Variable 2
Variable 2
Variable 2
Variable 2

Variable 1 Variable 1 Variable 1 Variable 1

Figure 4.12: The difference between Pearson correlation and Spearman p. Pearson correlation measures
the linear relation between the variables, and Spearman p uses a ranking of the variables to measure the
monotonic relation between them.

4.3.1 Correlation and Music-Related Time-Series

Emery Schubert [2002] and later also several other researchers [e.g., Vines et al., 2006, Upham,
2012, Kussner, 2012] have presented critical views on the common practice in music cognition
research of uncritically applying the Pearson correlation measure to time-series of music-related
data without taking into account the serial nature of the data. Specifically, the correlation co-
efficients cannot be tested for statistical significance because the value of each sample is not
drawn randomly from a normal distribution. This is because the value at each time step will be
dependent on the value in the immediately preceding time steps. Take as an example a 200 Hz
motion capture recording — it is impossible to have ones arms fully stretched in one time step
and then fully contracted in the next time step (5 milliseconds later). Consequently the sample
value in each time-frame is likely to be close to the previous sample value, and unlikely to be
far away from that value. This effect is known as serial correlation.

Some approaches have been suggested to make correlation measures more applicable when
analysing time-series in music research. For instance, the serial correlation may be lowered by
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downsampling the data series, or by applying the correlation analysis to the first-order difference
(derivative) of the data series [Schubert, 2002]. Furthermore, Spearman p has been suggested
as a more appropriate measure than Pearson correlation, since the ranking of sample values
in Spearman p prevents the inflation of the correlation coefficient that occurs with Pearson
correlation [Schubert, 2002].

Upham [2012] argues that the correlation coefficients themselves can be useful measures,
but that one cannot uncritically report on the statistical significance of correlations between
data-series, for instance by running statistical tests on the correlation coefficients. Schubert
[2002] also argues that inspecting the correlation coefficients can be useful as an assessment of
the distribution of correlations within a single data set. However, because of the problems with
serial correlation the coefficients should not be used for comparison of data sets that have been
gathered in different circumstances.

4.3.2 Cross-Correlation

The correlation between two variables is a measure of the relation between them. We may
not be interested in this relation per se, but rather how it is affected by some other factor. For
instance, we can examine how the correlation coefficient between two time-series changes if
we shift one of the time-series back or forth in time. In this manner the correlation between the
time-series becomes a function of a time-shift (lag) applied to one of them. This process, called
cross-correlation, 1s shown in Figure 4.13.

Correlation

s e 5 ; ; ; ;
Lag (s)

Figure 4.13: Illustration of cross-correlation. Both of the functions in the top plot have a periodic
tendency at 0.5 Hz, with a phase difference of the quarter of a wavelength (0.5 s). The correlation is
highest when the red dashed line is shifted back 0.5 s or forward 1.5 s.

Cross-correlation applied to two related time-series can give an indication of any time lag
between them. In my research I have applied this technique to the orientation data® from two
tracking systems running in parallel in order to analyse the latency of one system as compared
with the other. Cross-correlation can also be applied to find periodicities within a single time-
series. In other words we can find repeating patterns in the time-series by calculating its correla-

6 Actually the first order difference of orientation data. This is presented in more detail in Paper III.
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tion with itself as a function of a time lag, a process known as autocorrelation. If the time-series
is periodic, the resulting cross-correlation function will have peaks at every wavelength.

4.3.3 Canonical Correlation

The correlation approaches discussed above measure the relation between two variables. Canon-
ical correlation analysis (CCA) is slightly different in that it measures the relation between two
sets of variables [Hotelling, 1936]. As shown by Caramiaux et al. [2010] CCA can be applied
to a set of sound features and a set of motion features to analyse how several sound features and
several motion features relate to each other. In this case CCA finds two sets of basis vectors, one
for the sound features and the other for the motion features, such that the correlations between
the projections of the features onto these basis vectors are mutually maximized [Borga, 2001].’

CCA is illustrated in Figure 4.14. The first projection of sound and motion features onto
their respective basis vectors is that in which the correlation between the projected features is
maximised. These projections are known as the first canonical variates.® The second canonical
variates follow by projecting the features onto basis vectors that are orthogonal to the first basis
vectors, i.e. the second canonical variates are uncorrelated to the first variates. This is repeated
until all the dimensions in the sound features or motion features are covered (e.g. if there are 4
sound features and 3 motion features, 3 sets of canonical variates are calculated).

Variable X Variable Y
2 2 Correlations between X and Y
Input variables, e.g. corr(=—,—) = 0.68
sound features (X) corr(=—,==-) = 0.06
and corr(==+=—) = 0.01
motion features (Y) corr(==+==+) =-0.09

i Projection matrices,

| e.g. calculated by 7‘2.4554 —0.1189‘ B—‘ 2.8384 0.2493‘
| canoncorr function ~10.0610 2.7208 “1-0.6201 -2.3117
1 in Matlab

Correlations between XA and YB
. i corr(=~—) = 0.71
PrOJect'ed var|§bles corr(=—,==7) = 0
(canonical variates) corr(==+,=—) = 0
corr(==+==+) = 0.09

Figure 4.14: Illustration of canonical correlation. The correlations between the variables at the top are
between -0.09 and 0.68. By projecting the variables onto new spaces two projected variables are found.
The maximum correlation between the two sets is explained between the first canonical variates (0.71),
and the correlation between the first and second variate is 0. A similar example applied to sound and
motion features is shown in Paper VIII.

In my papers I have followed the approach of Caramiaux et al. [2010] and inspected the
canonical loadings when interpreting the results of a canonical correlation analysis. This in-

"To readers familiar with Principal Component Analysis (PCA), CCA may be understood as a similar phe-
nomenon. PCA operates on a set of variables within a single data set, explaining as much as possible of the
variance in the first principal component. Then second principal component then explains as much of the remain-
ing variance as possible, and so forth. Rather than explaining variance within a single set of variables, CCA tries
to explain the maximum correlation between two sets of variables in the first canonical variates, and then as much
as possible of the “remaining” correlation in the second canonical variates.

8In my papers I have referred to these as canonical components, but the term canonical variates seems to be
more commonly used.
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volves calculating the correlation between the input features and their corresponding canonical
variate. A high canonical loading between an input variable and a canonical variate indicates
that the input variable is pertinent to the correlation described by the particular canonical variate.

One weakness of canonical correlation analysis, especially if a large number of features are
used, is the possibility of “overfitting” the CCA to the data. This means that the CCA might
give very good solutions that are not due to actual correlations, but rather to small levels of
noise in the data that are exploited by the CCA [Melzer et al., 2003]. For this reason limited
numbers of sound and motion features have been used in my analyses.

4.4 Pattern Recognition-Based Classification

An analysis approach distinctly different from the correlation methods presented above consid-
ers an entire data set and implements a classifier algorithm to search for patterns within the set.
Fortunately, a wide variety of ready-made implementations of computer classifiers is available,
so these methods can be applied without detailed knowledge of the algorithms involved. In
my work I have analysed the motion recordings with a Support Vector Machine (SVM) classi-
fier. This technique was chosen because it typically matches or outperforms other classification
techniques in terms of error rate [Burges, 1998]. I have used the software Rapidminer to imple-
ment the classifiers in my research [Mierswa et al., 2006]. This software includes a wide range
of classifiers and a user interface which greatly facilitates the classification task. SVM is im-
plemented in Rapidminer by the LIBSVM library [Chang and Lin, 2011], which also contains
useful scripts for optimising certain parameters of the classifier. Basic concepts of computer
classifiers and support vector machines are outlined below, as well as details of how classifica-
tion results can be analysed.

In computer-based classification each instance in a data set is usually represented by a class
ID and a feature vector. The class ID is equal among all instances in a class, and the feature
vector is specific to each instance. If we want to classify fruit, and look at the class ‘apple’,
all apples will have ‘apple’ as their class ID, but features such as ‘colour’, ‘size’ and ‘shape’
will vary. The data set is typically split into two subsets: a training set and a validation set.
The classifier uses the data in the training set to develop rules for what is common between the
instances in a class, and what distinguishes these instances from other classes. Continuing the
fruit example above, a classifier may primarily use ‘shape’ to distinguish bananas from apples,
but other features like ‘size’ or ‘color’ may be necessary to differentiate apples from peaches or
oranges.

4.4.1 Support Vector Machines

A Support Vector Machine (SVM) classifier is trained to find a hyperplane in the feature space
between the classes of training data [Duda et al., 2000]. Figure 4.15 shows the location of the
optimal hyperplane between two classes, where three instances make up the so-called support
vectors, which are equally close to the hyperplane.

It is often the case that the training data are not linearly separable. When this is so, the
support vector machine increases the dimensionality of the feature space by a kernel function.
This process is illustrated in Figure 4.16.
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Figure 4.15: The optimal hyperplane (which in this 2-dimensional case
means a line) is located between the support vectors. The classes are
named -1 and 1, corresponding to the way in which this hyperplane is
derived, where the two margins (dashed lines) are found -1 and 1 times a
certain vector from the hyperplane [Duda et al., 2000].

class 1
One-dimensional data. The two The data is made two-dimensional through
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classes linearly separable.
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Figure 4.16: The two classes in the one-dimensional data in the left plot are not linearly separable. By
adding another dimension y = (x — 9)? it is possible to identify support vectors.

4.4.2 Validating the Classifier

After the training process the performance of the classifier is evaluated by classifying the in-
stances in the validation set. The evaluation can be measured using terms from the field of
document retrieval, namely precision and recall [Salton and Lesk, 1968]. Continuing with the
fruit classification example above, let us say that we want to retrieve all the apples from a fruit
basket. We pick fruit from the basket; mostly apples but also a few oranges. We fail to notice
some of the apples in the basket. Precision then denotes the ratio between the number of apples
picked and the total number of fruits we picked (including oranges). Recall denotes the ratio
between the number of apples picked and the total number of apples that were present in the
basket in the first place.

Applied to computer classification, this measure shows correctly classified instances rather
than correctly retrieved documents (or fruit), and we get precision and recall measures for each
class. We define class precision (CP) and class recall (CR) for class i as:
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where || 4;|| denotes the number of examples classified as 4, and || ;|| denotes the total numbers
of examples in class 7. In other words CP denotes the ratio between correctly classified examples
and all the examples the classifier predicted to be in the specific class. CR denotes the ratio
between correctly classified examples and the true number of examples in class i. Figure 4.17
shows how both measures are necessary to get a good assessment of the performance of the
classifier: 100 % class precision could mean that the class has been drawn too narrowly, and a
100 % class recall could mean that the class has been defined too broadly.
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Figure 4.17: In the figure to the left 100 % class precision is obtained. However, several examples
that should have been included are left out. To the right all the examples have been included in the
classification. However, a number of incorrect examples are also included.

When the data set is of limited size a technique called cross-validation can be used to obtain
a larger number of examples in the validation set [Duda et al., 2000]. That is, multiple classifi-
cations and validations are performed and the examples present in the validation set are different
each time. In my experiments I applied the leave-one-out principle which entails using the en-
tire data set but one example for training the classifier, and subsequently performing validation
with the remaining example. The process is repeated as many times as there are examples in
the data set, such that each example is used once for validation.

More detailed results than the precision and recall are obtained by inspecting the classifier
results in a confusion matrix. This matrix shows the distribution of the examples in the vali-
dation set and how they were classified. An example of what the confusion matrix looks like
is given in Table 4.1. Systematic classification errors may be revealed by the confusion matrix
and such errors may suggest that there are similarities between classes. Examples of how this
can be applied to sound and motion analysis will be given in the included Papers V and VIII.

Table 4.1: Confusion matrix showing a classification result. Each row shows the classifications (predic-
tions) made by the classifier and each column shows the actual classes of the examples. The correctly
classified examples are found along the diagonal marked in grey. This particular table suggests that
classes 1 and 3 have some similarities.

True 1 | True 2 | True 3 | Class Precision

Predicted 1 6 0 5 55 %
Predicted 2 1 10 1 83 %
Predicted 3 3 0 4 57 %

ClassRecall | 60% | 100 % | 40 %

4.5 Summary

This chapter has introduced various methods of analysing correspondences between sound and
motion. Sound and action objects can be described with time-varying features, meaning features
that describe how the sound or motion evolves at regular time-intervals. They can also be
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described by global features, meaning a single value or typological description that describes
the entire object.

The chapter presented techniques for visualising motion data and how the visualisations can
be applied to obtain an overview of general tendencies within a single motion recording or a
set of recordings. The visualisations may be useful in combination with statistical tests, such
as t-tests and ANOVAs, which can be applied to test the significance of tendencies in the data.
Furthermore, the chapter examined how various correlation measures can be applied to evaluate
the correlation between sound and motion features. While correlation coefficients can usually
be tested for statistical significance, this is not recommended for continuous sound and motion
features given the serial nature of the data. Finally, the use of a computer-based classifier was
introduced, with an example of how a confusion matrix can be analysed to get an indication of
similar classes.
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Chapter 5

Research Summary

This chapter provides summaries of the papers included in the thesis. The overall structure of
the papers is outlined in Section 5.1, together with a presentation of how the papers relate to the
research objectives. Following in Section 5.2 are shorter and more specific descriptions of each
paper, including abstracts. Finally, in Section 5.3, I present the software that I have developed
and made available to other researchers while working on this thesis.

5.1 Overview

The eight papers included in this thesis cover tools and methods both for capturing and analysing
music-related motion. The work that has been carried out involves prototyping and development
of software, evaluation of technologies, collection and analysis of data and an evaluation of
existing methods of comparing lower-level features of sound and body motion.

As stated in Section 1.4 the main objective in this thesis is to develop methods and tech-
nologies for studying music-related motion, with the purpose of analysing cross-modal corre-
spondences between sound and body motion. Below I use the three sub-objectives to discuss
the requirements of fulfilling this objective.

5.1.1 Sub-objective 1: Data Handling

As discussed in Section 3.6 researchers on music and motion work with a large variety of
data. Music-related data can be numerical, e.g. motion tracking data, audio and video, with
differences in dimensionality and sampling rate. Music-related data can also take the form
of nominal descriptions such as genre labels or verbal descriptions, or metadata describing an
experimental setup.

The variety of data involved in music research differs from experiment to experiment. One
experiment might involve full body motion capture of a cellist performing in a string quartet,
while another the tracking of the head marker of each individual in the ensemble. What is more,
data from listeners can be recorded, e.g. in sound-tracing experiments using markerless motion
capture and electromyography sensors. These examples are but a few scenarios of research on
music-related motion, and the possibilities for different setups are endless.

This shows that there is a need for solutions for storing music-related data. The implemen-
tation must be able to keep track of different simultaneous data streams, and flexible enough to
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be used with different experimental setups. Next it must be straight forward to use, affording
a possibility to make multiple recordings in quick succession such that an experiment can run
smoothly without unnecessary waiting time for the participants.

Contribution

The first sub-objective in this thesis is primarily met in Paper 1. This paper presents a toolbox
for capturing and playing back synchronised music-related data, based on work related to the
Gesture Description Interchange Format. The released version of the toolbox follows data types
according to the current GDIF specification.! It is, however, flexible, and new data types can
be added by modifying a text file. What is more, the software is open source, implemented in
Max as modules for the Jamoma” framework, so users who need increased flexibility may make
the necessary adjustments to have the software meet their needs. 1 have developed scripts for
importing and parsing GDIF recordings into Matlab data structures, for analysis e.g. with the
MoCap Toolbox. These scripts are supplements to the toolbox presented in Paper I, and are
presented in Section 5.3.2.

In addition to the solutions for recording and playing back music related data, Paper [V
presents a solution for realtime handling of music-related data. The software calculates features
from a stream of position data and streams the features to a sound synthesiser using Open Sound
Control (OSC).

5.1.2 Sub-objective 2: Evaluation of Motion Tracking Technologies

As explained in Chapter 3 there is available a wide range of technologies for tracking and cap-
turing motion. Earlier discussion in this thesis has illuminated various strengths and weaknesses
of the technologies. Still, there are important differences in the various implementations of the
same tracking technologies, of which researchers should be aware.

In musical realtime applications of tracking data the stability of the tracking systems is
more important than when tracking data is used in non-realtime. In non-realtime the data can
be processed after recording and it is not critical if time is spent on computationally intensive
filtering techniques or gap-filling. For designers of interactive musical applications, however,
processing steps that induce more than a few milliseconds delay is typically unacceptable.

There is a need to identify strengths and weaknesses of using various motion capture systems
in musical applications. In any case the degree of noise and drift should be identified and taken
into account when motion data are analysed or used in musical interaction. Furthermore, in
realtime applications it is essential to be aware of timing performance, both in terms of latency
and jitter, and the general data quality, such as susceptibility to frame drops or marker swaps.

Contribution

In this thesis quantitative evaluations of various motion tracking systems are provided in Pa-
pers II and III. These papers are mainly technology-orientated, focusing on aspects such as
noise, drift, latency and jitter. To a certain extent Paper [V, also contributes to this sub-objective,

'mttp://xdif.wiki.ifi.uio.no/Data_types
http://www.jamoma.orq
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although from an instrument design perspective. This paper presents a musical application of
motion tracking data in realtime and shows how state-of-the-art motion tracking technology
provides an interesting paradigm for sound-interaction, more so than an affordable Wiimote
based on inertial sensors.

5.1.3 Sub-objective 3: Sound-Action Analysis

As argued in Chapter 2 there is strong evidence that the experience of music is a multimodal
phenomenon, incorporating both auditory and motor sensations. Consequently visualisation of
action trajectories, and particularly those related to sound-producing actions, has been advo-
cated as an important part of music cognition. However, the existing body of music research,
analysing lower-level features of people’s spontaneous motion response to short sound objects,
is quite limited. Most of the research conducted in this area has been concerned with longer
periods of musical sound, for instance analysing periodicities or emotional responses to musical
sound [e.g., van Noorden and Moelants, 1999, Toiviainen et al., 2010]. Furthermore, most of
the research on links between short sound objects and body motion has gathered responses in
terms of metaphors or visualisation of motion rather than actual motion data [e.g., Eitan and
Granot, 2006, Merer et al., 2008, Kohn and Eitan, 2012].

It is difficult to identify any single reason why the research done on this particular topic
has been quite limited. Most likely, there are several reasons. Firstly, accurate motion data
may be difficult to obtain as they require advanced technologies which are not available to all
researchers. It may be hoped, though, that this situation is about to change, as better low-
cost tracking technologies are developed. Secondly, the relation between two multidimensional
phenomena, such as motion and sound, is difficult to analyse. This interdisciplinary research
requires knowledge both of quantitative data processing and of music theory, for the application
of appropriate methods of analysis.

There is a need to extend research on how lower-level features of bodily motion are related
to musical sound. This will contribute to the further development of theories of sound-action
relations. There is still a need to develop robust methods for analysing relationships between
sound and body motion. As explained in Section 4.3 current methods of correlation of time-
varying musical features can not be tested for statistical significance and thus it is difficult for
researchers to evaluate the significance of their findings. This calls for an increased number of
empirical studies which can be used to test the approaches that have been suggested (e.g. by
Schubert [2002]) for improving current analysis methods.

Contribution

Papers V, VI, VII and VIII, are all concerned with analysis of data collected in two sound-
tracing experiments, using short sound objects as stimuli, and free-air motion as response. The
papers include empirical results, but are to a large extent methodologically orientated. The
papers discuss design of sound-tracing experiments, and introduce a variety of features calcu-
lated from motion data. A variety of analysis methods is presented and evaluated, both for
time-varying features, and for global features of actions and sound objects. The software intro-
duced in Sections 5.3.4 and 5.3.3 also provides tools for visualising data with a high number
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of dimensions. This will be essential to expand future sound-tracings studies to incorporate
full-body motion data.

Lastly, Paper IV shows how cross-modal relations can be studied through the development
of new interfaces for musical expression. The paper also serves as a possible application sce-
nario for the other work reported in this thesis.

5.2 Papers

This section presents details of the motive and contributions of each paper together with ab-
stracts.

5.2.1 Paperl

A Toolbox for Storing and Streaming Music-Related Data

K. Nymoen and A.R. Jensenius.

In Proceedings of SMC 2011 8th Sound and Music Computing Conference
“Creativity rethinks science”, pages 427-430, Padova University Press 2011.

Abstract: Simultaneous handling and synchronisation of data related to music,
such as score annotations, MIDI, video, motion descriptors, sensor data, etc. re-
quire special tools due to the diversity of the data. We present a toolbox for record-
ing and playback of complex music-related data. Using the Sound Description
Interchange Format as a storage format and the Open Sound Control protocol as a
streaming protocol simplifies exchange of data between composers and researchers.

The work presented in this paper started several years ago with Jensenius’ proposal of the Ges-
ture Description Interchange Format (GDIF) [Jensenius et al., 2006b, Jensenius, 2007a,b]. More
than a file format, the GDIF proposal advanced an idea of how music-related data could be
structured into several layers, spanning from raw sensor and audio data to higher-level features,
closely corresponding to Camurri’s [2005] model for music-related data (ref. Section 2.1). Ata
panel discussion at the International Computer Music Conference in 2007 the Sound Descrip-
tion Interchange Format (SDIF) was suggested as one of several possible file formats for storing
GDIF data [Jensenius et al., 2007].

I became involved in GDIF development in late 2007 and Jensenius, Godgy, and I published
a paper in 2008 reporting on the use of SDIF in the study of the hand and upper-body motion of
pianists [Jensenius et al., 2008]. At the time this approach required substantial programming to
set up an environment for storing and streaming the data. Accordingly, I started the implementa-
tion of a toolbox within the Jamoma framework, with the purpose of streamlining recording and
playback of music-related data [Nymoen, 2008b]. This implementation was developed further
by Jensenius [2009] and me, and Paper I presents the current state of this toolbox.
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5.2.2 Paper I1

Comparing Inertial and Optical MoCap Technologies for Synthesis Control
S.A. Skogstad, K. Nymoen, and M.E. Hgvin.

In Proceedings of SMC 2011 8th Sound and Music Computing Conference
“Creativity rethinks science”, pages 421-426, Padova University Press 2011.

Abstract: This paper compares the use of two different technologies for controlling
sound synthesis in real time: the infrared marker-based motion capture system Op-
tiTrack and Xsens MVN, an inertial sensor-based motion capture suit. We present
various quantitative comparisons between the data from the two systems and results
from an experiment where a musician performed simple musical tasks with the two
systems. Both systems are found to have their strengths and weaknesses, which we
will present and discuss.

The work carried out in this paper originated in an interest in developing a musical interface
based on motion tracking data. Since various advanced tracking technologies are available in
the labs at the University of Oslo, Stale A. Skogstad and I started systematic testing of two of
these technologies.

We made multiple recordings of a person wearing the Xsens motion capture suit and a full-
body set of markers for the NaturalPoint OptiTrack infrared mocap system. The recordings
involved various basic tasks such as sitting still, walking and jumping. A musician was re-
cruited to a small experiment in which both of the tracking technologies were applied to control
a software sound synthesiser. The musician was given simple music-related tasks such as fol-
lowing a simple melody and triggering tones and we compared the data from each recording as
well as the verbal feedback of the musician.

The experiment revealed strengths and weaknesses of both motion tracking systems. The
Xsens suit can track full-body motion in a large space; it is portable and quite easy to set up.
The OptiTrack system is limited to the visual range of the cameras and needs camera stands and
lots of cables which makes it less portable and more cumbersome to set up. The Xsens system
suffers from a potentially substantial amount of drift, which makes Xsens position data less
accurate than OptiTrack data. Furthermore, Xsens is limited to certain tracking configurations
(e.g. full-body or upper-body), while OptiTrack is more flexible, allowing tracking of user-
defined rigid bodies.

With OptiTrack we found deviations in position of a steady marker when the marker was
occluded in one of the cameras (but still tracked by the system). This gave static displacements
of up to 0.5 mm and spikes of more than 1 mm. Generally, the level of noise in the OptiTrack
position data was not very high, but if the position data are differentiated to calculate velocity
and acceleration, the noise increases drastically. This has led Skogstad to continue working on
optimal low-latency filters and differentiators for realtime use [Skogstad et al., 2012a,b]. The
work done in this paper also inspired two more articles comparing tracking technologies, the
first (Paper I1I in this thesis) presenting a study of data quality in a mobile device, and the second
investigating data quality of the Qualisys and OptiTrack mocap systems [Jensenius et al., 2012].
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5.2.3 Paper III

Comparing Motion Data from an iPod Touch to a

High-End Optical Infrared Marker-Based Motion Capture System

K. Nymoen, A. Voldsund, S.A. Skogstad, A.R. Jensenius, and J. Torresen.
In Proceedings of the International Conference on New Interfaces for
Musical Expression, pages 88—91, University of Michigan 2012.

Abstract: The paper presents an analysis of the quality of motion data from an
iPod Touch (4th gen.). Acceleration and orientation data derived from internal sen-
sors of an 1Pod is compared to data from a high end optical infrared marker-based
motion capture system (Qualisys) in terms of latency, jitter, accuracy and preci-
sion. We identify some rotational drift in the iPod, and some time lag between the
two systems. Still, the iPod motion data is quite reliable, especially for describing
relative motion over a short period of time.

My research group in Oslo is involved in the European research project EPiCS® one of whose
goals involves developing a mobile device for active music. The active music system involves
several mobile devices which contribute to the musical output, either controlled by autonomous
agents or by human users [Chandra et al., 2012]. Body motion has been chosen as the main input
paradigm from human users to the system as this is thought to represent more spontaneous
movements than the touch screen interface. An iPod Touch was considered as development
platform for the active music device. Thus in order to determine whether the iPod met the
requirements for such a device it was essential to evaluate the quality of the motion data obtained
from the iPod.

The iPod Touch was equipped with four markers and tracked as a rigid object with a Qual-
isys optical tracking system. Recordings of the iPod sensor data and motion tracking data were
made using the toolbox presented in Paper I, and the data from the two systems were analysed
in Matlab.

The analysis showed that the accuracy of the iPod orientation data was quite high, albeit
with some drift around the gravity vector. The acceleration data were also quite accurate; how-
ever, the error was too high for estimation of position from the acceleration data. The data
samples from the iPod arrived less regularly than the Qualisys data, and on average 43 ms later,
indicating that there is substantially more latency and jitter in the iPod data than in the Qualisys
system.

5.2.4 PaperlV

SoundSaber — A Motion Capture Instrument

K. Nymoen, S.A. Skogstad and A.R. Jensenius.

In Proceedings of the International Conference on New Interfaces
for Musical Expression, pages 312-315, University of Oslo 2011.

3European Union FP7, project 257906, Engineering Proprioception in Computer Systems.
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Abstract: The paper presents the SoundSaber — a musical instrument based on
motion capture technology. We present technical details of the instrument and dis-
cuss the design development process. The SoundSaber may be used as an example
of how high-fidelity motion capture equipment can be used for prototyping musical
instruments, and we illustrate this with an example of a low-cost implementation
of our motion capture instrument.

The SoundSaber is a musical instrument based on optical infrared marker-based motion track-
ing technology. The development of the SoundSaber started in 2009, after the fourMs group
at the University of Oslo acquired a NaturalPoint OptiTrack motion capture system. During
my undergraduate and graduate studies I experimented with various ways of interacting with
sound through sensors and custom-built musical instruments [e.g., Nymoen, 2008a] and sound
interaction with motion-based interfaces was widely explored in our research group [Jensenius
et al., 2006a, Jensenius, 2007a, Jensenius and Voldsund, 2012]. The newly acquired motion
capture system motivated a search for new ways of interacting with sound.

The initial development phase consisted of trying out different types of object equipped
with reflective markers that could be used to control a sound synthesiser developed in Max5.
Synthesis techniques were tested along with ways in which the tracking data could be mapped
to synthesis parameters.

Development of musical interfaces is interesting not only for the novelty of the interface
itself but also because well-designed systems of interaction between motion and sound can tell
us something about how sound and motion are related. I believe that motion-based interfaces
for sound interaction become engaging to interact with when their interaction model fits our
mental model of how sound corresponds to motion. Development of new musical interfaces
can be seen as an analysis-by-synthesis* in the sense that the mappings in an interesting musical
interface reflect what we perceive as “natural” couplings between actions and sound.

By using a rigid object as controller the SoundSaber can be used without the need for a
tedious setup each time a new user would like to try the instrument. This has made it possible to
demonstrate the SoundSaber at various conferences, research fairs and exhibitions, for instance
as shown in Figure 5.1 where the Norwegian Minister of Education and Research interacts with
the SoundSaber. A more detailed lists of exhibitions and public demos of the SoundSaber can
be found on the fourMs website.’

A low-cost version of the SoundSaber was also implemented, using a Wiimote® instead of
the optical infrared marker-based tracking technology. I found that people tended to tilt the
Wiimote while moving it up and down. Because of this correlation between tilt angle and
vertical position, the orientation data could be used to some extent to simulate the positional
control data provided by the optical system.

4 Analysis-by-synthesis means analysis of a phenomenon by synthesising the same phenomenon from basic
building blocks. The technique has been used widely in linguistics [e.g., Fant, 1961, Halle and Stevens, 1962] and
also in research on musical timbres [Risset, 1991].

Shttp://fourms.uio.no/projects/sma/subprojects/Soundsaber

%A Wiimote is a game controller for Nintendo Wii
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Figure 5.1: Norwegian Minister of Education and
Research, Kristin Halvorsen, moving a SoundSaber
on a visit to the University of Oslo in April 2012.
Photo: Yngve Hafting

5.2.5 PaperV

Searching for Cross-Individual Relationships between

Sound and Movement Features Using an SVM Classifier

K. Nymoen, K. Glette, S.A. Skogstad, J. Torresen, and A.R. Jensenius.

In Proceedings of the International Conference on New Interfaces for
Musical Expression, pages 259-262, Sydney University of Technology 2010.

Abstract: In this paper we present a method for studying relationships between
features of sound and features of movement. The method has been tested by car-
rying out an experiment with people moving an object in space along with short
sounds. 3D position data of the object was recorded and several features were cal-
culated from each of the recordings. These features were provided as input to a
classifier which was able to classify the recorded actions satisfactorily, particularly
when taking into account that the only link between the actions performed by the
different subjects was the sound they heard while making the action.

This is my first paper on “sound-tracing” which presents a novel approach to analysing cor-
respondences between sound and body motion by employing a pattern recognition classifier to
search for similarities between people’s motion responses to various sound objects. Inspired and
influenced by a previous sound-tracing experiment conducted by my advisors who had studied
people’s rendering of short sound objects on a digital tablet [Godgy et al., 2006b] I designed an
experiment which extended the response data to three-dimensional motion.

A data set was collected, in which 15 participants listened to 10 sound files and moved a
rod (the SoundSaber controller) in free air while pretending that their motion would create the
sound they heard. A number of features were calculated from the mocap data, and we applied a
pattern classifier to the features using the sound file that inspired the motion as class identifier.
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Thus by analysing the classification results presented in a confusion matrix (ref. Section 4.4)
we were able to infer similarities between motion recordings from different subjects.

The classifier performed with an overall classification accuracy of 78.6% + 7.3%, indi-
cating that the extracted features contained salient information about the sound-tracings. We
performed the same classification task using only the features that described vertical motion.
This greatly reduced the overall classification accuracy. The precision and recall of the sounds
with changing pitch, however, remained quite high. This indicated that the participants linked
vertical motion with pitch trajectories.

5.2.6 Paper VI

Analyzing sound tracings: a multimodal approach to music information retrieval
K. Nymoen, B. Caramiaux, M. Kozak, and J. Torresen.

In Proceedings of the 1st international ACM workshop on Music information
retrieval with user-centered and multimodal strategies, pages 39—44, ACM 2011.

Abstract: This paper investigates differences in the gestures people relate to pitched
and non-pitched sounds, respectively. An experiment has been carried out where
participants were asked to move a rod in the air, pretending that moving it would
create the sound they heard. By applying and interpreting the results from Canon-
ical Correlation Analysis we are able to determine both simple and more complex
correspondences between features of motion and features of sound in our data set.
Particularly, the presence of a distinct pitch seems to influence how people relate
gesture to sound. This identification of salient relationships between sounds and
gestures contributes as a multi-modal approach to music information retrieval.

One year after the publication of the previous paper on sound-tracing I met Baptiste Caramiaux,
who also did research on music-related body motion. Caramiaux et al. [2010] had previously
applied Canonical Correlation Analysis (CCA) to a set of sound and motion recordings and
wanted to explore the technique further.

As explained in Section 4.3 canonical correlation can be used to find the linear combination
of a set of sound features and a set of motion features which explains the maximum correlation
of the two. This means that while the method applied in Paper V mainly provided an indication
of similarity between sound-tracings at a high level, CCA could be applied to analyse corre-
spondences between the lower-level features of the sound objects and the sound-tracings. We
applied CCA to the same data set as in Paper V, to analyse the relations between sound and
motion features in more detail than the previous publication.

The CCA verified the finding from Paper V, where vertical position and pitch were found
to be closely related. For non-pitched sound objects we did not see similarly strong canonical
loadings as for pitch, and therefore inspected the strongest canonical components individually.
This analysis showed that brightness corresponded to vertical position, and loudness to hori-
zontal position and velocity.
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5.2.7 Paper VII

A Statistical Approach to Analyzing Sound Tracings

K. Nymoen, J. Torresen, R.I. Godgy, and A.R. Jensenius.

In S. Ystad, M. Aramaki, R. Kronland-Martinet, K. Jensen, and S. Mohanty (eds.)
Speech, Sound and Music Processing: Embracing Research in India, Lecture Notes
in Computer Science vol. 7172, pages 120-145. Springer, Berlin Heidelberg 2012.

Abstract: This paper presents an experiment on sound-tracing, meaning an experi-
ment on how people relate motion to sound. 38 participants were presented with 18
short sounds, and instructed to move their hands in the air while acting as though
the sound was created by their hand motion. The hand motion of the participants
was recorded, and has been analyzed using statistical tests, comparing results be-
tween different sounds, between different subjects, and between different sound
classes. We have identified several relationships between sound and motion which
are present for the majority of the subjects. A clear distinction was found in onset
acceleration for motion to sounds with an impulsive dynamic envelope compared
to non-impulsive sounds. Furthermore, vertical movement has been shown to be
related to sound frequency, both in terms of spectral centroid and pitch. Moreover,
a significantly higher amount of overall acceleration was observed for non-pitched
sounds as compared to pitched sounds.

The data set used in Papers V and VI has some limitations. Firstly, the sound stimuli used
did not allow for controlling opposite conditions. For example, if a link was found between
sounds with rising pitch and a certain motion feature, the experiment did not include a sound
object with inverted pitch envelope to determine whether the same relation held in the opposite
case. Secondly, the motion response was collected using the SoundSaber interface. The ma-
nipulation of an interface is conceptually quite different from making empty hand gestures, and
arguably the use of the SoundSaber rather than free movement of the hands induced a certain
disembodiment in the response.

Following advice from a reviewer of one of the previous papers I conducted a second sound-
tracing experiment in which the sounds were designed by a parametric tree of features (shown
in Figure 5.2). The sound stimuli thus included sound objects with rising, falling and steady
pitch as well as no pitch. Versions of each pitch category with rising, falling and steady bright-
ness envelopes were made. Sound objects with different onset characteristics were also made.
The motion responses of the participants were gathered by using two handles equipped with
reflective markers. The handles allowed more varied responses than the SoundSaber provided
and also decreased the disembodiment of the response caused by the SoundSaber. Arguably the
disembodiment could have been reduced even further by putting markers directly on the body.
However, this would have increased setup time per participant and also increased the probability
of frame drops.

The paper discussed experimental design in sound-tracing experiments, including issues that
emerged as a result of increasing the dimensionality of the response data. For instance, partici-
pants were provided with two handles but sometimes used only one. Conceptually, there is not
much difference between performing a specific action with the left or right hand, a phenomenon
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Rising Falling Steady Noise

Rising Falling Steady Rising Falling Steady Rising Falling Steady Rising Falling Steady

Figure 5.2: 12 of the sound objects in the second sound-tracing experiment were designed using a
parametric tree of features. This made it possible to compare sound objects with certain feature envelopes
to the inverse case. The figure is adopted from Paper VIII.

called motor equivalence in motor theory [Rosenbaum, 2001]. However, the numerical differ-
ences in motion data between actions performed with either of the two hands are potentially
very large.

The paper introduced mocapgrams as a technique for visualising motion features from a
large data set. The mocapgrams provided a qualitative overview of the sound-tracings, which
again facilitated formulation of null-hypotheses. The hypotheses were tested for statistical sig-
nificance with z-tests and ANOVAs and several significant results were shown in the paper.
However, the p-values provided by the tests were not corrected for repeated measurements.
When several tests are performed on the same data set the probability of incorrectly discarding
the null-hypothesis (Type I error) increases. In other words there is a probability that some of
the findings that are presented in this paper are due to chance, and the p-values should not be
taken “literally”. I was made aware of the problem in the first review of Paper VIII (presented
below), and the necessary corrections have been included in this paper.

After correcting for repeated measures three main relations between sound and motion were
shown to be statistically significant at o = 0.05: (1) people’s average vertical velocity to sounds
with rising pitch or rising spectral centroid was significantly higher than for the sounds with
falling pitch or spectral centroid. (2) The onset acceleration for sounds with an impulsive onset
was significantly higher than for non-impulsive sounds. (3) The mean acceleration of sound-
tracings of pitched sounds was significantly lower than sound-tracings of non-pitched sounds.
The results stated in the paper were discussed in relation to findings of other researchers, and in
the light of metaphors commonly used in describing sound.

5.2.8 Paper VIII

Analysing Correspondence Between Sound Objects and Body Motion
K. Nymoen, R.I. Godgy, A.R. Jensenius, and J. Torresen.
To appear in ACM Transactions on Applied Perception

Abstract: Links between music and body motion can be studied through experi-
ments of so-called sound-tracing. One of the main challenges in such research is to
develop robust analysis techniques that are able to deal with the multidimensional
data that musical sound and body motion present. The paper evaluates four different
analysis methods applied to an experiment in which participants moved their hands
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following perceptual features of short sound objects. Motion capture data has been
analysed and correlated with a set of quantitative sound features using four different
methods: (a) a pattern recognition classifier, (b) 7-tests, (c) Spearman’s p correla-
tion, and (d) canonical correlation. The paper shows how the analysis methods
complement each other, and that applying several analysis techniques to the same
data set can broaden the knowledge gained from the experiment.

Through the work described in the previous publications on sound-tracing, I have gained an
overview of various methods of analysing this type of data. The analysis carried out in Paper VII
only took global features of sonic objects into account, and new perspectives could be obtained
by also using time-varying features in the analysis. Paper VIII uses the data set from Paper
VII, and applies the pattern recognition and CCA methods from Papers V and VI. Spearman p
is also included as a measure of one-to-one relationship between individual sound and motion
features.

The paper discusses the choice of analysis method and argues that even though various
methods are available for this research, no single method is able to capture the full multidi-
mensionality of body motion and sound. The pattern classification method provided quite low
classification accuracy, on average 22.5 %. However, the misclassifications were systematic
and sound-tracings related to sounds with similar sound features were often confused. When
making combined classes, including sound-tracings of sounds with similar sound features, the
average classification accuracy was 69 %. This indicated that sound-tracings based on similar
sounds were similar.

As discussed in Section 5.2.7, the statistical results from Paper VII were adjusted for re-
peated measurements in this paper. Furthermore, a canonical correlation analysis suggested
that the motion features hand distance and vertical position were pertinent in the experiment.
Moreover, a Spearman p analysis verified the close correspondence between vertical position
and pitch as was found in the previous paper, and also indicated a link between spectral centroid
and vertical position.

5.3 Developed Software

Part of my research has been in the development of software and tools for storing, streaming,
analysis, sonification and visualisation of motion capture data. Some of the tools have been
released for public use and will be introduced in this section. The software is open source and
can be downloaded from the fourMs website at the University of Oslo.’

"http://fourms.uio.no/downloads/software/
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5.3.1 JamomaGDIF
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JamomaGDIF is a toolbox for storing and streaming music-related data. The tools are developed
as part of the development of a Gesture Description Interchange Format and uses the Sound
Description Interchange Format for storing data (ref. presentation in Section 3.6). The software
is developed in Max using Jamoma and FTM.? Since details on the implementation of and
motivation for the development are covered in Paper I, I shall only provide a brief description
of the main functions of the toolbox here.

gdif.record captures data from different data streams which may have different sampling rates
and dimensionality. For instance, motion tracking data, MIDI, video and audio can be
stored. The data are stored using the ftm.sdif.write object for Max, developed by Diemo
Schwarz, which structures the data into time-tagged frames [Schnell et al., 2005].

gdif.play streams data from prerecorded files as Open Sound Control formatted text strings.
The module creates an ftm.track object for each data stream in the SDIF file and each of
these can be enabled or disabled individually from a drop-down menu.

5.3.2 GDIF in Matlab

x anQ Command Window x a nQ0
>> d = mcreadgdif('XP30',"'/Users/krisny/Desktop/testsdif'); 2 R
Reading SDIF files in /Users/krisny/Desktop/testsdif/
N0 Variable Editor
~ B3 EEY =Y e Stack: ¥ [ Novalidplots... - [0 |% L
s o Built with Matlab 2011b
x 7 0O a(l, x a0 . .
a(l,1) <1x1 struct> d(1,1) <1x1 struct> Easdif 3.10.5
Field & Value Field & Value MoCap Toolbox 1.3
M type 'GDIF data’ P type ‘MoCap data' L
|at] filename 'newrecord_10.sdif' Lat| filename 'newrecord_10.5dif' Author Kristian Nymoen
X130 <930x4 double> EH nFrames 931
HH xp30 <930x10 double> H ncameras [ Deve|oped 2011-2012
H xoE0 <930x4 double> H nMarkers 3
EH xipx <930x2 double> EH freq 150
HH xoro <904x13 double> H nAnalog 0
HH xpoD <685x17 double> HH data <931x9 double>
Bﬂ analogdata 0
other <1x1 struct>

I have developed scripts for importing the files recorded with JamomaGDIF into Matlab for
further processing and analysis. In principle the scripts import any file in SDIF format but they
are mainly developed for the purpose of working with GDIF data and further development of
the scripts will also be aimed at data structured according to the current GDIF specification.’

8nttp://ftm.ircam. fr
http://xdif.wiki.ifi.uio.no/Data_types
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The scripts are based on importing SDIF-files using Easdif.'” The data obtained when using
Easdif to import SDIF files is difficult to work with directly, especially so for motion data. The
GDIF scripts parse the data into a structure which is more intuitive and efficient to work with.

At the time of writing, two scripts are provided:

readgdif.m reads all SDIF files in a single directory, and puts each file into an individual entry
of a struct array. The individual data streams in each file are assigned an individual field

in the struct.

mcreadgdif.m reads a single stream of an SDIF file and parses the data into a data structure
compatible with the Jyviskyld MoCap Toolbox.

In future development more Matlab functions for processing and analysing motion data
read by the readgdif.m function will be provided. Until then the MoCap Toolbox provides
good functions for conducting analysis on a single stream of data.

5.3.3 Mocapgrams

el
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Visualising a large amount of time-varying multidimensional data is difficult — especially if
the visualisation is limited to a two-dimensional medium, which is the case in most scientific
publications. Section 4.1 introduced motiongrams as one possible solution for plotting a large
set of motion capture data. I have prepared a script for plotting mocapgrams of motion data in
MoCap Toolbox data structures.

The Matlab function memocapgram.m takes a mocap data structure as input and plots a
mocapgram of all the markers in the data structure. An optional argument specifying whether
the time axis should display seconds (default) or frames can be given. If marker names are
present in the mocap data structure, these are displayed on the Y axis.

Ohttp://www.ircam.fr/sdif/download/Easdif
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5.3.4 Interactive Animation in the MoCap Toolbox
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One of the challenging aspects of working with post-processing and analysis of motion capture
data is to get an intuitive understanding of the data. In the MoCap Toolbox motion data can be
plotted on a time-line or viewed as point-light displays in each frame. Furthermore, multiple
point-light displays may be concatenated into a video file to obtain a more intuitive impression
of how the motion unfolds over time. If there are audio data related to the mocap recording, this
may be added using video-editing software.

While the tools for visualisation, animation and analysis that are implemented in the Mo-
Cap Toolbox are good, I missed support for fast and interactive visualisation of mocap data
synchronised with related audio files. If able to play back the mocap data with interactive
control possibilities such as setting loop marks, scrubbing back and forth, adjusting tempo,
zoomimg, rotating and panning, researchers would not have to rely on two-dimensional plots of
time-series, or rendering of a video file to see the motion unfold. The software mertanimate is
developed to meet these needs.

A patch for visualising mocap data with an arbitrary number of markers has been imple-
mented in Max, and a function for streaming mocap data from the MoCap Toolbox format has
been developed in Matlab. A local UDP'! network link between Matlab and the Max patch is
initiated by calling the mertanimate.m function in Matlab. One or two arguments are given
— first, the reference to the variable that contains the mocap data, and second, an optional an-
imation parameter (animpar) structure. Both are standard data types in the MoCap Toolbox,
where the latter contains information on the connections between markers. This causes lines to
be drawn in the visualisation patch between the markers specified in the animpar structure, as
shown in Figure 5.3.

Through a graphical user interface (GUI) in Max, the user may start and stop playback, set
loop marks, adjust the playback tempo and scrub back and forth in the recording. Additionally,
the GUI allows zooming, translating and rotating. All in all this provides a simple way to get an
intuitive impression of the mocap data while working with it. It also makes it possible rapidly
to see the effects of various forms of processing done in the MoCap Toolbox — for instance, to
obtain a qualitative impression of how filtering affects the data.

Support for synchronised playback of sound files has also been implemented. For now,
the sound file and the motion capture recordings must be of the same length, but in future
work I plan to implement more sophisticated methods of playing back synchronised audio that

1User Datagram Protocol (UDP) is a standard protocol for network communication.
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Figure 5.3: The figure shows the difference
between an animation with and without the
optional animpar arument.

is of a length different from that of the mocap data. Ideally, this would be implemented in
sequencer-like software, where audio, video, motion data and other music-related data can be
easily manipulated, and also shared among researchers.

The current implementation of mertanimate relies on the Instrument Control Toolbox for
Matlab to communicate between Max and Matlab. A future implementation will attempt to
avoid the use of the Instrument Control Toolbox as it is expensive and not all universities have
access to it. In addition to the Max patch a compiled version for Mac OS is available for users
without a valid Max licence.

5.3.5 Motion Tracking Synthesiser
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The development of the SoundSaber involved designing a Max patch to calculate motion fea-
tures in real time from a stream of position data and another patch for sound synthesis. Together
with one more patch for sound sysnthesis, based on looping of audio files, these patches have
been released as a generic toolbox for developing musical instruments based on motion tracking
data. A schematic layout of how the patches are used in the SoundSaber is offered in Figure 5.4.

< /verticalVelocity
Q
7}9 /horizontalVelocit
$ Motion F TR Sound
S . /3D-Position eature /absoluteVelocity oun
Y —> Tracking > Extraction . Synthesiser | —>
9 /absoluteAcceleration,
System (fFE.3D1) . >| (fSM.soundsaber)
/azimuth'

Figure 5.4: The figure shows the data flow from the SoundSaber controller, tracked by the motion
tracking system and sent into the fFE.3D1 patch for feature extraction. The output from the feature
extractor is sent to the fSM.soundsaber patch.
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The Motion Tracking Synthesiser package is implemented as three Max-patches which com-
municate through OSC messages:

fFE.3D1 calculates various features from a single stream of three-dimensional position data.
The features calculated from the position stream include vertical velocity, horizontal ve-
locity, absolute acceleration, distance from origin, angle from origin and more.

fSM.soundsaber and fSM.loop are sound modules that work together with the fFE.3D1 patch.
Both take the output of fFE.3D1 as input, and output an MSP signal which can be pro-
cessed further or sent directly to the audio interface in Max. fSM.soundsaber is based on
a pulse train and various delay lines with feedback and is described more in detail in Pa-
per I'V. fSM.loop loads an audio sample into a buffer and the absolute velocity calculated
by fF3.3D1 is used to control the playback speed of the loop.
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Chapter 6

Discussion

This chapter discusses and contextualises the work that has been presented in the thesis. The
results concerned with evaluation and development of technologies are discussed in Section 6.1.
Subsequently, sound-tracing as a research method is discussed in Section 6.2, including feature
extraction, methods of analysis, techniques of visualisation and the results of my experiments.
Furthermore, conclusions and pointers for future extensions of this research are offered.

6.1 Technologies

A little more than one century ago music could only be experienced by way of a live musical
performance. Experiencing musical sound and music-related motion implied a direct transfer
of auditory and visual sensations from a musician to the perceiver. Mediation technologies
[Leman, 2008] such as those of broadcasting, recording and reproduction of sound and video,
have drastically changed music consumption over the last hundred years, allowing people to
enjoy music without the presence of a musical performer. These technologies influence how
the music is presented, e.g. the sound quality depends on the sound reproduction system and
consequently, experience of music depends on the mediation technologies involved.

Mediation also occurs when technologies are used to quantify sound and body motion in
music research. Such quantification enables researchers to reproduce the music-related body
motion in analysis software, which facilitates precise comparison of several musical perfor-
mances. However, like the mediation technologies of music consumption, technologies for
tracking, storing and visualising motion are not transparent. In other words the technologies
used in research on music-related body motion influence how the motion is presented to the
researcher. This does not mean that technologies should be avoided, but researchers should be
aware of the distinction between actual body motion and the mediated representation provided
by technology.

6.1.1 Evaluation of Motion Tracking Technologies

My evaluation of tracking technologies has shown that they possess distinct strengths and weak-
nesses, which may also mean that they are suited to different uses. On the one hand, tracking
technologies provide a reduced digital representation of the real body motion. For instance,



76 Chapter 6. Discussion

an ordinary video recording may reduce three-dimensional full-body motion into coloured pix-
els on a two-dimensional video plane. Even current state-of-the-art technologies for full-body
motion tracking are incapable of tracking every moving part of the human body. On the other
hand, these technologies provide more detailed results than we would be able to see with the
naked eye. Some technologies allow researchers to inspect motion nuances at a sub-millimetre
level and, what is more, phenomena that are intrinsically time-dependent can be observed in-
dependently of time. Such considerations must be taken into account in order to deduce which
aspects of motion the technologies are able to represent and which aspects they leave out.

The papers included in this thesis mainly discuss three tracking technologies. (1) optical
infrared marker-based motion capture, through studies of tracking systems from NaturalPoint
and Qualisys, (2) the Xsens MVN system, as an example of combining inertial and magnetic
tracking technologies with a kinematic model, and (3) an iPod touch, as an example of mobile
tracking technology with inertial sensors. Other affordable systems of motion tracking such
as ordinary web-cameras, the Wiimote (Nintendo) and the Kinect (Microsoft) have not been
studied in the same systematical manner in my research, and are therefore not discussed in the
same level of detail. However, having positive, although more exploratory experiences with
these technologies I want to pursue analysis of these in the future.

The key findings of the evaluation of tracking technologies include:

Reduction The tracking technologies reduce the actual full body motion into a simpler quanti-
tative representation. Through the use of a kinematic model the motion can be displayed
in an avatar. This can be done with optical infrared marker-based technology and with
full-body suits like Xsens MVN. The positions of limbs or joints can also be displayed
on point light displays (ref. Section 4.1), for instance by using the mcrtanimate software
presented in Section 5.3.4.

Flexibility Optical infrared marker-based technology allows placement of an arbitrary number
of markers, meaning that it provides more flexibility in terms of the tracking configuration
than the Xsens. For instance, optical systems can capture finger motion with markers on
each finger joint, while the Xsens is limited to certain models like full-body or upper-
body with a single sensor on each hand. In contrast, the iPod Touch only reports data
from one location. Still, the iPod is flexible in the sense that it may for instance be held to
report hand motion or strapped on other parts of the body. All three technologies provide
three-dimensional numerical data, albeit with different precision and accuracy, as will be
discussed next.

Drift My analyses showed that the data from tracking technologies based on inertial sensors
were characterised by a substantial degree of positional drift over a given period. This
means that the Xsens system should not be used for analyses where positional precision
over time is important. However, the drift is small enough to represent relative positional
displacements within a time period of a few seconds. With the iPod the drift of the
estimated position data was much larger, and position data estimated from this device
should be avoided altogether.

Noise The noise levels of the Xsens position data and the iPod orientation data were higher
than their equivalents provided by the optical marker-based tracking systems. However,
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the acceleration data calculated by double differentiating the position data from Qualisys
and OptiTrack were much noisier than acceleration data from the Xsens and the iPod,
and needed filtering to display similar results. The reasons for this are probably two-fold.
Firstly, both the iPod and Xsens use accelerometer data which do not require differentia-
tion to estimate acceleration. Secondly, there might be stronger filtering of data inside the
Xsens software and the iPod sensor fusion algorithm than what is used in Qualisys and
OptiTrack.

Stability Optical tracking technologies require line-of-sight, meaning that data are lost when a
marker is occluded or moved out of the predefined tracking space. Furthermore, spikes
in the data will occur when the set of cameras that see a marker changes. Optical infrared
marker-based technologies are also sensitive to “light-pollution”, meaning that foreign
light sources or reflective material in the tracking space might cause tracking error. Xsens
and the iPod have no such restrictions. According to our results the range limit of the
Bluetooth connection between the Xsens suit and the host computer is more than 50
metres.

Intrusiveness The different systems may be more or less “intrusive”, both on the body and on a
stage if used in performance. The least intrusive in both cases is the iPod, as most people
carry such mobile devices anyway. Also, the iPod is a fully integrated system with no
need for cables or external hardware. The Xsens suit contains two big transmitters with
batteries, and lots of cables and sensors that could feel intrusive to the person wearing it,
especially so for a musician where the cables and sensors can interfere with the playing
technique. Moreover, the suit is tiresome to wear for several hours. In a stage setup,
however, the suit can be worn under clothes in order not to disturb the visual appear-
ance of performers [Skogstad et al., 2012c]. The reflective markers used by the optical
systems are less intrusive to the person wearing them as they can be quite small and at-
tached directly to clothes or skin. However, in a performance setup the cameras must be
positioned in a manner that gives optimal tracking performance, meaning that they will
usually dominate the performance area, which might be disturbing to the audience.

Availability Finally, the cost and availability of the systems differ greatly. Although more af-
fordable solutions exist, the technologies used in state-of-the-art motion tracking systems
are more expensive than most research groups can afford without dedicated grants. The
iPod Touch and other devices such as mobile phones or game controllers (e.g. Nintendo
Wii or Microsoft Kinect) are readily available. Since many people own such devices these
days, it is now possible to develop applications that would analyse the music-related mo-
tion of users in their homes and elsewhere. This could enable research on music and
motion involving a very large number of people.

6.1.2 Software for Storing and Streaming Music-Related Motion Data

The software developed and presented in this thesis is provided to assist research on music-
related motion. Consequently this software too is a mediator between the actual motion and the
data used by the researcher. As argued above, the data representations of the motion are sim-
plifications of the actual motion, yet these representations offer more detail than the researcher
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would be able to infer by just observing the motion as it occurred. As with tracking technolo-
gies, users of software for storing and streaming music-related motion data should be aware of
how mediation influences data. I offer three observations on the developed software:

Data synchronisation retains multimodality. The software that I have developed for working
with music-related motion depends on the data that is provided by the tracking systems.
This means that data stored using JamomaGDIF will have the same strengths and weak-
nesses as were found with the tracking technologies above. However, by combining
video, audio, MIDI, motion tracking and other sensors in synchronised recordings the
multimodal nature of the musical performance is somewhat retained. Thus the Jamo-
maGDIF software may provide researchers with a collection of data that is closer to the
actual musical performance than what a motion tracking system can provide by itself.

Offline streaming disregards interactivity. One of the suggested use scenarios for JamomaGDIF
is prototyping of new musical interfaces. Since both motion and sound are phenomena
unfolding in time, it is usually necessary to have the stream of motion data available when
programming to test the interface in real time. For instance, the data from a new interface
containing a motion tracking system and a force-sensing resistor can be recorded in Jamo-
maGDIF, and subsequently the two data streams can be streamed from the recorded file
while the developer experiments with the mappings in the instrument prototype. How-
ever, if JamomaGDIF is used in this way, one important aspect of the musical interface
is easily neglected, namely interactivity. In most musical interfaces there is a feedback
loop between motion and sound and users will adjust their motion according to the sonic
feedback. Thus if pre-recorded data are used in the development of interfaces, it is im-
portant to test the interface regularly with realtime interaction as part of the development
process.

Feature extraction may increase intuition. JamomaGDIF does not perform any processing on
the recorded data, meaning that data that are streamed from the software are the same as
was provided by the tracking systems. The developed Motion Tracking Synthesiser, de-
scribed in Section 5.3.5, provides features that may be closer to an intuitive interpretation
of motion than the raw data from the tracking system. For instance, the absolute velocity
feature is closely related to the kinetic energy, which again is a result of mechanical work
carried out by the person tracked.

6.2 The Sound-Tracing Approach

A large part of the research presented in this thesis consists of studies of bodily responses
to musical sound. The sound-tracing research approach lies between the extremes of being
controllable and ecologically valid as will be discussed below.

In research experiments in auditory psychophysics, such as presented by Bregman and Ahad
[1996], the sound stimuli are typically strictly controlled. By using, for instance, sine tones and
noise bursts researchers can easily control sound features like frequency and duration with high
precision. Controlled stimuli are desired in order to draw inferences from experimental results
with a high degree of confidence. However, the use of such stimuli in music research has been
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criticised for lacking ecological validity [Rumsey, 2002, De Gelder and Bertelson, 2003, Jones,
2010]. The other extreme for sound stimuli in music research is the use of sound from entire
musical works. In such studies some musical features, like fempo, can usually be controlled
quite well. However, a precise description of the entire soundscape is difficult to make. A large
number of time-varying signal features can be calculated, in addition to cultural and social
aspects that may influence experience of musical sound. This multidimensionality reduces the
controllability of the sound stimuli.

An equally wide range of possibilities exist for bodily responses. If full body motion is
tracked, the angles of each joint, with corresponding limb positions, velocities and acceleration
values, present a large number of dimensions and thus a response scenario with low degree of
control. The other, highly controlled, extreme would be to restrict the bodily response to moving
a slider or pressing a button. Again, the notion of ecological validity should be considered: are
presses of a button suitable objects of investigation if the objective is to study links between
musical sound and body motion?

I believe that different degrees of controllability and ecological validity should be allowed
in experiments on music and motion. My aim is not to disapprove of any type of stimulus or
response, but to emphasise that it is important to be aware of this trade-off. The sound-tracing
approach focusing on short sound objects and simple free-air motion, lies between the extremes
of controllability and ecological validity. For instance, the sound stimuli are controllable be-
cause of their short durations and controlled sound parameters, and they are ecologically valid
in music research, since they correspond to sonic objects which are potential building blocks
of a piece of music (ref. Section 2.2.1). Musical sound may be seen as a sequence of sound
objects, and the body motion of a performing musician as a sequence of sound-producing,
communicative, and sound-facilitating actions [Jensenius et al., 2010]. My experiments have
used the manipulation of two handles or a rod as motion response, which is similar to sound-
producing actions that typically involve manipulating a musical instrument with the hands. Be-
cause a sonic object often is the result of a sound-producing action, and because both of these
correspond to the chunk timescale level (ref. Section 2.3.2), this particular trade-off between
controllability and ecological validity is an interesting object of study.

6.2.1 Motion Features

Discussion of controllability and ecological validity in sound-tracing experiments is also rel-
evant to the process of extracting and selecting motion features. As humans we use other
descriptions of motion than the raw data provided by a motion capture system. Metaphors
and verbal descriptions such as ‘falling’, ‘expanding’, ‘impulsive’, ‘smooth’ or ‘shaking’ are
more common in daily language than the use of precise positional measures. Thus one of the
important steps in the analysis of motion is converting the raw position data into features that
describe the body motion in a way that is closer to human descriptions. Still, the use of numeri-
cal features rather than verbal metaphors retains some degree of controllability in sound-tracing
experiments.

A number of features have been used in previous research on music-related motion, includ-
ing first and second order derivatives [Schoonderwaldt et al., 2006, Luck et al., 2010b], energy
measurements of different parts of the body [Toiviainen et al., 2010], quantity of motion and
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contraction index [Camurri et al., 2003], timing perspectives like inter-onset-intervals or bodily
resonances [Dahl, 2000, van Noorden, 2010], and relations between limbs [Miiller and Rdder,
2006, Klapp and Jagacinski, 2011]. More features than those used in this thesis could have been
extracted; however, the use of more features also makes it more difficult to control the results.
Furthermore, as discussed in Section 4.3, the use of many features may result in overfitting of
the canonical correlation analysis. Positional features and their derivatives were shown in a
sound-tracing experiment by Caramiaux et al. [2010] to be the most pertinent motion features.
Similar features have been used in all the analyses presented in this thesis.

6.2.2 Methods of Analysis

As mentioned in Section 5.1.3, limited research on sound-tracing has previously been con-
ducted. Consequently, methods of analysis for such research are sparse and no standardised im-
plementations of analysis techniques are available in current software to analyse music-related
motion (e.g. the MoCap Toolbox or the Musical Gestures Toolbox). For this reason I have im-
plemented my own set of tools in Matlab, including scripts for feature extraction, normalisation,
visualisation and the various analysis methods presented in this thesis. The presented analysis
techniques show strengths and weaknesses and should preferably be used in conjunction. The
main results of my methodical research include:

Visualising data. Visualisation of data from sound-tracing experiments is challenging due to the
potentially large number of recordings in the experiment and the large number of feature
dimensions for each sound-tracing. The mcmocapgram and mcrtanimate software tools
introduced in Sections 5.3.3 and 5.3.4 can assist research in this area by creating generic
visualisations.

Recognition of sounds from motion data can be automated. My experiments have shown that
pattern classification, through Support Vector Machines, can be applied to a set of sound-
tracings to reveal which sound stimuli induced similar motion responses. Such an overview
may provide some basic indications of which sound and motion features were pertinent to
a particular classification. However, a detailed knowledge of the relation between sound
and motion features is not provided by pattern recognition analysis. The satisfying perfor-
mance of the classifier should motivate further research on solutions for query-by-gesture
in music databases [Leman, 2008, Godgy and Jensenius, 2009, Caramiaux et al., 2011].

Correlation of time-varying features. The Spearman p correlation coefficient has been suggested
as a better method than the more commonly applied Pearson correlation for estimating
the relation between two music-related time-series [Schubert, 2002]. However, due to
the problems with serial correlation, the results found by this method cannot be tested
with traditional statistical tests. In my experiments the results from correlations between
sound and motion features were useful when applied in conjunction with other methods
of analysis of sound-tracings.

Complex relations between sound and motion. Spearman p can provide a measure of the cor-
relation between one sound feature and one motion feature. However, more complex
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correlations may exist as is frequently seen in musical instruments. The connections be-
tween sound-producing actions and instrumental sound are rarely one-to-one mappings
[Kvifte, 1989]. Rather, one-to-many, many-to-one, or many-to-many mappings exist, and
the multidimensional links between control action and sound features can make a mu-
sical instrument more intriguing to play [Hunt et al., 2002]. Canonical correlation may
be applied to assess how a ser of motion features correlates with a set of sound features.
However, as with other coefficients from correlation of time-series, the results cannot be
tested for statistical significance. Furthermore, the multidimensional correlations shown
by CCA may be difficult to interpret due to their complexity.

Global versus time-varying features. Global features of sound-tracings may be applicable for
hypothesis testing and assessment of statistical significance. This means that a value such
as the average velocity for one group of sound-tracings may be compared with another
group of sound-tracings. By using short sound objects and action responses that are in
themselves chunks, such global features can be extracted quite easily. However, if longer
segments of musical sound and bodily responses are used, it is more difficult to extract
global features that characterise the overall feature trajectories. Hence there is a need
to develop robust methods of analysis that are able to take time-varying features into
account.

6.2.3 Empirical Results

The research presented in this thesis to a large extent focuses on technologies for and methods of
studying music-related body motion. However, some cognitive results have also been obtained
through the two sound-tracing experiments. Some of the results were found in only a few of the
analyses, while one result was particularly evident in all of my papers on sound-tracing, namely
the correlation between pitch and verticality.

Pitch and verticality The correlation between pitch and verticality has already been shown by
several researchers. This relation is common both in everyday speech, as can be seen by
the expressions high and low pitch, and in Western musical notation where the vertical
position of a note on the score indicates the pitch of a tone. Huron et al. [2009] showed
that the pitch of sung tones correlates with the vertical position of the eyebrows, and
several other experiments have indicated that people link pitch to verticality [Eitan and
Granot, 2004, 2006, Eitan and Timmers, 2010, Kohn and Eitan, 2012].

Arnie Cox [1999] explained the correspondence of pitch and verticality through a metaphoric
understanding of up as more. The ‘more’, in this context, is of the increased effort that

is necessary to produce higher pitched vocal sounds. However, this metaphor has been
criticised for only being applicable in certain circumstances. Eitan and Timmers [2010]
e.g. have shown that if pitch is mapped to ‘mass’, ‘size’ or ‘quantity’, it may be more
appropriate to understand up as less. The latter claim contradicts a finding of Walker
[2000], where experiment participants linked an increase in pitch to increase in all of the
observed dimensions, including size, temperature, pressure and velocity.

The use of free air body motion may have made the link between spatial verticality and
pitch apparent to participants in my experiments. Metaphors such as those describing
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pitch in terms of temperature, mass or quantity, were not possible. Still, my research
has not focused on metaphors other than those of body motion, and my results show that
for music-related body motion there seems to be a strong link between pitch and spatial
verticality.

Spectral centroid and verticality. The spectral centroid envelopes of the sound stimuli were also

found to be related to vertical position. This is not very surprising, as both the pitch and
the spectral centroid of musical sound correspond to frequencies within the audible fre-
quency range. Also, in most musical instruments, pitch and spectral centroid are not
independent sound features [Kvifte, 1989, Chowning, 1999]. In my sound stimuli, how-
ever, the applied bandpass filter allowed controlling spectral centroid quite independently
of pitch.

For sound stimuli without a distinct pitch the correlation between vertical position and
spectral centroid was stronger than for stimuli with a stable pitch. Furthermore, when
pitch and spectral centroid moved in opposite directions, most participants moved their
hands up for rising, and down for falling pitch. This indicates that the presence of a
perceivable pitch influences, or even overrides the link between spectral centroid and
vertical position.

Dynamic envelope and acceleration. For sound objects classified as impulsive, meaning sound

objects with a quickly increasing and slowly decreasing dynamic envelope, most partici-
pants responded with correspondingly impulsive actions, seen by acceleration peaks at the
time of the sound onsets. Similar peaks were not found for non-impulsive sound objects.
This corresponds well with Godgy’s [2003] suggestion that musical sound is perceived
and understood as mental visualisations of sound-producing actions.

Noise and acceleration. Paper VII showed a significantly higher mean acceleration for motion

performed to sound stimuli without a perceivable pitch than with sound stimuli with a
perceivable pitch. It seems that the sounds with a perceivable pitch provided the par-
ticipants with something to ‘hold on to’, meaning that the motion trajectories of these
sound-tracings were smooth. Sounds based on noise, however, did not provide the same
reference and caused irregular and jerky motion.

Cultural background. It should be mentioned that none of the experiments took cultural back-

ground of the participants into account. The majority of the participants in all experi-
ments were of Western background. Arguably, the results of the experiment might be
tightly linked with Western culture, and if the same experiments were conducted in other
cultures, different results might have been obtained, as suggested by Ashley [2004].

Adjustment of statistical results. As presented in section 5.2.7 the results from Paper VII were

adjusted in Paper VIII to correct for repeated measurements of the data. Consequently,
several of the results were redefined as non-significant. Arguably, this adjustment may
have resulted in type II errors, meaning that significant results may have been defined
as non-significant. Several methods may be applied to correct for this experiment-wise
error rate, and different methods should be applied depending on whether the tests are
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independent of, or dependent on each other. In my experiment certain tests were inde-
pendent; for instance testing for differences in onset acceleration for impulsive versus
non-impulsive sounds is independent of testing for differences in vertical motion for dif-
ferent pitch envelopes. Other tests were dependent on each other, for instance testing
differences in vertical position for all subjects and then testing the same for only expert
subjects. Nevertheless, in this case possible type II errors are more acceptable than incor-
rectly rejecting the null-hypotheses. As argued in Paper VIII, new tests should be applied
in future experiments to learn whether or not these results were significant.

6.3 Conclusion

This PhD project has been concerned with development and evaluation of methods of and tech-
nologies for studying links between musical sound and music-related body motion. This in-
cludes research on technologies for tracking body motion and development of a new solution
for storing multidimensional music-related data. Participants’ motion responses to short sound
objects have been studied in two experiments on sound-tracing and the usefulness of four meth-
ods of analysis of such experiments has been evaluated. The following points conclude the
research:

* Various motion tracking technologies provide data with different limitations. The prop-
erties of the technologies determine their proper use in music research and performance.
While the quality of the tracking data to some extent correlates with the cost of systems,
more affordable solutions may be adequate as long as the researcher pays attention to the
strengths and weaknesses of the technology. This was shown by the accurate orientation
data of the iPod Touch, and the SoundSaber Wiimote implementation presented in this
thesis.

* The findings of the sound-tracing studies are in accordance with previous results of re-
search into use of metaphors to describe sound. The close association of pitch and ver-
ticality coincides with a ubiquitous understanding of pitch in Western culture. An asso-
ciation was also shown to exist between impulsive sounds and high onset acceleration in
sound-tracings, and between noisiness and overall acceleration.

* My evaluation of methods of analysis for sound-tracing studies has shown that a pattern
recognition classifier may be trained to recognise sound objects based on the actions that
people associate with the sounds. Although perfect classification results were not ob-
tained, the classifier grouped together actions that were based on similar sounds. This
shows that similar sounds entailed similar motion responses in my sound-tracing experi-
ments.

* To analyse how the time-varying features of sound relate to time-varying features of mo-
tion responses correlation analysis may be applied. Spearman p compares one feature
with another, and canonical correlation compares a set of features with those of another
set. However, these correlation analyses are not suited for statistical testing and conse-
quently, there is still a need to develop new methods of analysis that are able to handle
time-varying multidimensional data from sound-tracing experiments.
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* The JamomaGDIF software presented in this thesis is a step towards flexible handling of
multidimensional music-related data, and may assist researchers in their work on music-
related body motion. The Sound Description Interchange Format and Open Sound Con-
trol are promising solutions, and future development of the Gesture Description Inter-
change Format should explore these protocols further.

6.4 Future Work

Taking on such a project has been extensive in both content and form. While I have been able
to answer some questions, many still remain. As mentioned previously, the evaluated track-
ing technologies do not cover all current available technologies, and further research should
also evaluate the potential of affordable tracking solutions like the Kinect, Wiimotes, and web-
cameras.

In my experiments, a main focus was been kept on short sound objects as stimuli and action
responses of equivalent length, reduced to free-air manipulation of one or two rigid objects. The
research should eventually be continued by expanding sound-tracing experiments to incorpo-
rate full-body motion as response data, and using longer excerpts of musical sound as stimuli.
Miiller’s features for full body motion data (ref. Section 3.5.3) should be explored for this pur-
pose since the features are robust and computationally efficient. There is a need to develop
robust methods of segmentation of continuous motion data, such that longer recordings of con-
tinuous motion can be analysed as a sequence of concatenated motion chunks. More methods
of analysing time-varying motion features and sound features should be explored. Machine
learning techniques such as Dynamic Time Warping, Hidden Markov Models or Hierarchical
Temporal Memory, which are capable of learning time-varying patterns could provide solutions
to this problem. The results of the sound-tracing experiments should be verified by an ‘oppos-
ing’ experiment, having participants watch animations of the recorded motion, and match the
sound file to motion.

The tools for working with music-related data should be developed further. A wide range
of existing audio sequencer software (Cubase, Logic, ProTools) and video editing software
(Final Cut, iMovie, Windows Movie Maker), enables interactive editing of sound and video. A
similar system should be developed for music-related data including audio, sensor data, MIDI,
video, annotations, scores and more. JamomaGDIF, with corresponding Matlab scripts and the
developed interactive animation tool for the MoCap Toolbox are small steps along the way to
making a multimodal sequencer software for music research. Such a sequencer should ideally
allow editing synchronised audio, motion and video data, with possibilities for e.g. gap-filling,
filtering and scaling of motion data.
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Glossary

2D Two dimensions.
3D Three dimensions.

Canonical Loading The correlation between a canonical component and an input feature in
canonical correlation analysis.

Canonical Variates Also known as canonical components. The resulting vectors from project-
ing the input features onto projection matrices in canonical correlation analysis.

CCA Canonical Correlation Analysis.

Class Precision (CP) The number of correctly classified instances of a class divided by the total
number of instances classified as the same class.

Class Recall (CR) The number of correctly classified instances of a class divided by the true
number of instances in the class.

DCM Direction Cosine Matrix, also called Rotation Matrix or Orientation Matrix.

Degrees of Freedom (DOF) A term used in kinematics: The number of dimensions in which an
object can be tracked. For instance 3DOF position, or 6DOF position and orientation.

Degrees of Freedom (df) A term used in statistics: A statistical variable related to statistical
tests, such as the 7-test. The variable describes the number of values that are free to vary
in the calculation of a statistic.

FTM A set of objects for Max. Developed at IRCAM, Paris.
GCS Global Coordinate System.

GDIF Gesture Description Interchange Format.

Jamoma A set of modular patches and objects for Max.

Kinect An optical markerless motion tracking device developed by PrimeSense for Microsoft.
Intended for use with the Xbox 360 console, but can also interface with other computers.

Kinematic model A setrigid objects, with corresponding rules for how the objects relate to each
other, e.g. joint angles.

LCS Local Coordinate System.
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Max A graphical programming environment, also known as Max/MSP/Jitter, Max5 or Max6.
mocap Motion capture. Sometimes also MoCap, for instance in the name MoCap Toolbox.
MoCap Toolbox Matlab Toolbox for processing, visualising and analysing motion data.

Open Sound Control (OSC) A protocol for streaming (primarily music-related) data.

OptiTrack An optical infrared marker-based motion tracking system. Produced by NaturalPoint
Inc., Oregon, USA.

Qualisys An optical infrared marker-based motion tracking system. Produced by Qualisys AB,
Sweden.

Rigid object An object for which both position and orientation can be tracked.

RMS Root-mean-square. A measure of the magnitude of a varying signal. May be used to
describe the dynamic envelope of a sound signal.

SDIF Sound Description Interchange Format.

Spectral Centroid The barycentre (centre of gravity) of a spectrum. In sound perception, the
spectral centroid is one way of describing brightness.

SVM Support Vector Machine.
Training set Data set used to train a classifier.
Validation set Data set used to validate a classifier.

Xsens MVN A full body motion capture suit based on inertial sensors and magnetometers. Pro-
duced by Xsens Technologies, Belgium.

Wiimote Game controller for the Nintendo Wii. Used in an alternative low-cost implementation
of the SoundSaber.



Papers

II

I1I

IV

VI

VII

A Toolbox for Storing and Streaming Music-Related Data.

K. Nymoen and A.R. Jensenius.

In Proceedings of SMC 2011 8th Sound and Music Computing Conference “Creativity
rethinks science”, pages 427-430, Padova University Press 2011.

Comparing Inertial and Optical MoCap Technologies for Synthesis Control.

S.A. Skogstad, K. Nymoen, and M.E. Hgvin.

In Proceedings of SMC 2011 8th Sound and Music Computing Conference “Creativity
rethinks science”, pages 421-426, Padova University Press 2011.

Comparing Motion Data from an iPod Touch to a High-End Optical Infrared Marker-
Based Motion Capture System.

K. Nymoen, A. Voldsund, S.A. Skogstad, A.R. Jensenius, and J. Torresen.

In Proceedings of the International Conference on New Interfaces for Musical Expres-
sion, pages 8891, University of Michigan 2012.

SoundSaber — A Motion Capture Instrument.

K. Nymoen, S.A. Skogstad and A.R. Jensenius.

In Proceedings of the International Conference on New Interfaces for Musical Expres-
sion, pages 312-315, University of Oslo 2011.

Searching for Cross-Individual Relationships between Sound and Movement Features
Using an SVM Classifier.

K. Nymoen, K. Glette, S.A. Skogstad, J. Torresen, and A.R. Jensenius.

In Proceedings of the International Conference on New Interfaces for Musical Expres-
sion, pages 259-262, Sydney University of Technology 2010.

Analyzing Sound Tracings: A Multimodal Approach to Music Information Retrieval.

K. Nymoen, B. Caramiaux, M. Kozak, and J. Torresen.

In Proceedings of the Ist international ACM workshop on Music information retrieval
with user-centered and multimodal strategies, pages 39—44, ACM 2011.

A Statistical Approach to Analyzing Sound Tracings.

K. Nymoen, J. Torresen, R.I. Godgy, and A.R. Jensenius.

In S. Ystad, M. Aramaki, R. Kronland-Martinet, K. Jensen, and S. Mohanty (eds.) Speech,
Sound and Music Processing: Embracing Research in India, volume 7172 of Lecture
Notes in Computer Science, pages 120—-145. Springer, Berlin Heidelberg 2012.



106 Papers

VIII Analysing Correspondence Between Sound Objects and Body Motion.
K. Nymoen, R.I. Godgy, A.R. Jensenius, and J. Torresen.
To appear in ACM Transactions on Applied Perception.



Paper 1

A Toolbox for Storing and Streaming Music-related Data.

K. Nymoen and A.R. Jensenius.

In Proceedings of SMC 2011 8th Sound and Music Computing Conference
“Creativity rethinks science”, pages 427-430, Padova University Press 2011.



108 A Toolbox for Storing and Streaming Music-related Data




Paper 1

109

A TOOLBOX FOR STORING AND STREAMING MUSIC-RELATED DATA

Kristian Nymoen
fourMs - Music, Mind, Motion, Machines
Department of Informatics
University of Oslo
krisny@ifi.uio.no

ABSTRACT

Simultaneous handling and synchronisation of data related
to music, such as score annotations, MIDI, video, motion
descriptors, sensor data, etc. requires special tools due to
the diversity of the data. We present a toolbox for record-
ing and playback of complex music-related data. Using the
Sound Description Interchange Format as a storage format
and the Open Sound Control protocol as a streaming pro-
tocol simplifies exchange of data between composers and
researchers.

1. INTRODUCTION

In this paper we introduce a set of tools that have been
developed for working with music-related data. Our goal
with this software is primarily to provide a set of tools for
researchers working with music-related body motion, but
we also see the potential for using the tools in other re-
search areas. We started working on the tools in 2008, and
the development has continued over the last years together
with our research on music and movement [1, 2, 3]. The
need for a common method of storing and sharing data re-
lated to musical movement was discussed at a panel ses-
sion at the International Computer Music Conference 2007
[4], and further emphasised at a seminar in May 2010 at
IRCAM, Paris, where several researchers from around the
world working with music and motion, and sound spatiali-
sation were present. A common denominator for this sem-
inar was to come closer to a scheme for describing spatio-
temporal aspects of music. The tools we are presenting
were revised after this seminar with the intention of mak-
ing them easy to use for the research community.

Section 2 introduces previous research and gives an over-
view of why these tools are needed, and what has already
been done in the field. In section 3, the different types
of data we are working with are discussed. Section 4 in-
troduces the tools. Finally, in section 5, we conclude and
point out the future directions of the development.
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2. BACKGROUND AND MOTIVATION

In our research on music-related body motion, we are often
faced with situations where we want to study data from
several devices at the same time. We will start this section
by looking at two use cases that summarise some of the
challenges in the field and the tools needed.

2.1 Use cases

a. The music researcher

A researcher is interested in studying the movement of a
pianist by using an optical infrared motion capture system
and record MIDI events from the piano. By themselves, the
MIDI and motion capture data is trivial to record. How-
ever, synchronising the two, and being able to play them
back later, or even scrubbing through the recording, keep-
ing the MIDI-data and the motion capture data aligned, is
not as trivial. Motion capture data is typically recorded at a
sampling rate of 100-500 Hz, while the MIDI data stream
is event driven and only needs to be stored each time a
MIDI event takes place. Thus, using a common sampling
rate for MIDI data and motion capture data would mean
recording a lot of redundant data. The setup becomes even
more complex when the researcher wants to record data
from other sensors and audio/video as well.

b. The composer

A composer wants to develop a system for modifying sound
in real-time. Let us say that the composer has hired a violin
player who is wearing a position sensor and using a bow
equipped with an accelerometer. She wants to develop a
system that modifies the violin sound in real-time, based
on output from the position sensor and the bow accelerom-
eter data. Having the musician available at all times to
perform can be expensive, as the musician would typically
have to spend quite a lot of time waiting for the composer
to make adjustments in the mapping between motion and
sound. The composer would benefit from being able to
record both the sound and the sensor data, and to play them
back as a single synchronised performance.

Both of these examples show us that there is a need for
a flexible system that is able to record different types of
data from an arbitrary number of devices simultaneously.
Further complexity is added when multiple representations
of the same data is required. For instance, the researcher
could be interested in the coordinates of the hands of a pi-
ano player in relation to a global coordinate system, but
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also in relation to a coordinate frame defined by the po-
sition of the piano, or the center of mass in the pianist’s
body. The natural complexity of music introduces needs
for various simultaneous representations of the same data.

Existing formats for working with these types of data
have advantages and disadvantages, and there is no agree-
ment between researchers on how to share music-related
motion data. For motion capture data, the most widespread
format is C3D.! Unfortunately, C3D does not allow for
storing or synchronising music-related data and media. The
Gesture Motion Signal > format has been developed to han-
dle low level data in a musical context, but does not han-
dle higher level data. The latter is handled well with the
Performance Markup Language, > but this format does not
meet our requirements when it comes to audio and video
synchronisation.

An approach similar to or own has been implemented in
OpenMusic [5]. Bresson et al. have implemented a so-
Iution for storing and streaming sound spatialisation data
in the Sound Description Interchange Format (SDIF). This
seems to be a promising solution, and we hope to keep col-
laborating on SDIF descriptors for spatio-temporal data.

2.2 GDIF

The Gesture Description Interchange Format (GDIF) has
been proposed for handling the diversity of data related to
music and motion [6]. The name GDIF might be some-
what misleading, as this is neither a format per se, nor is
it limited to only gesture-related data. Rather, it is a con-
cept and an idea for how data, and particularly data related
to musical movement, can be described and shared among
different researchers.

This concept includes a hierarchical structure, where the
raw data (i.e. the data that one receives directly from the
sensor or interface) is stored at the bottom layer. Above
this layer is a so-called cooked layer, where certain pro-
cessing has taken place. This can be anything from sim-
ple filtering or transformations, to more advanced analy-
sis. Other layers may include segmentations or chunks [7]
and even higher-level descriptors such as expressivity, af-
fect and mood.

So far, GDIF development has been concerned with con-
ceptual issues, and it has been up to the user to define how
to implement storage and streaming. Some guidelines have
been suggested, one of them being the approach imple-
mented in the system we are presenting in this paper. We
are using the Sound Description Interchange Format for
storing and the Open Sound Control protocol for streaming
GDIF data [4]. These formats will be presented in sections
2.3 and 2.4.

2.3 SDIF

The Sound Description Interchange Format (SDIF) was
proposed by researchers at IRCAM and CNMAT and has
been suggested as a format for storing GDIF data [4, §].

This file format describes a sequence of time-tagged frames.

"http://www.c3d.org/
nttp://acroe.imag. fr/gms/
3http://www.n-ism.org/Projects/pml.php

Each frame consists of an identifier indicating what type of
frame it is, the frame size, the actual data and zero-padding
to make the frame size a multiple of eight bytes [9]. The
frames are further structured into streams. These streams
are series of frames, and all streams share a common time-
line. Inside each frame, the actual data is stored as strings,
bytes, integers or floating point values in one or more 2D
matrices.

2.4 Open Sound Control

Open Sound Control (OSC) is a protocol for real-time au-
dio control messages [10]. Conceptually, OSC shares many
similarities with the SDIF format, as it describes a way of
streaming time-tagged bundles of data. Each bundle con-
tains one or more OSC messages, each message contain-
ing an OSC address and the actual data in a list format.
The OSC address contains a hierarchical structure of hu-
man readable words, separated by slashes, making it sim-
ple to work with and share data between researchers and
musicians (e.g. /mySynth/pitch 120).

3. DATA TYPES

We are working with many different sorts of data. Part
of GDIF development is to define data types that are as
generic and at the same time as well defined as possible.
In other words, data types in GDIF recordings must be de-
fined in such a way that they are open enough for different
use, and at the same time detailed enough to leave little
or no doubt about what sort of data that is contained in a
GDIF stream.

Frames and matrices in SDIF streams are identified by a
four letter type tag. This introduces some challenges when
it comes to describing data. By convention, the first let-
ter should be X for non-standard SDIF streams, leaving us
with three letters to define the frame type and matrix type
we are working with. Although it makes sense to distin-
guish between the two, our current implementation makes
no distinction between the frame type and the matrix type.
This means that the current system only allows a single
data matrix inside each frame, and the frame automatically
adapts the type tag from the matrix it contains. This has
been sufficient in our use so far, but it would make more
sense to let the frame type identify the stream (e.g. accord-
ing to input device) and the matrix types define the data
within each matrix (e.g. position, orientation, etc.).

For our matrix type tags, we have chosen to let the second
letter determine the main data category, e.g. “P” for posi-
tion data. The third letter denotes the dimensionality of the
data, e.g. “2” if we are only tracking horizontal position.
The fourth letter lets us know if the stream contains delta
values of the original data. This number denotes derivative
level, for instance “1” if the stream is the first derivative of
the original data. This means that an XP32 matrix would
contain 3-dimensional data, of the second derivative from
the original position stream (i.e. acceleration).

We are sometimes interested in the absolute value of a
vector, i.e. the length of the vector independent of the di-
rection. This type of matrix is denoted by replacing the
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third letter in the type tag with an “A”. To formalise, this
gives us the general case:

XPjd[n] = XPj(d — 1)[n] — XPj(d — 1)[n — 1]

XPAd[n] =

J

> XPjd[n][i]?
i=1

and as an example, the specific case:

XP31[n] = XP30[n] — XP30[n — 1]

XPAlln] =

where d denotes the derivative level, n denotes the frame
index in a sequence of frames, i denotes the dimension in-
dex at frame n, and j denotes dimensionality of the stream.

In addition to streams describing position, velocity, etc.,
GDIF data types include everything from raw data from
sensors to higher level descriptors. Table 1 displays a se-
lection of the GDIF data types we are currently working
with. A more complete list of data types can be found at
the wiki that has been set up for GDIF and SpatDIF devel-
opment.* It should be noted that these are our suggestions,
and we welcome a discussion on these data types.

Table 1. A selection of GDIF data types.

Tag Description

XIDX | Referring to a certain event in a series of events,
e.g. triggering a sound sample from a sample bank.

XP30 | 3-dimensional position stream.

XP31 3-dimensional position stream. 1st derivative.
(i.e. velocity calculated from position data)

XPA1 | x-dimensional position stream.
Absolute value of 1st derivative.

XO0QO | Orientation stream, four quaternion values.

XA30 | 3D acceleration stream. Used when working with
systems that provide acceleration data as raw data.

IMID | MIDI stream, already defined in the SDIF standard

XEMG | Electromyography sensor input.

XMQO | Quantity of motion stream.

XMAL1 | Area of motion stream. First derivative.

The system accepts all measurement units. However, we
recommend using the International System of Units (SI)
whenever this is possible. This will make it easier for re-
searchers to share GDIF recordings.

4. IMPLEMENTATION

The tools presented in this paper are based on the SDIF
tools in the FTM library, > mainly ftm.sdif.write for
recording and ftm.track for playback [11]. They are
implemented in Max as modules in the Jamoma® frame-
work. These frameworks provide solutions for OSC and
SDIF. The two main modules in the toolbox are the record-
ing module and the playback module.

“http://xdif.wiki.ifi.uio.no/Data_types
Shttp://ftm.ircam.fr
6 http://www. jamoma.org

The recording module, based on ftm.sdif.write,is
designed for writing matrix-formatted data into separate
streams in an SDIF file (Figure 1).

inlet 2: data to be recorded l
myfile_1.sdif [+]

‘inlet 1: control messages

@ /gdif.record

Set up streams

Folder [/Users/me/Desktop/ ]

File Name: take

Figure 1. The record module

Different streams are separated by different OSC names-
paces (e.g. \stream\O0, \stream\1). The internal com-
ponents of the recording module are created dynamically
based on the user’s selection of streams from a drop-down
menu in the GUI. The user may customise the stream types
that are available in the drop-down menu by editing a sim-
ple text file. Using a script language that is specific to the
Max environment, stream definition commands and data
descriptions are generated dynamically and sent to the
ftm.sdif.write object whenever the user inputs a
command or selects streams. The internally used OSC-
routing objects as well as the ftm.sdif.write object
are also created dynamically whenever the user chooses a
different selection of data types. Figure 2 displays a simpli-
fied flowchart of how the record module works internally.

Replace ftm.sdif.record and Create type declarations
osc-routing objects in patch messages
T v
Store stream type in Send type declaration
memory messages and file name
\ to ftm.sdif.record
\ New stream /
Read type- Store file name
declarations file File _p| in memory
4 Wait for user input name i
Populate stream = \ -
selection menus [ Send file name
Record on to ftm.sdif.record

ftm.sdif.write handles
time-tagging and storing
of incoming data

Figure 2. Simplified flowchart of the scripting system in
the record module

The playback module displayed in Figure 3 is based on
the ftm.track object. When an SDIF file is loaded into
the playback module, an ftm. t rack object is created for
each stream in the file. The data that is streamed from each
track object is converted from the FTM float matrix format
to Open Sound Control bundles using the OSC tools de-
veloped at CNMAT [10]. OSC does not support streaming
matrices, hence each matrix row is separated as an instance
number with its own OSC sub-address, e.g. first row gets
the address /XP0OS/1, second row /XPOS/2, etc. The
user may set a custom buffer size for the OSC time tag to
compensate for network latency and jitter. This buffer is
set to a default value of 10 milliseconds.

The modules provide the user with a simple user inter-



112

A Toolbox for Storing and Streaming Music-related Data

© /gdif.play

File... }[>MQo (with 1 rows and 1.| % ] (Al off) (Al on m
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OpenSoundControl

=
jcom.oscroute /XP30/1 /XOEOD/1 /XMQO/1
= — -

onentation

= [ quantity of motion
g

Figure 3. The playback module streaming a 3D position
stream, an euler orientation stream and a quantity of mo-
tion stream

position

i

face. Rather than having to record data into separate un-
synchronised buffers, the user can now record data into a
single container without worrying about synchronisation.
The presented tools are open source, and can be down-
loaded by checking out the Jamoma repository from github, ’
or directly from the project website.® Since the data is
recorded as SDIF files, users may benefit from tools like
EasDIF° for analysis and post processing.

5. CONCLUSIONS AND FUTURE WORK

This paper has presented challenges we are facing when
studying music-related body motion, and our solution to
some of these problems in the form of a software toolbox.
This toolbox includes a flexible module for making syn-
chronized recordings of music-related data, and a module
for playing back the data in real-time. The implementation
makes the GDIF recording setup fast and easy, and makes
this type of technology available to less experienced Max
users.
Future development includes:

e Separating frame types as independent definitions.
This will allow describing the stream type accord-
ing to the device (e.g. a motion capture stream), and
each frame can contain different data matrices (e.g. a
position matrix and an orientation matrix).

e Human readable OSC namespace for data from the
playback module (currently using the SDIF type tag).

o Integration of the Jamoma dataspaceLib for conver-
sion between different data representations [12].

e Implementing simple data processing like automatic
filtering and calculating absolute values.

e Develop a sequencer-like visual display, allowing zoom-

ing, editing, etc.
e Database for storing large collections of GDIF data.
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ABSTRACT

This paper compares the use of two different technolo-
gies for controlling sound synthesis in real time: the in-
frared marker-based motion capture system OptiTrack and
Xsens MVN, an inertial sensor-based motion capture suit.
We present various quantitative comparisons between the
data from the two systems and results from an experiment
where a musician performed simple musical tasks with the
two systems. Both systems are found to have their strengths
and weaknesses, which we will present and discuss.

1. INTRODUCTION

Motion capture (MoCap) has become increasingly popu-
lar among music researchers, composers and performers
[1]. There is a wide range of different MoCap technolo-
gies and manufacturers, and yet few comparative studies
between the technologies have been published. Where one
motion capture technology may outperform another in a
sterilized laboratory setup, this may not be the case if the
technologies are used in a different environment. Optical
motion capture systems can suffer from optical occlusion,
electromagnetic systems can suffer from magnetic distur-
bance, and so forth. Similarly, even though one motion
capture system may be better than another at making accu-
rate MoCap recordings and preparing the motion capture
for offline analysis, the system may not be as good if the
task is to do accurate motion capture in real time, to be
used for example in controlling a sound synthesizer.

In this paper we compare the real-time performance of
two motion capture systems (Figure 1) based on different
technologies: Xsens MVN which is based on inertial sen-
sors, and OptiTrack which is an infrared marker-based mo-
tion capture system (IrMoCap). Some of our remarks are
also relevant to other motion capture systems than the ones
discussed here, though the results and discussions are di-
rected only toward OptiTrack and Xsens.

We will return to a description of these technologies in
section 3. In the next section we will give a brief overview
of related work. Section 4 will present results from com-
parisons between the two motion capture systems, which
are then discussed in section 5.
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Figure 1. The NaturalPoint OptiTrack system (left) and
the Xsens MVN system (right).

2. RELATED WORK AND BACKGROUND

Motion capture technologies have been used in musical
contexts for a long time, and during the 00’s we saw several
examples of using various motion capture technologies for
real-time control of sound. This includes electromagnetic
motion capture [2], video-based motion capture [3], opti-
cal marker-based motion capture [4] and inertial motion
capture [5], to mention a few.

Several researchers have reported on differences between
motion capture technologies. Most of these reports, how-
ever, have been related to offline analysis for medical or
animation purposes. Cloete et al. [6] have compared the
kinematic reliability of the Xsens MVN suit with an IrMo-
Cap system during routine gait studies. They conclude that
the Xsens MVN system is comparable to IrMoCap systems
but with shortcomings in some angle measurements. They
also point out several practical advantages with the Xsens
suit, like its wireless capabilities and quick set-up time.
Another experiment by Thies et al. [7] found comparable
acceleration values from two Xsens sensors and an IrMo-
Cap system, and showed that calculating acceleration from
the IrMoCap position data introduced noise. One of the
conclusions from this experiment was that filtering meth-
ods need to be investigated further.

Miranda and Wanderley have pointed out some strengths
and weaknesses with electromagnetic and optical motion
capture systems [1]: Electromagnetic systems are able to
track objects, even if it is not within the direct line of sight
of external cameras. On the other hand, these systems need
cables which may be obtrusive. Optical systems are su-
perior to many other systems in terms of sampling rate,
since they may track markers at sampling rates of more
than 1000 Hz, and systems using passive markers have no
need for obtrusive cables. Still, these systems need a direct
line of sight between markers and cameras, and a passive
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marker system may not be able to uniquely identify each
marker.

Possibilities, strengths and weaknesses for real-time mo-
tion capture in musical contexts are discussed individually
for IrMoCap and full-body inertial sensor systems in [8]
and [9]. In this paper we will compare the real-time abili-
ties of the two technologies.

2.1 Initial remarks on requirements when using
MoCap for real-time control of music

A musical instrument is normally controlled with excita-
tion and modification actions [10]. We can further dis-
tinguish between two types of excitations: discrete (i.e.
trigger), or continuous (like bowing a string instrument).
Dobrian [11] identifies two types of control data: triggers
and streams of discrete data representing a sampling of a
continuous phenomenon. Following these remarks, we are
looking for a system able to robustly trigger sound events
with good temporal accuracy, and to continuously control
a system with good spatial accuracy and little noise. Con-
sequently, we have chosen to emphasize three properties:
spatial accuracy, temporal accuracy and system robustness.
We will come back to measurements and discussion of
these properties in sections 4 and 5.

3. TECHNOLOGIES
3.1 NaturalPoint OptiTrack

NaturalPoint OptiTrack is an optical infrared marker-based
motion capture system (IrMoCap). This technology uses

several cameras, equipped with infrared light-emitting diodes.

The infrared light from the cameras is reflected by reflec-
tive markers and captured by each camera as 2D point-
display images. By combining several of these 2D images
the system calculates the 3D position of all the markers
within the capture space. A calibration process is needed
beforehand to determine the position of the cameras in re-
lationship to each other, and in relationship to a global co-
ordinate system defined by the user.

By using a combination of several markers in a specific
pattern, the software can identify rigid bodies or skeletons.
A rigid body refers to an object that will not deform. By
putting at least 3 markers on the rigid body in a unique
and non-symmetric pattern, the motion capture system is
able to recognize the object and determine its position and
orientation. A skeleton is a combination of rigid bodies
and/or markers, and rules for how they relate to each other.
In a human skeleton model, such a rule may be that the
bottom of the right thigh is connected to the top of the right
calf, and that they can only rotate around a single axis. In
the NaturalPoint motion capture software (Arena), there
exist 2 predefined skeleton models for the human body. It
is not possible to set up user-defined skeletons.

3.2 The Xsens MVN

The Xsens MVN technology can be divided into two parts:
(1) the sensor and communication hardware that are re-
sponsible for collecting and transmitting the raw sensor

data, and (2) the Xsens MVN software engine, which in-
terprets and reconstructs the data to full body motion while
trying to minimize positional drift.

The Xsens MVN suit [12] consists of 17 inertial MTx
sensors, which are attached to key areas of the human body.
Each sensor consists of 3D gyroscopes, accelerometers and
magnetometers. The raw signals from the sensors are con-
nected to a pair of Bluetooth 2.0-based wireless transmit-
ters, which again transmit the raw motion capture data to a
pair of wireless receivers.

The data from the Xsens MVN suit is fed to the MVN
software engine that uses sensor fusion algorithms to pro-
duce absolute orientation values, which are used to trans-
form the 3D linear accelerations to global coordinates. These
in turn are translated to a human body model which imple-
ments joint constraints to minimize integration drift. The
Xsens MVN system outputs information about body mo-
tion by expressing body postures sampled at a rate up to
120Hz. The postures are modeled by 23 body segments
interconnected with 22 joints.

4. MEASUREMENTS

We carried out two recording sessions to compare the Op-
tiTrack and Xsens systems. In the first session, a series of
simple measurements were performed recording the data
with both Xsens and OptiTrack simultaneously. These record-
ings were made to get an indication of the differences be-
tween the data from the systems. In the second session
(Section 4.5), a musician was given some simple musical
tasks, using the two MoCap systems separately to control

a sound synthesizer.

4.1 Data comparison

Our focus is on comparing real-time data. Therefore, rather
than using the built-in offline recording functionality in the
two systems, data was streamed in real-time to a separate
computer where it was time-stamped and recorded. This
allows us to compare the quality of the data as it would
appear to a synthesizer on a separate computer. Two termi-
nal applications for translating the native motion capture
data to Open Sound Control and sending it to the remote
computer via UDP were used.

We have chosen to base our plots on the unfiltered data re-
ceived from the motion capture systems. This might differ
from how a MoCap system would be used in a real world
application, where filtering would also be applied. Using
unfiltered data rather than filtered data gives an indication
of how much pre-processing is necessary before the data
can be used for a musical application.

The Xsens suit was put on in full-body configuration. For
OptiTrack, a 34-marker skeleton was used. This skeleton
model is one of the predefined ones in the Arena software.
Markers were placed outside the Xsens suit, which made
it necessary to adjust the position of some of the markers
slightly, but this did not alter the stability of the OptiTrack
system.

Both systems were carefully calibrated, but it was diffi-
cult to align their global coordinate systems perfectly. This
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is because OptiTrack uses a so-called L-frame on the floor
to determine the global coordinate system, whereas Xsens
uses the position of the person wearing the suit during the
calibration to determine the origin of the global coordinate
system. For this reason, we get a bias in the data from one
system compared to the other. To compensate for this, the
data has been adjusted so that the mean value of the data
from the two systems more or less coincide. This allows
us to observe general tendencies in the data.

4.2 Positional accuracy and drift

When comparing the Xsens and the OptiTrack systems there
is one immediately evident difference. OptiTrack mea-
sures absolute position, while the sensors in the Xsens MVN
suit can only observe relative motion. With Xsens, we are
bound to experience some positional drift even though the
system has several methods to keep it to a minimum [9].

4.2.1 Positional accuracy - still study

Figure 2 shows the position of the left foot of a person sit-
ting in a chair without moving for 80 seconds. The upper
plot shows the horizontal (XY) position and the lower plot
shows vertical position (Z) over time. In the plot it is ev-
ident that Xsens suffers from positional drift, even though
the person is sitting with the feet stationary on the floor.
Xsens reports a continuous change of data, with a total drift
of more than 0.2 m during the 80 seconds capture session.
Equivalent plots of other limbs show similar drift, hence
there is little relative drift between body limbs.

This measurement shows that OptiTrack is better at pro-
viding accurate and precise position data in this type of
clinical setup. However, for the vertical axis, we do not
observe any major drift, but the Xsens data is still noisier
than the OptiTrack data.

4.2.2 Positional accuracy - walking path

The left plot in Figure 3 displays the horizontal (XY) po-
sition of the head of a person walking along a rectangular
path in a large motion capture area recorded with Xsens.
The plot shows a horizontal positional drift of about 2 me-
ters during the 90 seconds capture session. Xsens shows
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Figure 2. Horizontal and vertical plots of a stationary foot.
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Figure 3. Recording of the horizontal (left) and vertical
(right) position of the head.

no drift in the vertical direction (Z), as can be seen in the
right plot. This is expected since the MVN engine maps
the data to a human body model and assumes a fixed floor
level. Because of the major horizontal drift we can con-
clude that Xsens MVN is not an ideal MoCap system if
absolute horizontal position is needed.

4.2.3 Camera occlusion noise

The spatial resolution of an IrMoCap system mainly re-
lies on the quality of the cameras and the calibration. The
cameras have a certain resolution and field of view, which
means that the spatial resolution of a marker is higher close
to the camera than far away from the camera. The calibra-
tion quality determines how well the motion capture sys-
tem copes with the transitions that happen when a marker
becomes visible to a different combination of cameras. With
a “perfect” calibration, there might not be a visible ef-
fect, but in a real situation we experience a clearly visible
change in the data whenever one or more cameras fail to
see the marker, as shown in Figure 4. When a marker is
occluded from a camera, the 3D calculation will be based
on a different set of 2D images.

Magnitude of position of a stationary marker
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Figure 4. OptiTrack: Magnitude of the distance from the
mean position of a stationary marker. The disturbances in
the last part of the measurement is caused when a person
moves around the marker, and thus blocks the marker in
one or more cameras at a time. FrameRate 100 Hz

4.2.4 Xsens floor level change

If the motion capture area consists of different floor lev-
els, like small elevated areas, the Xsens MVN engine will
match the sensed raw data from the suit against the floor
height where the suit was calibrated. This can be adjusted
in post-processing, but real-time data will suffer from arti-
facts during floor level changes, as shown in Figure 5.

4.3 Acceleration and velocity data

In our experience, velocity and acceleration are highly us-
able motion features for controlling sound. High peaks
in absolute acceleration can be used for triggering events,
while velocity can be used for continuous excitation.
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Figure 5. Recording of the vertical position of the left foot
of a person, stepping onto an elevated area (around 0.25 m
high). When the user plants his left foot on the object, the
Xsens MVN engine will eventually map the stationary foot
to floor level (18 to 19 s).

A difference between the two MoCap systems is that the
Xsens system can offer velocity and acceleration data di-
rectly from the MVN engine [9]. When using the Opti-
Track system we need to differentiate position data to es-
timate velocity and acceleration. If the positional data is
noisy, the noise will be increased by differentiation (act
as an high-pass filter), as we can see from Figure 6. The
noise resulting from optical occlusion (see Section 4.2.3)
is probably the cause for some of OptiTrack’s positional
noise.

Even though the Xsens position data is less accurate, it
does offer smoother velocity and, in particular, accelera-
tion data directly. We can use filters to smooth the data
from the OptiTrack system; however, this will introduce a
system delay, and hence increased latency.

Magnitude of position, velocity and accelration of Right Hand

Figure 6. Velocity and acceleration data quality compari-
son (OptiTrack in black and Xsens in red).

4.4 Action-to-sound: latency and jitter

Low and stable latency is an important concern for real-
time musical control [13], particularly if we want to use the
system for triggering temporally accurate musical events.
By action-to-sound latency we mean the time between the
sound-producing action and the sonic reaction from the
synthesizer.

To be able to measure the typical expected latency in a
setup like that in Figure 7 we performed a simple experi-
ment with an audio recorder. One computer was running
one of the MoCap systems and sent OSC messages con-
taining the MoCap information about the user’s hands. A
patch in Max/MSP was made that registered hand claps

7 Action-
g/ /;:‘—b MoCap —| Sound [y Sound )
e

System Mapping Synthesis
5

Figure 7. The acoustic hand clap and the triggered sound
were recorded to measure latency of the systems.

based on MoCap data and triggered a click sound for each
clap. The time difference between the acoustic hand clap
and the triggered sound should indicate the typical expected
latency for the setup.

Both MoCap systems were run on the same PC!. The
sound-producing Max/MSP patch was run on a separate
Mac laptop? and received OSC messages from the Mo-
Cap systems through a direct Gbit Ethernet link. All ex-
periments used the same firewire connected sound card,
Edirol FA-101, as output source. The hand claps and the
click output from the Max patch was recorded with a mi-
crophone. Statistical results from the time delays between
hand claps and corresponding click sound in the recorded
audio files are given in Table 1. The values are based on
30 claps each. In this experiment, OptiTrack had a faster
sound output response and a lower standard deviation than
Xsens. The standard deviation is included as an indica-
tion of the jitter performance of the MoCap systems, since
lower standard deviation indicates higher temporal preci-
sion.

Higher Xsens latency and jitter values are probably partly
due to its use of Bluetooth wireless links. The Xsens MVN
system also offers a direct USB connection option. We
performed the same latency test with this option; and the
results indicate that the connection is around 10-15 mil-
liseconds faster, and has a lower jitter performance, than
the Bluetooth link.

The upper bounds for “intimate control” have been sug-
gested to be 10ms for latency and 1ms for its variations
(jitter) [13]. If we compare the bounds with our results, we
see that both systems have relatively large latencies. How-
ever, in our experience, a latency of 50ms is still usable in
many cases. The high jitter properties of the Xsens system
are probably the most problematic, especially when one
wants high temporal accuracy.

min | mean | max | std. dev.
OptiTrack 34 42.5 56 5.0
Xsens Bluetooth | 41 52.2 83 8.4
Xsens USB 28 37.2 56 6.9

Table 1. Statistical results of the measured action-to-sound
latency, in milliseconds.

4.5 Synthesizer control

In a second experiment, a musician was asked to perform
simple music-related tasks with the two motion capture

! Intel 2.93 GHz i7 with 8GB RAM running Win 7
2 MacBook Pro 10.6.6, 2.66 GHz Duo with 8GB RAM
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systems. Three different control mappings to a sound syn-
thesizer were prepared:

e Controlling pitch with the distance between the hands

e Triggering an impulsive sound based on high accel-
eration values

e Exciting a sustained sound based on the velocity of
the hand

For the pitch mapping, the task was to match the pitch of
one synthesizer to the pitch of another synthesizer moving
in the simple melodic pattern displayed in Figure 8, which
was repeated several times. This task was used to evaluate
the use of position data from the two systems as the control
data.

For the triggering mapping, the task was to follow a pulse
by clapping the hands together. This task was given to eval-
uate acceleration data from the two systems as the control
data, and to see if the action-to-sound latency and jitter
would make it difficult to trigger events on time.

The excitation mapping was used to follow the loudness
of a synthesizer, which alternated between “on” and “off”
with a period of 1 second. This task was used to evaluate
velocity data as control data.

The reference sound (the sound that the musician was
supposed to follow) and the controlled sound (the sound
that was controlled by the musician) were played through
two different loudspeakers. The two sounds were also made
with different timbral qualities so that it would be easy to
distinguish them from each other. The musician was given
some time to practice before each session. To get the best
possible accuracy, both systems were used at their highest
sampling rates for this experiment: Xsens at 120 Hz, and
OptiTrack at 100 Hz.

U =0 Zo

Figure 8. The simple melody in the pitch-following task.
This was repeated for several iterations.

4.5.1 Pitch-following results

We found no significant difference between the performances

with the two systems in the pitch-following task. Figure 9
displays an excerpt of the experiment, which shows how
the participant performed with both Xsens and OptiTrack.
The participant found this task to be difficult, but not more
difficult for one system than the other. Also, the data shows
no significant difference in the performances with the two
systems. This indicates that the quality of relative position
values (between markers/limbs) is equally good in the two
systems for this kind of task.

4.5.2 Triggering results

Table 2 shows the results of the latency between the ref-
erence sound and the controlled sound for the triggering
test. They are based on 40 hand claps for each of the two
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Figure 9. There was no significant difference between the
two systems for the pitch-following task.
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Figure 10. The major difference between the two systems
in the continuous onset task was the noisy data from the
OptiTrack system, which made it difficult to be quiet be-
tween the onsets. Apart from this, there was no big differ-
ence between the two systems.

MoCap systems. As we can see, the mean latency value is
almost equal for Xsens and OptiTrack. Xsens has a higher
standard deviation, which may indicate that the Xsens jit-
ter shown in Table 1 makes it difficult for the user to make
a steady trigger pulse.

min | mean | max | std. dev.
OptiTrack | 18.5 | 452 | 77.1 13.8
Xsens 2.6 44,7 | 96.3 28.3

Table 2. Statistical results, in milliseconds, of the mea-
sured time differences between reference signal and con-
trol signal.

4.5.3 Continuous onset results

For the continuous onset task, where the loudness of the
sound was controlled by the absolute velocity of the right
hand, we also observed a time delay between the onset of
the reference tone and the onset of the sound played by our
performer. This delay was present for both systems. In
this task, the OptiTrack system suffered from noise, which
was introduced when calculating the absolute velocity of
the unfiltered OptiTrack data, as described in Section 4.3
(see Figure 10). The musician said that this made it more
difficult to be quiet between the reference tones, and that
this task was easier to perform with the Xsens system.
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5. DISCUSSION

We have seen several positive and negative aspects with
the quantitative measurements of the two technologies. In
this section we will summarize our experiences of working
with the two systems in a music-related context.

The main assets of the Xsens suit is its portability and
wireless capabilities. The total weight of the suit is approx-
imately 1.9 kg and the whole system comes in a suitcase
with the total weight of 11 kg. Comparably, one could ar-
gue that a 8-camera OptiTrack setup could be portable, but
this system requires tripods, which makes it more trouble-
some to transport and set up. OptiTrack is also wireless, in
the sense that the user only wears reflective markers with
no cables, but the capture area is restricted to the volume
that is covered by the cameras, whereas Xsens can easily
cover an area with a radius of more than 50 meters. When
designing a system for real-time musical interaction based
on OptiTrack, possible marker dropouts due to optical oc-
clusion or a marker being moved out of the capture area
must be taken into account. For Xsens, we have not experi-
enced complete dropouts like this, but the Bluetooth link is
vulnerable in areas with heavy wireless radio traffic, which
may lead to data loss. Nevertheless, we consider Xsens to
be the more robust system for on-stage performances.

OptiTrack has the benefit of costing less than most other
motion capture technologies with equivalent resolution in
time and space. The full Xsens suit is not comfortable to
wear for a longer time period, whereas OptiTrack markers
impose no or little discomfort. On the other hand, Opti-
Track markers can fall off when tape is used to attach them.
Also, OptiTrack’s own solution for hand markers, where a
plastic structure is attached to the wrist with Velcro, tends
to wobble a lot, causing very noisy data for high accelera-
tion movement, something we experienced when we set up
the hand clapping tests. Xsens has a similar problem with
the foot attachments of its sensors, which seems to cause
positional artifacts.

Sections 4.2 to 4.5 show a number of differences between
Xsens and OptiTrack. In summary, OptiTrack offers a
higher positional precision than Xsens without significant
drift, and seemingly also lower latency and jitter. Xsens
delivers smoother data, particularly for acceleration and
velocity. Our musician subject performed equally well in
most of the musical tasks. However, the noisy OptiTrack
data introduced some difficulties in the continuous onset
task, and also made it challenging to develop a robust al-
gorithm for the triggering task. Furthermore, Xsens jitter
made the triggering task more difficult for the musician.

6. CONCLUSIONS

Both OptiTrack and Xsens offer useful MoCap data for
musical interaction. They have some shared and some in-
dividual weaknesses, and in the end it is not the clinical
data that matters, but the intended usage. If high positional
precision is required, OptiTrack is preferable over Xsens,
but if acceleration values are more important, Xsens pro-
vide less noisy data without occlusion problems. Overall,
we find Xsens to be the most robust and stage-friendly Mo-

Cap system for real-time synthesis control.
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ABSTRACT

The paper presents an analysis of the quality of motion data
from an iPod Touch (4th gen.). Acceleration and orienta-
tion data derived from internal sensors of an iPod is com-
pared to data from a high end optical infrared marker-based
motion capture system (Qualisys) in terms of latency, jitter,
accuracy and precision. We identify some rotational drift
in the iPod, and some time lag between the two systems.
Still, the iPod motion data is quite reliable, especially for
describing relative motion over a short period of time.

1. INTRODUCTION

With advances in mobile technology during the last years,
mobile devices have become increasingly popular for musical
interaction. In this paper we will focus on Apple’s i0OS
devices, which come with a variety of sensors, depending on
the type and model: touch screen, accelerometer, gyroscope,
GPS, and magnetometer. Additionally, pre-processed data
extracted from the raw sensor data, e.g. orientation and
acceleration, is made available through the iOS SDK.

The motivation for the present study is to learn more
about the quality of the motion data from an iPod Touch.
Several researchers have reported on strengths and weak-
nesses of 10S devices, e.g. [9, 11], but, these are rarely quan-
tified. In order to know how precisely a motion feature can
be reproduced, how fast an action can be recognized, and
so forth, we need quantitative evaluations of the data.

Some musical parameters may require high precision and
accuracy, while other parameters do not, and with the proper
knowledge about the quality of the iPod data, we can make
more qualified decisions when mapping motion parameters
to musical parameters. This paper evaluates data from an
iPod Touch by comparing it to data from a state-of-the-art
optical marker-based motion capture (mocap) system from
Qualisys, through analyses of timing (i.e. latency and jit-
ter), as well as accuracy and precision, hereunder drift and
noise of orientation and acceleration data.

2. BACKGROUND

In the last decade or so, we have seen an increased inter-
est of mobile phones for musical applications in the NIME
community and elsewhere. PDAs [18] and Nokia phones
[7] have been used, in addition to the increasing number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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Figure 1: The iPod, defined as a rigid body, enables
Qualisys tracking of orientation and position.

of applications developed for iOS devices in the last years,
e.g. [4, 12, 19]. Recently, mobile devices have also become
the main computing platform of certain formalised ensem-
bles, e.g. [14].

Several general purpose environments for working with
music on mobile phones have been developed, including ver-
sions of PureData for PDAs [10], mobile phones [15], and
the libpd port of PureData to iOS and Android [2]. More-
over, the Synthesis ToolKit (STK) has been ported to Sym-
bian [6], and iOS [3], and the urMus environment has been
designed for rapid design of mobile musical instruments [5].

In [8], Essl and Rohs present a design space based on
using sensors on mobile devices for developing musical in-
struments. They emphasise the importance of considering
the properties of the sensors at hand. Specifically for gyro-
scopes and accelerometers, which are used in the iPod Touch
discussed in the present paper, they mention that these sen-
sors are good for measuring relative motion, but that the
lack of an absolute frame of reference makes absolute mea-
surements difficult. Through the experiments presented in
the next chapter, we have aimed to quantify such measures.

3. EXPERIMENT

We have used data from a Qualisys optical infrared marker-
based mocap system as a reference when evaluating the iPod
data. Our setup consisted of 9 Oqus 300 cameras, operat-
ing at a sampling rate of 150 Hz. The system is reported
to have a high spatial resolution. However, this resolution
depends on the distance between the object that is being
captured and the mocap cameras, in addition to the cali-
bration quality [17].

The iPod (Figure 1) was equipped with four reflective
markers (¢ = 12 mm). The configuration of the markers
was used to define the iPod as a rigid object, with centre
position at the geometric centre of the markers. In this man-
ner, we used the optical motion capture system to record
the position and the orientation of the iPod.

3.1 iPod

We used an iPod Touch, 4th generation, running iOS ver-
sion 4.3.5, for the experiment. The device contains a three-



124 Comparing Motion Data from an iPod Touch to Infrared Marker-Based Motion Capture

axis accelerometer and gyroscope, which is used to calcu-
late certain motion features on the iPod. We have not used
the raw data values from the accelerometer and gyroscope,
but rather utilised the motion features that are available
through the CMDeviceMotion class in the iOS Developer li-
brary [1]: attitude, rotationRate, gravity, and userAcceler-
ation. The reason for using these features is that they are
intended to be conceptually similar to the data provided by
the Qualisys system, as opposed to what raw sensor data
(e.g. from an accelerometer) would be.

We have developed an application for accessing these data
from the iPod. The motion features were sampled at 60
Hz, and packed into OpenSound Control (OSC) bundles.
These were sent via UDP over a wifi network set up by the
recording computer. The 60 Hz sampling rate was set in
the iPod application at the development stage, and other
sampling rates have not been tried in this paper.

3.2 Recordings

The data from the Qualisys system was sent as OSC bundles
via UDP over Ethernet to the recording computer. The
iPod data and Qualisys data were recorded in Maxb, as
separate streams in an SDIF file, to obtain synchronized
recordings of the motion data [13]. The recorded data types
are presented in Table 1, these were provided natively from
the devices. In this table, global means that the data stream
is given in relation to some global, fixed, coordinate system,
and local means that the data stream is measured in relation
to the local coordinate system of the iPod (Figure 1).

The iPod was held in one hand, and a total of 22 record-
ings were made. These included short recordings of tilting
the iPod around each of the rotational axes individually, as
well as longer, spontaneous rotational and shaking gestures
(durations &~ 4-23 seconds). Furthermore, a ten minute
recording was made where the iPod was lying still. Orien-
tation was recorded both as Euler angles and 3 x3 Direction
Cosine Matrix (DCM).! Since the coordinate systems from
the iPod and Qualisys were not aligned, the iPod orienta-
tion data was adjusted by hand to match the Qualisys data
during postprocessing.

Table 1: Recorded motion data

Qualisys | iPod
Orientation  Global Orientation Global
Position Global | User Acceleration Local
Marker pos. Global Gravity Local

Rotation rate Local

4. ANALYSIS

We start the data analysis by looking at issues related to
timing, including latency and jitter. Subsequently, we move
on to accuracy and precision of rotational and positional
data. For the analysis, we selected a subset of the record-
ings where there were no gaps in the motion capture data
(i.e. the rigid body was tracked at every frame). The results
presented in this section are discussed in Section 5.

4.1 Timing
4.1.1 Lag

We observed a time lag between the data from Qualisys and
the iPod. To analyse this, we performed cross-correlation on
the derivatives of the DCM elements, for eight recordings.
Cross-correlation measures the similarity between the two
data streams as a function of a time lag applied to one of the
streams. Using the derivatives removes inaccurately high
correlation scores of stationary extreme-value elements. To
achieve an equal number of samples in the data streams,

! Rotation Matrix / Orientation Matrix

the iPod data was up-sampled to 150 Hz using cubic spline
interpolation before the derivative was calculated. By aver-
aging the cross correlations, we achieved an estimate of the
time lag between Qualisys and the iPod for each recording,
as shown for one recording in Figure 2, the figure also shows
that for the eight recordings, the mean lag between Qualisys
and iPod data was 43 ms, standard deviation (SD) 8 ms.

Lag analysis, DCM derivative. Lag: 5 samples
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Figure 2: The plot shows the averaged cross-

correlation between the DCM elements of the iPod
versus Qualisys for one recording. In this record-
ing, the lag is 5 samples (~33 ms). The table below
shows lag statistics for 8 recordings. Qualisys and
iPod correlation is highest when shifted by 43 ms.

4.1.2 Jitter

For applications where the iPod sensor data is sent to an
external device, it can be crucial that the timing of received
data packets is stable. To evaluate the temporal stability
of the system, we measure jitter, as the variation in the
time interval between received OSC bundles, in a sequence
of 1000 samples. Figure 3 shows a histogram and statistics
of the time intervals between successive samples. The stan-
dard deviations give indications of the amount of jitter in
the data streams. This measure is high for both systems,
suggesting that variations in the network connections be-
tween the sensing devices and the receiving computer might
be partly responsible for this. Still, the standard deviation
is notably higher for the iPod than for the Qualisys system,
suggesting that the iPod is less reliable when it comes to
delivering data packets at regular time intervals.
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Figure 3: Histogram of the time interval between
1000 successive received samples.

4.2 Accuracy and Precision
4.2.1 Orientation Data

It has been shown that Spearman’s rank correlation is suit-
able for comparing data with serial correlation [16]. We
applied this to the 9 DCM elements of the iPod and Qual-
isys to analyse accuracy of the orientation data. Again, a
cubic spline was used to upsample the iPod data, and the
data was time-shifted and trimmed according to the iPod
lag, as described in Section 4.1.1.

Figure 4 shows a histogram of the correlation coefficients
for the 9 DCM elements for 8 recordings. 2/3 of the cor-
relation coefficients are above 0.96, which indicates that in
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general, the iPod reproduces the “true” orientation of the de-
vice satisfactorily. A few of the elements in the histogram
have low correlation coefficients. This may be explained
by a low variance in the particular DCM element, which
again causes a poor signal-to-noise ratio. The 8 recordings
involved simple rotations around single axes, as well as com-
posite rotations, with durations between 4 and 10 seconds.
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Figure 4: Histogram of correlation coefficients when
correlating the orientation coordinates (DCM) of
the iPod to Qualisys.

To analyse rotational drift, a gradient for each of the Eu-
ler angle coordinates was extracted by linear regression of
the 10 minute recording of the iPod lying still in the motion
capture space. A small amount of drift was observed in the
orientation data. This, together with analysis of the rota-
tional noise is shown in Table 2. The noise measurements
are the RMS level of the Euler coordinates (in degrees),
after subtracting the average drift, and centering around
the mean value (removing offset). Note that compared to
the Qualisys system, the iPod performs quite well when it
comes to roll and pitch, with superior drift performance,
and equal noise level, but the yaw measurements from the
iPod are less accurate and less precise. The average yaw
drift of a still recording is 70.6x10~° deg/s which is equiva-
lent to a drift of 2.5 deg/h. An additional effort to force the
device to give inaccurate yaw data by shaking the device
violently for 23 s, resulted in a yaw drift of 11.5 deg.

Table 2: Rotational drift and noise (Euler, degrees)
| Drift (10 °deg/s) | Noise, RMS (= SD)
Roll | Pitch | Yaw | Roll | Pitch | Yaw
iPod -0.61 | 1.05 | 70.6 | 0.028 | 0.018 | 0.153
Qualisys | -17.2 | 7.24 | 8.95 | 0.029 | 0.018 | 0.010

4.2.2 Acceleration

Acceleration data from the iPod is limited by the range of
the accelerometer that provides the data. Apple has not
officially released these specifications for the iPod, but it
can quite easily be measured. Since the raw accelerometer
data (which includes the gravity vector) and the user ac-
celeration values are not identical, the range of acceleration
values depends on the current orientation of the device. A
recording of heavy shaking of the iPod provided maximum
and minimum values of acceleration in the range —29 m/s?
to +29 m/sQ, which is equivalent to £+3 g.

Table 3 shows acceleration data statistics for the 10 minute
recording of the iPod lying still. The table shows high stan-
dard deviations and max/min values for unfiltered Qual-
isys data. This is because even small noise in the position
data will become large when the derivative is calculated [17].
However, a filtered version, using a simple 5 sample aver-
aging filter on each derivative level significantly improves
this. As shown, the iPod has a certain offset in this data,
even though internal processing on the device is supposed
to remove the gravity component in the acceleration data.
The standard deviations from the iPod are slightly higher
than the filtered Qualisys data.

Figure 5 shows that the acceleration data from the two
systems match well (Qualisys is filtered as mentioned above).
This will be discussed more in the next section.

Table 3: iPod acceleration noise, unit: 10~% m/s?
mean | SD min | max
iPod X | 5.3 185 | -71.1 | 84.8
Y | 07 15.8 | -67.9 | 61.8
Z | 160.7 | 22.6 | 33.9 | 303.8
Qualisys X | 0.005 | 261.5 | -1613 | 1637
unfiltered Y | 0.001 | 272.4 | -2431 | 2236
Z | 0.003 | 358.1 | -2502 | 2745
Qualisys X | 0.000 | 10.4 | -49.0 | 71.3
filtered Y | 0.000 | 12.3 | -73.3 | 61.3
Z | 0.000 | 16.7 | -77.6 | 87.3

4.2.3  Position, Velocity, and Acceleration

By integrating the acceleration data from the iPod, and
differentiating the position data from Qualisys, we have es-
timated the accelerations, velocities and the positions mea-
sured by the two systems. Acceleration values from the
iPod are given in local coordinates (cf. Section 3.2), while
the second derivative of Qualisys position data provides ac-
celeration in a global coordinate system. Hence, the iPod
acceleration vector was transformed to a global coordinate
system. This means that any orientational drift also influ-
enced calculations of position.

Figure 5 shows an example of a short recording containing
a simple vertical translation followed by a pitch rotation
combined with vertical translation. The figure shows some
drift in velocity, and a lot of drift in position. The figure also
shows an attempt to correct for the positional drift through
filtering, but long filters can induce unacceptable amounts
of delay. In the figure, a 100 samples FIR filter is used,
which corrects for some of the drift, but in most real-time
settings a filter of this length would cause too much latency.

Figure 6 shows similar plots of the 10 minute still record-
ing. There was a small offset of 0.16 m/s? in the iPod accel-
eration data, which was removed before estimating velocity
and position. Even after removing the offset, the drift is
significant. After one minute, the error of the position es-
timate is more than 1 m, and after 10 minutes, it is more
than 60 m.

Magnitude of position, velocity and acceleration
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Figure 5: Plots of a short motion sequence, with
magnitude of position, velocity and acceleration for
iPod and Qualisys data. The filtered version of iPod
position data has been time-shifted forward by 51
samples to compensate for filter latency.
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Magnitude of iPod position and velocity, estimated from acceleration
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Figure 6: Plots of the magnitude of estimated posi-
tion and velocity of the iPod lying still for 10 min.

5. DISCUSSION

We have presented how the motion data from an iPod com-
pares to data from a high-end motion capture system. These
results influence how we use the iPod motion data in music
applications. Our analysis of lag in orientation data showed
that there is an average of 43 ms between the time when an
orientation is measured in the Qualisys system and when it
is measured on the iPod. There may be several reasons for
this; the different sampling rates of the two systems might
have played some role, but we find it reasonable to assume
that the processing done on the iPod to extract the ori-
entation from the sensor raw data is the main cause. This
means that it might be unsuitable to use orientation to con-
trol musical features that demand high temporal precision.

In addition to the lag, orientation data was evaluated in
terms of accuracy and precision. For roll and pitch coordi-
nates, the accuracy and precision are high, and sufficient for
continuous control of sound. Yaw, on the other hand, does
not show equally good results, and should be used with cau-
tion. The drift is still low enough to assume that it is suit-
able for measuring relative rotations over short time peri-
ods. In future work, it would be interesting to compare this
with newer iPhone models which contain magnetometers.

The data jitter from the iPod is significantly higher than
for Qualisys, despite the fact that the iPod sent less data at
a lower sampling rate. This might be important to consider
if the iPod is used for direct control of sound on a separate
computer. The jitter could be compensated for by buffering,
but this again would cause increased latency.

As expected, our attempt to estimate the position of the
iPod from the acceleration data resulted in large errors,
since the noise propagates a lot when the signal is inte-
grated. Still, we notice that some positional features can
be inferred from the iPod acceleration data. Especially
for shorter segments, it is possible to tell when the iPod
is moved in one plane, but the estimates are too imprecise
to estimate when the device reaches back to the starting
position. As seen in the lower plot in Figure 5, the accel-
eration data from the iPod is quite responsive, and is well
suited for controlling musical parameters that require high
temporal precision.
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ABSTRACT

The paper presents the SoundSaber - a musical instrument
based on motion capture technology. We present technical
details of the instrument and discuss the design develop-
ment process. The SoundSaber may be used as an example
of how high-fidelity motion capture equipment can be used
for prototyping musical instruments, and we illustrate this
with an example of a low-cost implementation of our motion
capture instrument.

1. INTRODUCTION

We introduce the SoundSaber, a musical instrument based
on optical infrared marker-based motion capture technol-
ogy. Motion capture (mocap) involves recording motion,
and translating it to the digital domain [10]. Optical motion
capture means that the system is based on video cameras,
and we distinguish between marker-based and markerless
systems which work without markers. We will refer to mu-
sical instruments based on optical motion capture as mocap
instruments.

Optical infrared marker-based mocap technology is supe-
rior to most other methods of motion capture with respect
to temporal and spatial resolution. Some systems can track
markers at a rate of more than 1000 frames per second,
and in most cases they provide a spatial resolution in the
sub-millimeter range. On the other hand, this technology
is expensive, and better suited for laboratory use than for
stage performances. A wide range of other less expensive
and portable mocap technologies exists, like accelerometer-
based sensor systems and computer vision. These provide
different types of data, usually with lower frame rate and
spatial resolution than optical infrared mocap.

A large amount of the research that is done in our lab
involves the exploration of motion capture systems for mu-
sical interaction, ranging from high-end technologies to so-
lutions like web-cameras and accelerometers. This involves
studies of the different technologies separately, and also ex-
periments on how the experience from interactive systems
based on high-end mocap technology can be transferred to
low-cost mocap technologies.

We present the SoundSaber as an example of how a seem-

ingly simple sound synthesiser may become interesting through

the use of high quality motion capture technology and an
intuitive action-sound model. With a system that is able
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to register very subtle motion at a high sampling rate, it is
possible to create an instrument that comes close to the con-
trol intimacy of acoustic instruments [11]. These ideas are
presented through reflections that have been made while de-
veloping the instrument. Included in the presentation are
some thoughts and experiences from how optical motion
capture technology can be used to prototype new interfaces
for musical expression.

In Section 2 we lay out a general theory on digital musical
instruments and use of mocap for sound generation. Sec-
tion 3 presents the SoundSaber, including considerations
and evaluations that have been made in the process of de-
velopment. In Section 4 we illustrate how the instrument
was “ported” to another technology and compare the results
to the original SoundSaber. Section 5 provides conclusions
and directions for future work.

2. MOCAP INSTRUMENT CONTROLLERS

Most digital musical instruments consist of a controller with
sensors, a sound synthesiser, and a defined mapping be-
tween the control data from the sensors and the input pa-
rameters of the synthesiser [5]. Mocap instruments are
slightly different in that the controller is separate from the
sensor technology. This distinction between the sensors and
the controller present an interesting opportunity because
almost any object can be used to communicate with the
mocap system: a rod, a hand, an acoustic instrument, etc.

This makes it possible to try out objects with different
physical properties and shapes, hence also different affor-
dances. In design literature, the affordance of an object is a
term used to describe the perceived properties of how this
object could possibly be used [6]. For an object used in a
mocap instrument, the affordance may refer to a “pool” of
different control actions that could be associated with it,
e.g. whether it should be held with one or both hands. Fol-
lowing this, physical properties of the object, such as size,
inertia, etc., will also influence how it can be handled. The
possibility of quickly swapping objects may be a useful tool
for prototyping new digital musical instruments.

The data from the motion capture system can be pro-
cessed in several ways, see [1] and [10] for discussion on how
motion capture data can be mapped to musical parame-
ters. The GrainStick installation at IRCAM used mocap
technology to generate sound in yet another way, using the
metaphor of a virtual rainstick being held between two ob-
jects [4]. Our choices for data processing in the SoundSaber
will be presented in Sections 3.2 to 3.5.

3. THE SOUNDSABER

The different components of the SoundSaber are illustrated
in Figure 1. The position of the controller is captured by
the motion capture system, which sends position data to a
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Figure 1: The figure shows the different parts of the SoundSaber instrument from controller, via motion
capture technology and feature extraction to a sound synthesiser.

Max/MSP patch that calculates various features from the
data. The features calculated by this patch are mapped to
various control parameters in a synthesiser.

One of the advantages of digital musical instruments is
that it is simple to try out different technologies for each
part of the instrument. In our own work, we have ex-
perimented with different motion capture systems and con-
trollers. Currently, we have two versions of the SoundSaber:
The original one, based on optical motion capture, and an-
other wii-controller (wiimote) implementation.

We will start the presentation of the SoundSaber by de-
scribing the controller, followed by a presentation of the mo-
tion capture technology, feature extraction and the synthe-
siser. Even though the different parts of the instrument are
presented separately, they have been developed together,
both simultaneously and iteratively.!

3.1 The controller

The SoundSaber controller that we are currently using is a
rod, roughly 120 cm in length with a diameter of 4 cm, and
is shown in Figure 2. Four markers are placed in one end of
the rod, and the motion capture system recognizes these as
a single rigid object, tracking position and orientation of the
tip of the rod. The rod is heavy enough to give it a reason-
able amount of inertia, and at the same time light enough
so that it does not feel too heavy, at least not when it is held
with both hands. The shape and mass of the rod also make
it natural to perform large and smooth actions. We have
observed that the majority of people who have tried the
instrument performed gestures that imitate fencing. The
reason for this may be their association of these gestures
with the name of the instrument in combination with the
physical properties and affordance of the controller.

Figure 2: The SoundSaber controller

3.2 Motion capture

We have been using different motion capture systems for
the SoundSaber. Initially we used an 8-camera OptiTrack
system from NaturalPoint, which can stream real-time data
at arate of 100 Hz. The OptiTrack software uses the propri-
etary NatNet protocol for data streaming. We used a client
developed by Nuno Diniz at IPEM in Ghent for translating
NatNet data to Open Sound Control (OSC) over UDP. OSC
simplifies the communication between the motion capture
system and the layers for feature extraction, mapping and
sound synthesis.

More recently, we have been using a high-end motion cap-
ture system from Qualisys. This system has a higher spatial

'For video examples of the SoundSaber, please visit
http://www.youtube.com/fourmslab

resolution than OptiTrack, and it is able to stream data at
higher sampling rates. The Qualisys system also has native
support for Open Sound Control.

3.3 Feature extraction

We have implemented a tool in Max/MSP for real-time fea-
ture extraction from position data. Our approach is similar
to the Motion Capture Music toolbox, developed by Do-
brian et al. [1], with some differences. Our tool is structured
as one single module, and outputs data as OSC messages.
OSC formatting of these features simplifies the mapping be-
tween the motion features and the control features in the
synthesiser.

Thus far, difference calculations, dimensionality reduc-
tion and transformations between different coordinate sys-
tems have been implemented. Based on a three-dimensional
position stream the patch calculates:

e Velocity in a single direction, e.g. vertical velocity

e Velocity in a two-dimensional subspace, e.g. horizontal
velocity

e Absolute velocity, as the vector magnitude of the three
velocity components

e Change in absolute velocity
e Acceleration in a single direction
e Absolute acceleration

e Polar equivalent of the cartesian input coordinates,
providing horizontal angle, elevation, and distance from
the origin

3.4 Sound synthesis

As the name SoundSaber suggests, we initially had an idea
of imitating the sound of the lightsaber from the Star Wars
movies. The development of the synthesiser was more or
less a process of trial and error to find a sound that would
have some of the perceptual qualities that are found in the
lightsaber sound.

The SoundSaber synthesiser is implemented in Max/MSP.
Figure 3 shows a schematic illustration of the synthesiser,
where a pulse train (a sequence of impulses or clicks) with
a frequency of 1000 Hz is sent through two delay lines with
feedback loops. The delay times for the delay lines can be
adjusted by the user, resulting in variations in harmonic
content. Furthermore, the output from the delay lines is
sent to a ring modulator where it is modulated by a sinu-
soidal oscillator. The user can control the frequency of this
oscillator in the range between 40 and 100 Hz. The ring
modulated signal and the output from the delay lines are
added together and sent through an amplitude control, then
another feedback delay line and finally through a bandpass
filter where the user controls bandwidth and frequency.

3.5 Mapping

Several considerations have been made regarding the action-
sound relationship in the SoundSaber. Naturally, we have
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Figure 3: The SoundSaber synthesiser. Letters
in parentheses denote user-controllable parameters:
(t) = time, (f) = frequency, (a¢) = amplitude and
(b) = bandwidth.

not been limited to mimicking action-sound relationships
from traditional musical instruments, but at the same time
we do appreciate some of the constraints that acoustic in-
struments provide. For instance, the sound of an instru-
ment is almost always the result of an energy transfer from
a sound-producing action to mechanical vibrations.

Since our approach to the physical design of this instru-
ment has been simple, using only the position of a single
point on the controller as the basis for feature extraction,
we have chosen a simple approach when mapping motion
features to control parameters. This is what Hunt and Wan-
derley call explicit mapping, meaning direct couplings be-
tween motion features and control parameters in the sound
synthesiser [2].

When designing mapping for a mocap instrument, it is
important to understand what the motion features actually
describe. Motion features calculated from a stream of data
describing position of a controller in a room can be one (or
a combination) of the following:

Relative to the room meaning that the axes of the room
influence the motion feature. An example of this is the
vertical velocity component of the motion.

Relative to the controller itself typically referring to dif-
ference calculations, e.g. the absolute velocity.

Relative to another controller describing how the con-
troller relates to other controllers in the room. For
instance the distance to another SoundSaber.

In the current SoundSaber implementation, we have only
used data that describes the controller in relation to the
room or to itself. But we believe that the perspective of
how the instrument relates to other controllers presents in-
teresting possibilities in making collaborative musical in-
struments.

One of the considerations we have made is regarding mo-
tion in the horizontal plane. Should it make a difference
whether the instrument is being moved along the X-axis or
the Y-axis? In our opinion, the SoundSaber should respond
equally whether the musician is on the left side or the right
side of a stage, and also behave in the same manner no mat-
ter which direction the performer is facing, as is the case for
any hand-held acoustic instrument. Therefore we reduced
the two dimensions of horizontal velocity to a single abso-
lute horizontal velocity, and let this mapping govern one of
the timbral control parameters in the synthesiser (the delay
time of the first delay line).

Vertical motion, on the other hand, is different. Our pre-
vious experiments have shown that people tend to relate
vertical motion to changes in frequency, such as changes in
pitch and spectral centroid [7, 8]. No matter which direc-
tion the performer is facing, gravity will act as a natural

reference. In light of this, we have chosen to let the ver-
tical position control the frequency of the ring modulation
and the bandpass filter, and the vertical velocity control the
delay time of the second delay line.

Another action-sound relationship which has been con-
firmed in our previous experiments, is the correspondence
between velocity and loudness [7]. Hunt and Wanderley
noted that increased input energy is required to increase
sound energy in acoustic instruments, and received better
results for a digital musical instrument where users had to
feed the system with energy to generate sound, rather than
just positioning a slider to adjust sound level [2]. With this
in mind, we wanted an increase in kinetic energy to result in
an increase in sound energy. Therefore, we let the absolute
velocity control the amplitude of the synthesiser.

We have implemented a simple mapping for sound spa-
tialisation. Spatial sound is obviously related to the room,
so we used motion features related to the room in this map-
ping. More specifically, we sent the polar position coor-
dinates of the rod to a VBAP control system [9], so the
musician can control sound spatialisation by pointing the
SoundSaber towards different loudspeakers.

3.6 SoundSaber evaluation

Neither the feature extraction, the explicit mapping strat-
egy, nor the synthesiser of the SoundSaber are particularly
sophisticated or novel by themselves. At the same time, af-
ter observing how people interact with the instrument, we
feel confident to say that such interaction is engaging for
the user. We believe that the most important reason for
this are the considerations that were made to obtain a solid
coupling between control actions and sound.

In addition to the rod, we tried using three other ob-
jects for controlling the SoundSaber synthesiser. For two of
these, we simply changed the rod with another object and
used the same motion capture technology, meaning that the
only difference was the object itself. First, we tried a small
rod, which was best suited for single-hand use, and also had
less inertia and thus higher mobility. Second, we tried using
a small handle with markers. This handle reduced the dis-
tinction between the controller and the performer, because
the motion of the controller was basically equal to the hand
motion of the performer. Both of these solutions were less
satisfying than the large rod because the loudness control
in the synthesiser had a fairly long response time, making
it more suitable for controllers with more inertia. Also, the
deep and full sound of the SoundSaber works better with
a larger object. Third, as mentioned above, we made an
implementation of the SoundSaber using a Nintendo Wii
controller which will be discussed in more detail below.

Furthermore, we believe that the considerations of how
motion features related to sound were important. The use
of vertical position (which is only relative to the room) to
adjust spectral centroid via a bandpass filter, and of abso-
lute velocity (which is only relative to the object itself) to
control loudness appeared to work well.

Nevertheless, the complexity of the control input, and the
motion capture system’s ability to capture motion nuances
are perhaps the most important reasons why it is engaging
to interact with the SoundSaber. Even though separate mo-
tion features were selected and mapped to different control
parameters, the motion features themselves are related to
each other. As an example, consider what happens when
the performer makes a change in vertical position of the rod
to adjust the spectral centroid. This action will also imply
a change in the motion features “vertical velocity” and “ab-
solute velocity”.

When the spatial and temporal resolution of the motion
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capture system is high, the instrument responds to even the
smallest details of the performer’s motion. For a reasonably
sized object like the SoundSaber rod, we are satisfied with a
spatial resolution of 1 mm and a frame rate of 100 Hz, but
for smaller and more responsive objects we might require
even higher resolution to capture the nuances of the actions
these objects afford.

4. TOWARDS PORTABILITY

Because of the expensive hardware, the implementation of
the SoundSaber based on optical motion capture is not
available to everyone. One motivation for this research is
to make instruments that are based on high-end technol-
ogy available to a broader audience. Thus, we need less
expensive and preferably also more portable solutions.

Of the many affordable sensor solutions, we chose to use
a Nintendo wii-controller (wiimote) for our low-cost imple-
mentation. The wiimote provides a different set of con-
trol possibilities than optical motion capture, and the ma-
jor challenges with porting the SoundSaber to the wiimote
are related to processing the data from the controller and
mapping strategies. A survey by Kiefer et al. ([3]) showed
that the wiimote could be well suited for continuous control,
which makes it an interesting test case for the SoundSaber.

4.1 Wiimote implementation

We used OSCulator? for communication between the wi-
imote and the computer. OSCulator provides estimates of
orientation and absolute acceleration of the wiimote.

Orientation data can be seen as similar to the position
data from the motion capture system, in the sense that it
describes a state of the device within a single time-frame.
Because of this similarity, change in orientation was mapped
to the amplitude control. Although ideally the orientation
data from the wiimote should not change unless there was
an actual change in the orientation of the wiimote, the fact is
that these values changed quite a lot even for non-rotational
motion. Because of a significant amount of noise in the
data, we used one of the push-buttons on the wiimote as an
on/off button, to prevent the instrument from producing
sound when the controller was lying still.

The angle between the floor and an imagined line along
the length axis of the wiimote is called pitch. We let this
value and its derivative control the synthesis parameters
that originally were controlled by vertical position and ver-
tical velocity, meaning the first delay line, frequency of the
bandpass filter and the frequency of the ring modulator. Fi-
nally, we let the estimate of the dynamic acceleration control
the second delay line in the synthesis patch.

4.2 Evaluation of the wiimote implementation

The wiimote implementation of the SoundSaber was, as ex-
pected, not as satisfying as the version based on optical
motion capture. In our experience the orientation values
needed some time to “settle”. By this we mean that sudden
actions affected these parameters quite a lot, and they did
not settle at stable values until after the wiimote stopped
moving. As a result, an action that was meant to cause a
sudden increase in frequency would cause a sudden increase
in loudness when the action started, and then a sudden in-
crease in frequency when the wiimote was being held steady
pointing up.

Using the tilt parameter pitch with the wiimote is con-
ceptually quite different from the original mapping, where
vertical position was used. However, we were surprised by

thtp ://www.osculator.net/

how well this worked for slower motion. During a demon-
stration, one subject was moving the wiimote up and down
with his arm fully stretched out, not realising that by do-
ing this, he also pointed the wiimote up and down. The
subject was puzzled by this and asked how we were able to
extract vertical position values from the accelerometer in
the wiimote.

In our opinion, the most important differences between
the high-end implementation and the wiimote version are
the size of the controller and the accuracy of the data. The
wiimote data is too noisy for accurate control, and the size
and shape of the wiimote afford one-handed, rapid impul-
sive actions, in contrast to the rod which is more suited
for larger and slower actions. The wiimote implementation
would probably benefit from using another synthesis mod-
ule that is better suited for its affordances.

S. CONCLUSIONS AND FUTURE WORK

In this paper we presented the SoundSaber and our thoughts
on how optical motion capture technology can be used for
prototyping musical instruments. Our experience shows us
that even a quite simple synthesiser and simple control sig-
nal are sufficient to create an interesting musical instrument,
as long as the action-sound coupling is perceptually robust.
We will continue our work on the SoundSaber and other
mocap instruments. It would be interesting to investigate
whether the instrument would benefit from attaching an
FSR. Furthermore, we see intriguing challenges and research
questions related to developing the SoundSaber into a col-
laborative instrument, as well as an adaptive instrument
that will adjust to different performers and situations.
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ABSTRACT

In this paper we present a method for studying relationships
between features of sound and features of movement. The
method has been tested by carrying out an experiment with
people moving an object in space along with short sounds.
3D position data of the object was recorded and several
features were calculated from each of the recordings. These
features were provided as input to a classifier which was able
to classify the recorded actions satisfactorily, particularly
when taking into account that the only link between the
actions performed by the different subjects was the sound
they heard while making the action.

1. INTRODUCTION

What are the underlying links between movement and sound?
We believe that the way we perceive sounds and their sound-
producing actions are related, and that this relationship
may be explored by observing human movement to sound.
Auditory sensations are often perceived as mental images of
what caused the sound. This idea of a gestural-sonic object
is built upon motor theory in linguistics and neuroscience
[8]. This belief has motivated an experiment to explore
how sound and body movement are related: Is it possi-
ble to discover cross-individual relationships between how
we perceive features of sound and features of movement by
studying how people choose to move to sounds? The term
cross-individual here denotes relationships that are found
in the majority of the subjects in this experiment. Further,
we use movement to denote continuous motion, and action
to denote a segment of motion data.

Several papers have focused on training a machine learn-
ing system to recognize a specific action. This paper, how-
ever, presents a technique for discovering correlations be-
tween sound features and movement features. We investi-
gate the use of a machine learning system to classify the
actions that subjects link to certain sounds, here denoted
as sound-tracings [9]. The features used for classification
are evaluated, and the results of presenting various subsets
of those features to the classifier are explored. This makes
it possible to discover how a classification of sound-tracings
based on certain action features is able to distinguish be-
tween sounds with certain characteristics. At the same time
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the classifier may be unable to distinguish between sounds
with other characteristics. For instance, one of our hypothe-
ses has been that features related to velocity would distin-
guish well between sounds with different loudness envelopes.
Another hypothesis is that the features related to vertical
displacement would distinguish between sounds with dif-
ferent pitch envelopes. An analysis of the classifier’s per-
formance can provide information on natural relationships
between sounds and actions. This is valuable information
in our research on new musical instruments.

Section 2 gives a brief overview of related research, includ-
ing some notes on previous use of machine learning to clas-
sify music-related movement. Section 3 gives an overview
of the method used. Section 4 presents the classification of
the data, including feature extraction from the movement
data and some results on reducing the number of inputs to
the classifier. Finally, in section 5 we discuss the method
used in the light of the results presented in section 4, and
provide some conclusions and plans for future work on this
material.

2. RELATED WORK

Machine learning and pattern recognition of motion data
have been applied in musical contexts in various ways. Early
works on applying neural networks to recognize actions to
be mapped to sound synthesis parameters were presented
in the early 1990s [5, 10]. In the last decade, various other
machine learning implementations of mapping motion cap-
ture data to sound synthesis have been presented. This
includes toolkits for machine learning in PureData [3] and
Max/MSP [1], and a tool for on-the-fly learning where the
system is able to learn new mappings, for instance during
a musical performance [6].

Although mapping applications seem to have been the
most used implementation of machine learning on motion
data in musical contexts, some analytical applications ex-
ist as well. In EyesWeb, Camurri et al. have implemented
recognition of expressivity in what they call ‘musical ges-
tures’ [2]. Machine learning has also been applied to in-
strumental actions, like extraction of bowing features and
classification of different bow strokes in violin performance
[12, 13].

A significant amount of work has been done on informa-
tion retrieval of motion capture data within research fields
related to computer animation [11]. Much of the work in
this field has been on classification of different actions in a
motion database (e.g. distinguishing a kicking action from
a jumping action). For this sort of classification Miiller and
Réder have introduced motion templates [11]. This method
is based on spatio-temporal relationships between various
parts of the body. They present a sophisticated method for
recognizing specific actions, a method which is independent
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from numerical differences in the raw data.

The research presented in this paper distinguishes itself
from the previously mentioned ones in that it aims to rec-
ognize certain unknown features of the actions rather than
the actions themselves. The approach is analytical, with
a goal of discovering cross-individual relationships between
features of sound and features of movement.

A similar experiment to the one presented in this paper
was carried out in 2006, where subjects were presented with
short sounds and instructed to sketch sound-tracings on a
Wacom tablet [9]. This data was initially studied qualita-
tively, and has recently also been processed quantitatively
in an unpublished manuscript which inspired this paper [7].

3. METHOD
3.1 Setup

In our experiment we used a 7 camera Optitrack infrared
motion capture system for gathering position data of reflec-
tive markers on a rod. A sampling rate of 100 Hz was used,
and data was sent in real-time to Max/MSP for recording.

3.2 Observation Experiment

Fifteen subjects, with musical experience ranging from no
performance experience to professional musicians, were re-
cruited. These were 4 females and 11 males, selected among
university students and staff. The subjects were presented
with ten sounds and asked to move a rod in space along
with each sound, as if they themselves were creating the
sound. The rod was roughly 120 cm long with a diameter
of 4 cm (Figure 1). Before recording the movement data,
the subjects listened to the sound twice (or more if they
requested it), to allow them to make up their mind on what
they thought would be a natural connection between the
sound and the movement. A metronome was used so that
the subjects could know at what time the sound started.
The motion capture recording started 500 ms before the
sound, and was stopped at the end of the sound file. Thus,
all the motion capture recordings related to a single sound
were of equal length which made it easier to compare the
results from different subjects. We made three recordings of
each action from each subject. Some of the recordings were
discarded, due to the subject moving the rod out of the cap-
ture volume, which caused gaps in the data. Hence, there
are between 42 and 45 data recordings of actions performed

ﬁjﬁl
A

Figure 1: The figure shows a subject holding the rod
with reflective markers in one end. Motion capture
cameras are surrounding the subject.

The recorded data was the 3D position at the end of the
rod, in addition to video. The subjects also filled out a
small questionnaire where they were asked whether they
considered themselves to be novices, intermediates or music
experts, and whether they found anything in the experiment
to be particularly difficult.

3.3 Sounds

The sounds used in the experiment all had one or more dis-
tinct features (e.g. rising pitch or varying sound intensity),
which we believed would make the users move differently
to the different sounds. A brief overview of the sounds
is presented in Table 1, and the sounds are available on-
line.! Some of the sounds were quite similar to each other,
e.g. with only subtle differences in the timing of loudness
peaks. As we shall see, actions performed to these similar
sounds were often mistaken for each other by the classifier.
Sounds 1 and 2 are similar, where the loudness and the cen-
ter frequency of a bandpass filter sweeps up and down three
times. The difference between the sounds is the timing of
the peaks, which gives a slightly different listening experi-
ence. Sounds 9 and 10 are also quite similar to each other,
with the same rhythmic pattern. The difference between
the two is that Sound 9 has a steady envelope, while Sound
10 has impulsive attacks with a decaying loudness envelope
after each attack.

Table 1: Simple description of the sounds used in
the experiment

Sound | Pitch |Spectral Centroid | Loudness Onsets
1 Noise |3 sweeps 3 sweeps 3
2 Noise |3 sweeps 3 sweeps 3
3 Falling | Rising Steady 1
4 Rising |Falling Steady 1
5 Noise |Rising Steady 1
6 Noise |Rising / Complex Steady 1
7 Noise |Rising,thenfalling |Steady 1
8 Rising | Complex Steady 1
9 Noise |Steady Rhythm:JdJJdd 5

Static (on/off)
10 Noise |Complex Like 9, with 5
decaying slopes

3.4 Software

For classification we used RapidMiner,? a user-friendly tool-
box for data mining, classification and machine learning. A
brief test of the various classification algorithms in Rapid-
Miner indicated that Support Vector Machines (SVM) would
provide the highest classification accuracies, so this was cho-
sen for the experiments. RapidMiner uses the LIBSVM? li-
brary for SVMs. The python-script grid.py is provided with
LIBSVM and was used for finding the best parameters for
the algorithm. This script performs a simple grid search to
determine the best parameters.

When training and validating the system, cross-validation
was used due to the limited number of data examples. This
means that two complementary subsets are randomly gener-
ated from the full data set. One subset of the data examples
is used for training the classifier, and the other is used as a
validation set to measure the performance of the classifier
[4]. This process was repeated ten times with different sub-
sets. Finally, the performance results ere averaged across
all performance evaluations. Matlab was used for prepro-
cessing and feature extraction.

4. ANALYSIS

The analysis process consists of two main parts: the fea-
ture extraction and the classification. In our opinion, the
former is the most interesting in the context of this pa-
per, where the goal is to evaluate a method for comparing
movement features to sound features. The features selected
are features that we believed would distinguish between the
sounds.

"http:/ /folk.uio.no/krisny /nime2010/
*http://rapid-i.com/
3http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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4.1 Feature Extraction

When extracting the movement features, it is important to
note that two actions that seem similar to the human eye
do not need to be similar numerically. This implies that
the features should be based on relative, rather than ab-
solute data. In our setup, we have a recording of only a
single point in space, and thus we cannot calculate spatial
relations as suggested by Miiller et al.[11], but we can look
at temporal relations. Hence, we have chosen to base the
features presented here on time-series based on the deriva-
tive of the position data. Since we have no reference data
on the position of the subject (only the rod), we cannot tell
whether horizontal movement is forwards or sideways. Thus
horizontal movement along either of the two horizontal axes
should be considered as equivalent. However, the vertical
component of the movement can be distinguished from any
horizontal movement, since gravity is a natural reference.

The 3D position data was used to calculate the following
features from the recorded data:

e VelocityMean and VelocityStD are the mean and stan-
dard deviation of the vector length of the first deriva-
tives of the 3D position data.

o AccelerationMean is the mean value of the vector length
of the second derivative of the 3D position data.

o TurnMean and TurnStD are the mean value and the
standard deviation of change in direction between the
samples, i.e. the angle between the vector from sample
n to n+1, and the vector from n+1 to n+2.

e PreMowe is the cumulative distance before the sound
starts. This is a period of 50 samples in all recordings.

e vVelocityMean is the mean value of the derivatives
of the vertical axis. As opposed to VelocityMean, this
feature can have both positive (upwards) and negative
(downwards) values.

e vEnergy is an exponentially scaled version of vVeloc-
ityMean, meaning that fast movement counts more
than slow movement. For example, fast movement
downwards followed by slow movement upwards would
generate a negative value, even if the total distance
traveled upwards and downwards is the same.

Finally, each recording was divided into four equally sized
segments, e.g. to be able to see how the first part of the
action differed from the last part. The variables segment Vel-
Mean — the mean velocity of each segment, and segment-
Shake — a measure based on autocorrelation to discover
shaking, were calculated.

In the next section we will present the classification re-
sults, and investigate if classifications based on different
subsets of features will reveal relationships between sound
features and action features.

4.2 Results

When all the movement features were fed to the classifier, a
classification accuracy of 78.6% =+ 7.3% was obtained. This
should be interpreted as the precision of recognizing the
sound that inspired a certain action, based on features ex-
tracted from the movement data. Sound 7 was the one with
the best accuracy, where the algorithm classified the 95.2%
of the actions correctly, as shown in Table 2. The classifier
misinterpreted some of the actions made to similar sounds,
but still the lowest individual classification accuracy was as
high as 68.9%. The table columns show the true actions,
and the rows show the predictions of the classifier. The di-
agonal from top left to lower right indicates the correctly

classified instances (marked in grey). We define class recall
(CR) and class precision (CP) of class i as:

[[R: N Adl [[R: N Adll
CRi = — % 100% CPz =
IRl [ As]|

* 100%
||A;|| denotes the number of instances classified as i, and
||R:|| denotes the total numbers of instances in class i. Then
CP is the probability that a certain prediction made by
the classifier is correct, and CR is the probability that the
classifier will provide the correct result, given a certain class.
When reducing the features fed to the classifier to only
include the two features related to vertical displacement,
i.e. vVelocityMean and vEnergy, the total classification ac-
curacy was reduced to 36%. However, the sounds with a
distinct rising or falling pitch had significantly less change
in classification accuracy than other sounds. For Sounds 3
and 4, we obtained a class recall of 79.1% and 51.2%, re-
spectively. In addition to this we obtained a class recall of

Table 2: Classification accuracies for the individual
sounds, when using all sound features. CP and CR
denote class precision and class recall in percent,

respectively. t1-t10 are the true classes, pl—pl0
are the predictions made by the classifier.
t1 [ t2 | t3 | t4 [ tH | t6 | t7 | t8 | t9 | t10 | CP
pl| 34| 6 1 1 1 0 0 0 0 4 |72.3
p2| 9 [ 36| O 1 0 2 0 0 |75.0
p3| O 0|36 | 2 0 2 0 0 0 0 {90.0
pd| O 0 2 (32| 1 0 1 3 0 0 |82.1
p5| O 0 1 2 31| 6 1 2 1 0 |70.5
p6| 1 0 3 0 6 32| 0 1 2 0 |71.1
p7| 0 0 0 0 1 0 |40 | 3 0 0 {90.9
p8| 1 0 0 6 3 0 (34| 0 0 |75.6
p9| O 1 0 0 2 2 0 0 |36 | 6 |76.6
pl0| O 0 0 0 0 0 0 0 6 | 34 |85.0
CR|[75.6(83.7|83.7|74.4|68.9(72.7|95.2|75.6(80.0|77.3
100%| Al Features
80% [ b
60% [ 1
40% [ 1
20%[ 1
0% ] 3 9
100% T T T T
Only Vertical Features
80% R R R R
60% R d B R .
40%} N S S S
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I class precision

Figure 2: The figure shows the class precision and
class recall for each of the classes (see text for expla-
nation). A class consists of sound-tracings related
to the same sound. High scores on both bars indi-
cate that the estimation of this class is satisfactory.
In the top chart, all features have been used as in-
put to the classifier, in the lower chart, only the
vertical displacement features were used.
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71.1% for Sound 9, however the class precision of this sound
was as low as 25.8%, indicating that the SVM classifier has
made the class too broad for this to be regarded truly signif-
icant. The lower plot in Figure 2 shows that the class recall
and class precision for all the sounds with changing pitch
(3, 4 and 8) have relatively high scores on both accuracy
and precision.

S. DISCUSSION

Our goal in this paper is to evaluate the use of a classifier
to discover correlations between sound features and move-
ment features. We have evaluated the method by using the
data related to Sound 3, where we discovered a relationship
between pitch and vertical movement. The fundamental
frequency of this sound decreases from 300 Hz to 200 Hz.
Figure 3 shows the vertical components of the actions per-
formed to this sound by the subjects. The heavy lines de-
note the mean value and standard deviation of the verti-
cal positions. Some of the actions do not follow the pitch
downwards. This may be because the subject chose to fol-
low the upwards moving spectral centroid. Also, quite a
few of the actions make a small trip upwards before moving
downwards. Still, there is a clear tendency of downwards
movement in most of the performances, so we believe it is
safe to conclude that there is a relationship between pitch
and vertical position in our dataset. This finding makes it
interesting to study the relationship between vertical po-
sition and pitch in a larger scale. Would we find similar
results in a group that is large enough for statistical sig-
nificance? Further on, we might ask if this action-sound
relationship depends on things like cultural background or
musical training.

We have also found similar, although not equally strong,
indications of other correlations between sound and move-
ment features. One such correlation is the shake feature.
With only this as input, the classifier was able to distinguish
well between Sounds 9 and 10. These were two rhythmic
segments where the only difference was that Sound 10 had
decaying slopes after each attack and Sound 9 had sim-
ply sound on or sound off with no adjustments in between.
This could indicate that for one of the sounds, the subjects
performed actions with impulsive attacks, resulting in a re-
bound effect which has been picked up in the shake feature.

Another relationship is the features turnMean and turn-
StD which seem to distinguish between the number of on-
sets in the sound. Sounds 1 and 2 had three onsets, and
were quite well distinguished from the rest, but often con-
fused with each other. The same was the case for Sounds
3,4, 5,6, 7 and 8 which had a single onset and Sounds 9
and 10 which had five onsets. A plausible explanation for
this is that the subjects tended to repeat the same action
for each onset of the sound, implying a somewhat circular
movement for each onset. This circular motion is picked up
in TurnMean and TurnStD.

The relationship between pitch and vertical displacement
described in this section may seem obvious. But we believe
the method is the most interesting. By using a classifier, we
get an idea of where to look for cross-individual correlations
between sound features and movement features.

6. CONCLUSIONS AND FUTURE WORK

The paper has presented a method for studying how per-
ception of sound and movement is related. We believe that
machine learning techniques may provide good indications
of cross-individual correlations between sound features and
movement features. Our experiments have shown that it
is possible to study these relationships by feeding move-
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Figure 3: Plot of vertical position of the perfor-
mances to Sound 3. The heavy lines denote mean
value and standard deviation.

ment data to a classifier and carefully selecting the features
used for classification. The paper has mainly focused on
evaluating the method itself rather than the results, since
a larger selection of subjects would be necessary to draw
strong conclusions on the existence of action-sound rela-
tionships. Future research plans include experiments with
a larger selection of subjects, and to expand the setup to
full-body motion capture. In our research, we hope to learn
more about how features of movement can be used to de-
velop new intuitive movement-based instruments.
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ABSTRACT

This paper investigates differences in the gestures people
relate to pitched and mon-pitched sounds respectively. An
experiment has been carried out where participants were
asked to move a rod in the air, pretending that moving it
would create the sound they heard. By applying and in-
terpreting the results from Canonical Correlation Analysis
we are able to determine both simple and more complex
correspondences between features of motion and features of
sound in our data set. Particularly, the presence of a dis-
tinct pitch seems to influence how people relate gesture to
sound. This identification of salient relationships between
sounds and gestures contributes as a multi-modal approach
to music information retrieval.

Categories and Subject Descriptors

H.5.5 [Information Interfaces and Presentation]|: Sound
and Music Computing—=Signal analysis, synthesis, and pro-
cessing

Keywords

Sound Tracing, Cross-Modal Analysis, Canonical Correla-
tion Analysis

1. INTRODUCTION

In recent years, numerous studies have shown that ges-
ture, understood here as voluntary movement of the body
produced toward some kind of communicative goal, is an im-
portant element of music production and perception. In the
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case of the former, movement is necessary in performance
on acoustic instruments, and is increasingly becoming an
important component in the development of new electronic
musical interfaces [17]. As regards the latter, movement
synchronized with sound has been found to be a universal
feature of musical interactions across time and culture [14].
Research has shown both that the auditory and motor re-
gions of the brain are connected at a neural level, and that
listening to musical sounds spontaneously activates regions
responsible for the planning and execution of movement, re-
gardless of whether or not these movements are eventually
carried out [4].

Altogether, this evidence points to an intimate link be-
tween sound and gesture in human perception, cognition,
and behavior, and highlights that our musical behavior is
inherently multimodal. To explain this connection, Godgy
[6] has hypothesized the existence of sonic-gestural objects,
or mental constructs in which auditory and motion elements
are correlated in the mind of the listener. Indeed, various
experiments have shown that there are correlations between
sound characteristics and corresponding motion features.

Godgy et al. [7] analyzed how the morphology of sonic
objects was reflected in sketches people made on a digital
tablet. These sketches were referred to as sound tracings. In
the present paper, we adopt this term and expand it to mean
a recording of free-air movement imitating the perceptual
qualities of a sound. The data from Godgy’s experiments
was analyzed qualitatively, with a focus on the causality
of sound as impulsive, continuous, or iterative, and showed
supporting results for the hypothesis of gestural-sonic ob-
jects.

Godgy and Jensenius [8] have suggested that body move-
ment could serve as a link between musical score, the acous-
tic signal and aesthetic perspectives on music, and that body
movement could be utilized in search and retrieval of music.
For this to be possible, it is essential to identify pertinent
motion signal descriptors and their relationship to audio sig-
nal descriptors. Several researchers have investigated mo-
tion signals in this context. Camurri et al. [1] found strong
correlations with the quantity of motion when focusing on
recognizing expressivity in the movement of dancers. Fur-
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thermore, Merer et al. [12] have studied how people labeled
sounds using causal descriptors like “rotate”, “move up”, etc.,
and Eitan and Granot studied how listeners’ descriptions of
melodic figures in terms of how an imagined animated car-
toon would move to the music [5]. Moreover, gesture fea-
tures like acceleration and velocity have been shown to play
an important role in synchronizing movement with sound
[10]. Dimensionality reduction methods have also been ap-
plied, such as Principal Component Analysis, which was
used by MacRitchie et al. to study pianists’ gestures [11].

Despite ongoing efforts to explore the exact nature of the
mappings between sounds and gestures, the enduring prob-
lem has been the dearth of quantitative methods for ex-
tracting relevant features from a continuous stream of audio
and motion data, and correlating elements from both while
avoiding a priori assignment of values to either one. In
this paper we will expand on one such method, presented
previously by the second author [2], namely the Canonical
Correlation Analysis (CCA), and report on an experiment
in which this method was used to find correlations between
features of sound and movement. Importantly, as we will
illustrate, CCA offers the possibility of a mathematical ap-
proach for selecting and analyzing perceptually salient sonic
and gestural features from a continuous stream of data, and
for investigating the relationship between them.

By showing the utility of this approach in an experimen-
tal setting, our long term goals are to quantitatively ex-
amine the relationship between how we listen and how we
move, and to highlight the importance of this work toward
a perceptually and behaviorally based multimodal approach
to music information retrieval. The study presented in the
present paper contributes by investigating how people move
to sounds with a controlled sound corpus, with an aim to
identify one or several sound-gesture mapping strategies,
particularly for pitched and non-pitched sounds.

The remainder of this paper will proceed as follows. In
Section 2 we will present our experimental design. Section
3 will give an overview of our analytical methods, including
a more detailed description of CCA. In Sections 4 and 5 we
will present the results of our analysis and a discussion of
our findings, respectively. Finally, Section 6 will offer a brief
conclusion and directions for future work.

2. EXPERIMENT

We have conducted a free air sound tracing experiment to
observe how people relate motion to sound. 15 subjects (11
male and 14 female) participated in the experiment. They
were recruited among students and staff at the university. 8
participants had undergone some level of musical training, 7
had not. The participants were presented with short sounds,
and given the task of moving a rod in the air as if they were
creating the sound that they heard. Subjects first listened to
each sound two times (more if requested), then three sound
tracing recordings were made to each sound using a motion
capture system. The recordings were made simultaneously
with sound playback after a countdown, allowing synchro-
nization of sound and motion capture data in the analysis
process.

2.1 Sounds

For the analysis presented in this paper, we have chosen to
focus on 6 sounds that had a single, non-impulsive onset. We
make our analysis with respect to the sound features pitch,

loudness and brightness. These features are not independent
from each other, but were chosen because they are related
to different musical domains (melody, dynamics, and tim-
bre, respectively); we thus suspected that even participants
without much musical experience would be able to detect
changes in all three variables, even if the changes occurred
simultaneously. The features have also been shown to be
pertinent in sound perception [13, 16]. Three of the sounds
had a distinct pitch, with continuously rising or falling en-
velopes. The loudness envelopes of the sounds varied be-
tween a bell-shaped curve and a curve with a faster decay,
and also with and without tremolo. Brightness envelopes of
the sounds were varied in a similar manner.

The sounds were synthesized in Max/MSP, using subtrac-
tive synthesis in addition to amplitude and frequency mod-
ulation. The duration of the sounds were between 2 and 4
seconds. All sounds are available at the project website *

2.2 Motion Capture

A NaturalPoint Optitrack optical marker-based motion
capture system was used to measure the position of one end
of the rod. The system included 8 Flex V-100 cameras, op-
erating at a rate of 100 frames per second. The rod was ap-
proximately 120 cm long and 4 cm in diameter, and weighed
roughly 400 grams. It was equipped with 4 reflective mark-
ers in one end, and participants were instructed to hold the
rod with both hands at the other end. The position of in-
terest was defined as the geometric center of the markers.
This position was streamed as OSC data over a gigabit eth-
ernet connection to another computer, which recorded the
data and controlled sound playback. Max/MSP was used
to record motion capture data and the trigger point of the
sound file into the same text file. This allowed good syn-
chronization between motion capture data and sound data
in the analysis process.

3. ANALYSIS METHOD

3.1 Data Processing

The sound files were analyzed using the MIR toolbox for
Matlab by Lartillot et al.? We extracted feature vectors de-
scribing loudness, brightness and pitch. Loudness is here
simplified to the RMS energy of the sound file. Brightness
is calculated as the amount of spectral energy correspond-
ing to frequencies above 1500 Hz. Pitch is calculated based
on autocorrelation. As an example, sound descriptors for a
pitched sound is shown in Figure 1.

The position data from the OptiTrack motion capture sys-
tem contained some noise; it was therefore filtered with a
sliding mean filter over 10 frames. Because of the big inertia
of the rod (due to its size), the subjects did not make very
abrupt or jerky motion, thus the 10 frame filter should only
have the effect of removing noise.

From the position data, we calculated the vector magni-
tude of the 3D velocity data, and the vector magnitude of
the 3D acceleration data. These features are interpreted as
the velocity independent from direction, and the accelera-
tion independent from direction, meaning the combination
of tangential and normal acceleration. Furthermore, the ver-

"http://folk.uio.no/krisny /mirum?2011

Zhttp://www.jyu.fi/hum/laitokset /musiikki/en/research/
coe/materials/mirtoolbox
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Figure 1: Sound descriptors for a sound with falling
pitch (normalized).

tical position was used as a feature vector, since gravity and
the distance to the floor act as references for axis direction
and scale of this variable. The horizontal position axes, on
the other hand, do not have the same type of positional
reference. The subjects were not instructed in which direc-
tion to face, nor was the coordinate system of the motion
capture system calibrated to have the same origin or the
same direction throughout all the recording sessions, so dis-
tinguishing between the X and Y axes would be inaccurate.
Hence, we calculated the mean horizontal position for each
recording, and used the distance from the mean position
as a one-dimensional feature describing horizontal position.
All in all, this resulted in four motion features: horizontal
position, vertical position, velocity, and acceleration.

3.2 Canonical Correlation Analysis

CCA is a common tool for investigating the linear rela-
tionships between two sets of variables in multidimensional
reduction. If we let X and Y denote two datasets, CCA finds
the coefficients of the linear combination of variables in X
and the coefficients of the linear combination of variables
from Y that are maximally correlated. The coefficients of
both linear combinations are called canonical weights and
operate as projection vectors. The projected variables are
called canonical components. The correlation strength be-
tween canonical components is given by a correlation co-
efficient p. CCA operates similarly to Principal Compo-
nent Analysis in the sense that it reduces the dimension of
both datasets by returning IV canonical components for both
datasets where NN is equal to the minimum of dimensions in
X and Y. The components are usually ordered such that
their respective correlation coefficient is decreasing. A more
complete description of CCA can be found in [9]. A prelimi-
nary study by the second author [2] has shown its pertinent
use for gesture-sound cross-modal analysis.

As presented in Section 3.1, we describe sound by three
specific audio descriptors® and gestures by a set of four kine-
matic parameters. Gesture is performed synchronously to
sound playback, resulting in datasets that are inherently
synchronized. The goal is to apply CCA to find the lin-
ear relationships between kinematic variables and audio de-
scriptors. If we consider uniformly sampled datastreams,
and denote X the set of m; gesture parameters (m; = 4)
and Y the set of m2 audio descriptors (m2 = 3), CCA finds
two projection matrices A = [a;...an] € (R™)" and

3 As will be explained later, for non-pitched sounds we omit
the pitch feature, leaving only two audio descriptors.

B = [bi...by] € (R™)Y such that Vh € 1..N, the cor-
relation coefficients p, = correlation(Xan, Yby,) are max-
imized and ordered such that p1 > --- > pny (where N =
min(mi,mz)).

A closer look at the projection matrices allows us to in-
terpret the mapping. The widely used interpretation meth-
ods are either by inspecting the canonical weights, or by
computing the canonical loadings. In our approach, we in-
terpret the analysis by looking at the canonical loadings.
Canonical loadings measure the contribution of the origi-
nal variables in the canonical components by computing the
correlation between gesture parameters X (or audio descrip-
tors Y) and its corresponding canonical components XA
(or YB). In other words, we compute the gesture parame-
ter loadings 17, = (corr(x;,up)) for 1 <i<my,1<h <N
(and similarly lz?” », for audio descriptors). High values in 17,
or 17, indicate high correlation between realizations of the
i-th kinematic parameter x; and the h-th canonical compo-
nent u;,. Here we mainly focused on the first loading coef-
ficients h = 1,2 that explain most of the covariance. The
corresponding py, is the strength of the relationship between
the canonical components u, and v, and informs us on how
relevant the interpretation of the corresponding loadings is.

The motion capture recordings in our experiment started
0.5 seconds before the sound, allowing for the capture of any
preparatory motion by the subject. The CCA requires fea-
ture vectors of equal length; accordingly, the motion features
were cropped to the range between when the sound started
and ended, and the sound feature vectors were upsampled to
the same number of samples as the motion feature vectors.

4. RESULTS

We will present the results from our analysis starting with
looking at results from pitched sounds and then move on to
the non-pitched sounds. The results from each sound trac-
ing are displayed in the form of statistical analysis of all the
results related to the two separate groups (pitched and non-
pitched). In Figures 2 and 3, statistics are shown in box
plots, displaying the median and the population between
the first and third quartile. The rows in the plots show
statistics for the first, second and third canonical compo-
nent, respectively. The leftmost column displays the overall
correlation strength for the particular canonical component
(pn), the middle column displays the sound feature loadings
(l;".‘y 1), and the rightmost column displays the motion feature
loadings (17 1,). The + marks denote examples which are con-
sidered outliers compared with the rest of the data. A high
value in the leftmost column indicates that the relationship
between the sound features and gesture features described
by this canonical component is strong. Furthermore, high
values for the sound features loudness (Lo), brightness (Br),
or pitch (Pi), and the gesture features horizontal position
(HP), wvertical position (VP), velocity (Ve), or acceleration
(Ac) indicates a high impact from these on the respective
canonical component. This is an indication of the strength
of the relationships between the sound features and motion
features.

4.1 Pitched Sounds

The results for three sounds with distinct pitch envelopes
are shown in Figure 2. In the top row, we see that the me-
dian overall correlation strength of the first canonical com-
ponents is 0.994, the median canonical loading for pitch is



144 Analyzing Sound Tracings: A Multimodal Approach to Music Information Retrieval

Corr strength Sound loadings Gesture loadings

= 1 — =
f s T[T T[T
e Sos| + = * 5 % E Q
3 5 T

» O 0 L i | 1 |
- lo Br Pi  HP VP Ve Ac
B oL M

c

B AT
£ 505 :

8 5 | L | Q

T O , L ! 1

N Lo Br Pi HP VP Ve Ac
g c 1 -+ - T T
£s [~ ﬁ : s

£ 905 - E - E
8 5 * Q

v O L L1 1 L1
® Lo Br Pi HP VP Ve Ac
Figure 2: Box plots of the correlation strength

and canonical loadings for three pitched sounds.
Pitch (Pi) and vertical position (VP) have a signif-
icantly higher impact on the first canonical compo-
nent than the other parameters. This indicates a
strong correlation between pitch and vertical posi-
tion for pitched sounds. The remaining parameters
are: loudness (Lo), brightness (Br), horizontal posi-
tion (HP), velocity (Ve) and acceleration (Ac).

0.997 and for vertical position 0.959. This indicates a strong
correlation between pitch and vertical position in almost all
the sound tracings for pitched sounds. The overall correla-
tion strength for the second canonical component (middle
row) is 0.726, and this canonical function suggests a certain
correlation between the sound feature loudness and motion
features horizontal position and velocity. The high variances
that exist for some of the sound and motion features may
be due to two factors: If some of these are indeed strong
correlations, they may be less strong than the pitch-vertical
position correlation For this reason, some might be perti-
nent to the 2nd component while others are pertinent to the
1st component. The second, and maybe the most plausible,
reason for this is that these correlations may exist in some
recordings while not in others. This is a natural consequence
of the subjectivity in the experiment.

4.2 Non-pitched Sounds

Figure 3 displays the canonical loadings for three non-
pitched sounds. The analysis presented in this figure was
performed on the sound features loudness and brightness,
disregarding pitch. With only two sound features, we are
left with two canonical components. This figure shows no
clear distinction between the different features, so we will
need to look at this relationship in more detail to be able
to find correlations between sound and motion features for
these sound tracings.

For a more detailed analysis of the sounds without dis-
tinct pitch we investigated the individual sound tracings per-
formed to non-pitched sounds. Altogether, we recorded 122
sound tracings to the non-pitched sounds; considering the
first and second canonical component of these results gives
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Figure 3: Box plots of the correlation and canonical
loadings for three sounds without distinct pitch.

a total of 244 canonical components. We wanted to analyze
only the components which show a high correlation between
the sound features and motion features, and for this reason
we selected the subset of the components which had an over-
all correlation strength (p) higher than the lower quartile,*
which in this case means a value < 0.927. This gave us a
total of 99 components.

These 99 components all have high p-values, which sig-
nifies that they all describe some action-sound relationship
well; however, since the results from Figure 3 did not show
clearly which sound features they describe, we have analyzed
the brightness and loudness loadings for all the recordings.
As shown in Figure 4, some of these canonical components
describe loudness, some describe brightness, and some de-
scribe both. We applied k-means clustering to identify the
three classes which are shown by different symbols in Figure
4. Of the 99 canonical components, 32 describe loudness, 30
components describe brightness, and 37 components showed
high loadings for both brightness and loudness.

Having identified the sound parameters’ contribution to
the canonical components, we can further inspect how the
three classes of components relate to gestural features. Fig-
ure 5 shows the distribution of the gesture loadings for hor-
izontal position, vertical position and wvelocity for the 99
canonical components. Acceleration has been left out of this
plot, since, on average, the acceleration loading was lowest
both in the first and second component for all sounds. In
the upper part of the plot, we find the canonical components
that are described by vertical position. The right part of the
plot contains the canonical components that are described
by horizontal position. Finally the color of each mark de-
notes the correlation to velocity ranging from black (0) to
white (1). The three different symbols (triangles, squares
and circles) refer to the same classes as in Figure 4.

From Figure 5 we can infer the following:

e For almost every component where the canonical load-
ings for both horizontal and vertical positions are high
(cf. the upper right of the plot), the velocity loading
is quite low (the marks are dark). This means that
in the instances where horizontal and vertical position
are correlated with a sound feature, velocity usually is
not.

4The upper and lower quartiles in the figures are given by
the rectangular boxes
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Sound parameter loadings for non-pitched sounds
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Figure 4: Scatter plot showing the distribution of
the sound feature loadings for brightness and loud-
ness. Three distinct clusters with high coefficients
for brightness, loudness, or both, are found.

e The lower left part of the plot displays the components
with low correlation between sound features and hori-
zontal /vertical position. Most of these dots are bright,
indicating that velocity is an important part in these
components.

e Most of the circular marks (canonical components de-
scribing brightness) are located in the upper part of
the plot, indicating that brightness is related to verti-
cal position.

The triangular marks (describing loudness) are dis-
tributed all over the plot, with a main focus on the
right side. This suggests a tendency towards a correla-
tion between horizontal position and loudness. What
is even more interesting is that almost all the triangu-
lar dots are bright, indicating a relationship between
loudness and velocity.

e The square marks (describing both loudness and bright-
ness) are mostly distributed along the upper part of the
plot. Vertical position seems to be the most relevant
feature when the canonical component describes both
of the sound features.

S. DISCUSSION

As we have shown in the previous section, there is a very
strong correlation between vertical position and pitch for
all the participants in our data set. This relationship was
also suggested when the same data set was analyzed using a
Support Vector Machine classifier [15], and corresponds well
with the results previously presented by Eitan and Granot
[5]. In our interpretation, there exists a one-dimensional
intrinsic relationship between pitch and vertical position.

For non-pitched sounds, on the other hand, we do not find
such prominent one-dimensional mappings for all subjects.

Distribution of gesture loadings for canonical components (non-pitched sounds)
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Figure 5: Results for the 99 canonical components
that had high p-values. X and Y axes show correla-
tion for horizontal position and vertical position, re-
spectively. Velocity correlation is shown as grayscale
from black (0) to white (1). The square boxes de-
note components witch also are highly correlated to
brightness.

The poor discrimination between features for these sounds
could be due to several factors, one of which is that there
could exist non-linear relationships between the sound and
the motion features that the CCA is not able to unveil. Non-
linearity is certainly plausible, since several sound features
scale logarithmically. The plot in Figure 6, which shows a
single sound tracing, also supports this hypothesis, wherein
brightness corresponds better with the squared values of the
vertical position than with the actual vertical position. We
would, however, need a more sophisticated analysis method
to unveil non-linear relationships between the sound features
for the whole data set.

Furthermore, the scatter plot in Figure 5 shows that there
are different strategies for tracing sound. In particular, there
are certain clustering tendencies that might indicate that lis-
teners select different mapping strategies. In the majority
of cases we have found that loudness is described by ve-
locity, but also quite often by the horizontal position fea-
ture. Meanwhile, brightness is often described by vertical
position. In one of the sounds used in the experiment the
loudness and brightness envelopes were correlated to each
other. We believe that the sound tracings performed to this
sound were the main contributor to the class of canonical
components in Figures 4 and 5 that describe both bright-
ness and loudness. For this class, most components are not
significantly distinguished from the components that only
describe brightness. The reason for this might be that peo-
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Figure 6: Envelopes of brightness, vertical position,
and vertical position squared. The squared value
corresponds better with brightness than the non-
squared value, suggesting a non-linear relationship.

ple tend to follow brightness more than loudness when the
two envelopes are correlated.

In future applications for music information retrieval, we
envision that sound is not only described by audio descrip-
tors, but also by lower-level gesture descriptors. We par-
ticularly believe that these descriptors will aid to extract
higher-level musical features like affect and effort. We also
believe that gestures will play an important role in search
and retrieval of music. A simple prototype for this has al-
ready been prototyped by the second author [3]. Before
more sophisticated solutions can be implemented, there is
still a need for continued research on relationships between
perceptual features of motion and sound.

6. CONCLUSIONS AND FUTURE WORK

The paper has verified and expanded the analysis results
from previous work, showing a very strong correlation be-
tween pitch and vertical position. Furthermore, other, more
complex relationships seem to exist between other sound and
motion parameters. Our analysis suggests that there might
be non-linear correspondences between these sound features
and motion features. Although inter-subjective differences
complicate the analysis process for these relationships, we
believe some intrinsic action-sound relationships exist, and
thus it is important to continue this research towards a cross-
modal platform for music information retrieval.

For future directions of this research, we propose to per-
form this type of analysis on movement to longer segments of
music. This implies a need for good segmentation methods,
and possibly also methods like Dynamic Time Warping to
compensate for any non-synchrony between the sound and
people’s movement. Furthermore, canonical loadings might
be used as input to a classification algorithm, to search for
clusters of strategies relating motion to sound.
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Abstract. This paper presents an experiment on sound tracing, mean-
ing an experiment on how people relate motion to sound. 38 partici-
pants were presented with 18 short sounds, and instructed to move their
hands in the air while acting as though the sound was created by their
hand motion. The hand motion of the participants was recorded, and
has been analyzed using statistical tests, comparing results between dif-
ferent sounds, between different subjects, and between different sound
classes. We have identified several relationships between sound and mo-
tion which are present in the majority of the subjects. A clear distinction
was found in onset acceleration for motion to sounds with an impulsive
dynamic envelope compared to non-impulsive sounds. Furthermore, ver-
tical movement has been shown to be related to sound frequency, both
in terms of spectral centroid and pitch. Moreover, a significantly higher
amount of overall acceleration was observed for non-pitched sounds as
compared to pitched sounds.

1 Introduction

Research on music and motion is an interdisciplinary area with links to a number
of other fields of research. In addition to traditional research on music and on
kinematics, this area relates to neuropsychology, cognition, linguistics, robotics,
computer science, and more [20]. To be able to grasp the complexity of the re-
lationship between music and motion, we need knowledge about how different
factors influence the motion and how the musical sound is perceived and pro-
cessed in the brain. In addition, a certain understanding of experimental and
mathematical methods is necessary for analyzing this relationship.

In several fields dealing with sound and motion, it is essential to identify
how features of sound relate to events in other modalities. This includes disci-
plines like auditory display, interaction design, and development of multi-modal
interfaces |23, 27]. Furthermore, it has been suggested that this aspect could be
utilized in music information retrieval research, for instance by querying sound
data bases with body motion [3,13].
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In this paper we present an experiment where motion capture technology
was used to measure people’s motions to sound. This data has been analyzed
in view of perceptual correspondences between lower-level features of sound and
motion. The participant’s motion was evaluated statistically to find cross-modal
relationships that have significance within our data set. There is a need for
systematic experiments on sound-action relationships to build a larger corpus of
examples on the links between perception of music and motion. The findings in
this paper serve as a contribution to this corpus.

We shall begin by introducing the background and motivation for this par-
ticular research, including elements from music cognition, accounts of previous
experiments on music and motion, as well as our own reflections on the implica-
tions of these works. In Section 3 we introduce our experimental setup, followed
by a description of the recorded data set, with necessary preprocessing and fea-
ture extraction in Section 4. Section 5 presents analysis of the data set, and the
results are discussed in Section 6. Conclusions are provided in Section 7.

2 Background

Presently, we have observed an increased popularity of a so-called theory of em-
bodied cognition, meaning that bodily sensorimotor processing is understood as
an important factor in our cognitive system [28]. Leman [19] put this theory into
a musical context in his introduction of embodied music cognition. This theory
describes how people who interact with music try to understand musical inten-
tions and forms by imitation through corporeal articulations like body motion
(e.g. tapping the beat, attuning to a melody or harmony, etc.) and empathy (e.g.
attuning to certain feelings or a mood conveyed by the music).

Godgy [9] posits that our understanding of discrete events in music can be ex-
plained through gestural-sonic objects. These objects are mental constructs that
combine the auditory input with gestural parameters, enabling an understand-
ing of the sonic object through its causality (e.g. a perceived sound producing
action). The idea of a gestural-sonic object as a discrete perceptual unit, or
chunk, is based upon Pierre Schaeffer’s sonic object [26], on Miller’s theory of
recoding complex sensory information into perceptual chunks [22], and also on
the phenomenological understanding of perception as a sequence of now-points
introduced by Husserl [14]. According to Godgy, these objects take form at the
meso level of a musical timescale [10]. In contrast, the macro level of a musical
timescale could be a whole musical piece, and the micro level of the timescale
takes place within the sonic object. We believe that action-sound relationships
[15] are found at all timescale levels, which coexist when a person is involved in
a musical experience. Certain musical features like rhythmic complexity or emo-
tional content require a larger timescale perspective than for instance musical
features like pitch and timbre which operate in the millisecond range [7].

In a similar manner to the listening experiments Schaeffer performed on sonic
objects, we can learn more about gestural-sonic objects by studying lower-level
features of sound-related motion. In other words, one can look at the meso
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level object from a micro-level perspective. Godgy et al. explored gestural-sonic
objects in an experiment they referred to as sound tracing [12]. Nine subjects
were given the task of making gestures they believed corresponded well with
the sounds they heard, by using a pen on a digital tablet. By qualitative com-
parisons of the sound tracings, the authors found a fair amount of consistency
between subjects, and argued that this type of experiment should be done in
a larger scale, and include more complex sound objects, to learn more about
sound-gesture relationships. The same material was later also analyzed quanti-
tatively by extracting features and classifying the sound tracings using a support
vector machine classifier [8]. We shall inherit the term sound tracing in the ex-
periment presented in this paper. To be more precise, a sound tracing in this
sense describes a bodily gesture that has been performed in free air to imitate
the perceptual features of a sound object.

Other researchers have also studied how lower-level features of sound objects
are related to motion or motion descriptors. Merer et al. [21] asked people to put
their own motion-labels on sounds with different sound features. This way they
determined which sound parameters were most pertinent in describing motion-
labels such as “rotate” and “pass by”. Eitan et al. found that for sounds with
changing pitch, people imagined the movement of an animated character to fol-
low the pitch up or down, however the authors also argued that changing pitch is
related to other dimensions than simply vertical position |5, 6]. This corresponds
well with previous research on metaphors and auditory display where increasing
pitch has been related to an increase in other dimensions in other modalities,
such as temperature [27]. The relationship between pitch and verticality was also
found by Nymoen et al. [25] in a sound tracing experiment where participants
used a rod to trace the perceptual features of a selection of sounds. In an ex-
periment on synchronization with music, Kozak et al. [17] observed differences
for quantity of motion between different lower-level features of sound like pitch,
spectral centroid and loudness. Caramiaux et al. [2] applied Canonical Correla-
tion Analysis to a set of sound and motion features derived from sound tracings.?
This method gave promising results in identifying correlations between features
of sound and of motion, and was later applied by Nymoen et al. [24].

The present paper is intended to follow up on the sound tracing experiments
presented above. The main idea in this research was to study sound tracings from
a more systematic perspective, in particular by using systematically varied sound
parameters. This entailed using a number of short sounds, some where only a
single sound parameter was varied, and some where multiple sound parameters
were varied. In this manner, it was possible to understand the influence of differ-
ent sound parameters on the sound tracings, which provided knowledge about
how these features are reflected in other modalities. Our analytical approach op-
erates at the meso and micro levels of the musical timescale, combining features
that describe chunks of sound and motion with continuously varying sound and
motion features.

3 Caramiaux et al. do not refer to them as sound tracings, but following the definition
presented above, their experiment falls into this category.
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3 Experiment

A sound-tracing experiment was designed to be able to systematically distinguish
between how people’s motion changes and varies in relation to changes in sound
features. The data presented in this paper was recorded in Fall 2010.

3.1 Aim

The aim of the experiment was to identify how lower-level features of motion
corresponded with features of sound across different participants. By using sys-
tematically designed sounds, we can isolate a single sound feature and compare
how it relates to motion by itself, or in combination with other sound features.

3.2 Participants

38 people (29 male and 9 female) volunteered to participate in the experiment.
They were recruited through mailing lists for students and staff at the University
of Oslo and by posting an advertisement on the project website. After partici-
pating in the experiment, the participants filled out a questionnaire concerning
their level of musical training. 12 people rated their level of musical training as
extensive, 11 as medium, and 15 as having little or no musical training. The
level of musical training was used in the analysis process to distinguish between
experts and non-experts (cf. Section 5). They were also given the opportunity
to comment on the experiment. The subjects were not asked for their age, but
we estimate the age distribution to be 20-60 years, with most participants aged
somewhere between 25 and 35.

3.3 Task

The participants were presented with a selection of short sounds (the sounds
will be discussed in Section 3.5). They were instructed to imagine that they
could create sound by moving their hands in the air, and move along with the
sounds as if their hand motion created the sound. First, each participant was
given a pre-listening of all 18 sounds. Following this, the sounds were played
one by one in random order. Each sound was played twice: the first time, the
participant would only listen, and the second time the participant’s hand motion
was recorded. A three second countdown was given before each sound, so the
participant would know exactly when the sound began.

3.4 Motion Capture

A Qualisys optical infrared marker-based motion capture system was used to
record the motion of the people that participated in the experiment. The partic-
ipants grasped two handles (Figure 1), each one equipped with 5 markers, and
the center position of each handle was recorded. There are several advantages to
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using this technology for recording motion. The system is very accurate, with a
high resolution in both time and space. In our recordings, we used a sampling
frequency of 100 Hz. Using several markers on each handle made it possible to
uniquely identify the left and right handle, respectively, and enabled tracking of
the position and the orientation of each handle.

o/

Fig. 1. One of the two handles that was used for recording the participant’s motion.

The main limitation we have experienced with the technology is so-called
marker-dropouts. This happens when a marker is occluded (e.g. by the body
limbs of the participant) or moved out of the calibrated capture space. Marker-
dropouts caused a loss of a number of data-frames in several recordings, and
it became necessary to perform so-called gap-filling. We will return to how this
was done in Section 4. The marker dropouts made it necessary to disregard the
orientation data from the handles, although this was initially recorded. This is
because gap-filling of the orientation data was more difficult than gap-filling of
the position data (interpolation even over small gaps introduces large errors).

3.5 Sounds

A total of 18 short sound objects, each 3 seconds in length, were designed in
Max5 using frequency modulation (FM) synthesis and digital filters. The design
process was to a large extent based on trial and error, to find sounds where the
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envelopes of pitch (perceived tone height) and spectral centroid (here interpreted
as perceived brightness) were distinct. Envelope, in this sense, is a generic term
for a curve describing the development of a sound feature in the time domain.
An example of the sound feature envelopes is given in Figure 2. The sound files
are available for download at the project website.*
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Fig. 2. Spectrogram and corresponding sound features for Sound 15. Pitch and spectral
centroid (in Hz) on the left axis. The dynamic envelope scale is on the right axis.

Table 1. Simple description of the sounds used in the experiment. The columns display
the pitch envelope, spectral centroid envelope and the dynamic envelope of each sound.

Sound|Pitch [Sp.Centroid |Dyn.Env. Sound|Pitch |[Sp.Centroid |[Dyn.Env.
1 |Rising |Falling Bell-shape 10 |Noise |Falling Bell-shape
2 |Falling|Rising Bell-shape 11 |Noise |Rising Increasing
3 |Falling|Falling Bell-shape 12 |Noise |Steady Increasing
4 |Rising |Rising Bell-shape 13 |Steady|Rising Increasing
5 |Rising [Steady Increasing 14  |Steady|Falling Increasing
6 |Falling|Steady Increasing 15 |Rising |Falling Impulsive
7 |Steady|Falling Bell-shape 16 [Steady|Steady Impulsive
8 |Steady|Rising Bell-shape 17 |Noise |Steady Impulsive
9 |Steady|Steady Increasing 18 |Noise |Falling Impulsive

An overview of all of the sounds is presented in Table 1. In the first nine
sounds, pitch and spectral centroid were manipulated by controlling the funda-
mental frequency of the FM sound, and the center frequency of a parametric

* http://folk.uio.no/krisny/cmmr2011
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equalizer which boosted certain parts of the sound spectrum. These sounds were
generated by changing the envelopes of pitch between 300 and 1000 Hz (rising,
falling and steady) and equalizer center frequency between 50 and 13000 Hz
(rising and falling as well as filter bypass, here interpreted as steady spectral
centroid). This allowed for an appropriate discrimination between the individ-
ual sound parameter changes taking place within the sound. Sounds 10-12 were
based on noise rather than a pitched FM sound, and only the filter was adjusted
for these sounds. In Sounds 13 and 14, a second parametric equalizer was added.
In Sound 13, the center frequencies of the equalizers started at 1000 and 5000
Hz and approached each other towards 3000 Hz, and in Sound 14, the center
frequencies started at 3000 Hz, and moved apart to 1000 and 5000 Hz.

The synthesized sounds mentioned in the previous paragraph were multiplied
by a window function to control the overall dynamic envelope. Here, we wanted to
keep a main focus on the pitch and spectral properties of the whole sound, while
influence from onset characteristics of the sounds (changes in sound features
during the first part of the sound) was not desired. Therefore, Sounds 1-14 were
made with a slow attack and increasing amplitude by applying the amplitude
envelope displayed in Figure 3(a).

Amplitude
o
(6]
Amplitude
o
[6)]

Time (s) Time (s)

(a) (b)

Fig. 3. The envelopes that were used for the amplitude control: (a) Non-impulsive
sounds, and (b) Impulsive sounds.

The characteristics of the pitch envelope and the filter frequency also influ-
enced the final dynamic envelope of the sounds. Some of which had a bell-shaped
dynamic envelope, displayed in Figure 4(a), while others had a continuously in-
creasing one, displayed in Figure 4(b).

We also wanted to investigate how the onset characteristics of a sound influ-
enced the sound tracings that were performed to it. Therefore, impulsive versions
of four of the sounds were made. Sounds 15-18 were versions of Sounds 1, 9, 10
and 12, the only difference was that instead of the slowly increasing dynamic
envelope, we applied the impulsive envelope shown in Figure 3(b). It should be
noted that the dynamic envelope of Sound 15 was different compared to the other
impulsive sounds, because the varying pitch and filter frequency influenced the
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dynamics. This resulted in a dynamic envelope which was a combination of the
impulsive and bell-shaped envelopes, as shown in Figure 4(c).
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Fig. 4. The figure displays the dynamic envelopes of 4 sounds, analyzed with a per-
ceptual model in the sound analysis software Praat. (a) Bell-shaped envelope (Sound
2), (b) Increasing envelope (Sound 9), (¢) Impulsive and Bell-shaped envelope (Sound
15), and (d) Impulsive envelope (Sound 16).

4 Data Processing

In this section, we will describe the processing that was performed on the motion
data to prepare it for the analysis process. The position data from the two
handles was used, but it was not sufficient for our purpose to use it directly,
and hence a number of data processing steps were taken. These steps included
gap-filling, smoothing, feature extraction, data reduction and normalization.

4.1 Preprocessing

As mentioned in Section 3.4, some recordings contained missing data frames,
and therefore gap-filling was required. We applied gap-filling on small data gaps
by interpolating between the first and last missing frame using a piecewise cubic
Hermite spline function with the preceding and succeeding frames as reference.
A number of gaps were too large for gap-filling to be possible. In these cases,
the recordings were discarded.

Certain participants had a large number of discarded recordings, which was
due to poor calibration of the system in some sessions, but also because some
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participants repeatedly occluded the reflective markers or moved the handles out
of the capture space. If a single participant had too many discarded recordings,
the consequence would be that this person only influenced a small portion of
the data set, and we could risk that one participant only influenced one side of
the analysis when two subsets of the dataset were compared. For this reason, we
decided to discard the remaining recordings for subjects that had more than 1/3
(i.e. more than six) of their recordings removed.

The datasets from seven subjects were discarded completely, in addition to
30 recordings distributed among the other participants. In total, 156 of the 684
recordings were discarded. After the gap-filling process, a sliding mean filter of
5 samples (i.e. 50 ms) was applied to the position data in all the recordings to
reduce measurement noise.

4.2 Motion Features

From the left and right handle position data we calculated a number of features
that were used for analysis and comparison of the different sound tracings. Based
on the position data, we calculated velocity and acceleration, as these features
are related to kinetic energy and change in kinetic energy of the handles. The
three axes of the position data cannot all be used directly. Movement in the
vertical direction has been used directly as a motion feature, however, as will
be explained shortly, the two horizontal axes are conceptually different from the
vertical one, and have not been used directly.

The position data describes the position of each handle in relation to the
room, or more precisely, in relation to the position of the calibration frame that
was used when calibrating the motion capture system. This calibration frame
determined the origin of the coordinate system and the direction of the axes.
The position of the handles in relation to the calibration frame is not really
relevant in light of the task that was given to the participants. The participants
could not relate to the position of the calibration frame since it was removed
after calibration. Furthermore, the participants were not instructed to face in
any particular direction during the experiment, or precisely where to stand in
the room. For this reason, we find it misleading to base our analysis directly
on the horizontal position data. In contrast, the vertical position of the handles
is a reference that was the same for all participants. The floor level remained
constant, and was independent of where an individual stood, regardless of the
direction he or she faced.

The one thing that varied between the subjects was the height range, as one
participant could reach his arms to 2.2 m, while another up to 2.5 m. This was
adjusted for by normalization as we will return to in Section 4.4. Based on these
considerations, and on experiences regarding which features have proven to be
most pertinent in previous experiments [2,24,25] the following data series for
motion features was calculated:

— Vertical position: The distance to the floor.
— Vertical velocity: The derivative of the vertical position feature.
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— Absolute velocity: Euclidean distance between successive position samples.

— Absolute acceleration: Euclidean distance between the successive derivatives
of the position data.

— Distance: Euclidean distance between the hands.

— Change in distance: The derivative of the distance feature.

The features mentioned above are all data series, which we shall refer to
as serial features. From these data series we calculated single-value features,
meaning features that are given by a single number. These features describe a
general tendency for an entire sound tracing. Examples of such features are mean
vertical velocity and mean acceleration.

4.3 Data Reduction

To be able to compare the sound tracings, the data representation of each record-
ing should be equal. In our case, this is not the case with the raw data, since
some participants varied between using both hands, and only the left or right
hand. Out of the 528 recordings, 454 were performed with both hands, 15 with
only the left hand, and 59 with only the right hand. The participants were not
specifically instructed whether to use one or two hands. In order to achieve equal
data representation for all sound tracings, we had to choose between using the
separate data streams from both hands in all cases, or reducing the data to fewer
data streams keeping only the pertinent information from each sound tracing.
Basing the analysis on data from a hand that was clearly not meant to be part of
the sound tracing appeared less accurate to us, than to base the analysis on the
data streams from only the active hand(s). Therefore, we calculated one serial
position feature from each sound tracing, as well as one velocity feature, acceler-
ation feature, and so forth. For the one-handed sound tracings, we used feature
vectors of the active hand directly, and for the two-handed sound tracings, we
calculated the average of both hands on a sample-by-sample basis. We did not
change the distance feature for the single-handed sound tracings.

Admittedly, this difference between single-handed and two-handed perfor-
mances presents a weakness in our experiment design, and we could have chosen
different approaches to dealing with this challenge. We will continue searching
for more comprehensive analysis methods which take into account this extra de-
gree of freedom. If new methods for analysis are not found, a solution could be
to instruct the participants to always use both hands.

4.4 Normalization

All feature vectors have been normalized for each subject. This means that all
the calculated features were scaled to a range between 0 and 1, where the value
was determined by the particular subject’s maximum value for that feature. For
example, if Subject 14 had a maximum vertical position of 2 meters across all
of their sound tracings, all of the vertical position data series related to Subject
14 were divided by 2 meters. This type of normalization reduced individual
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differences that were due to height, arm length, and so forth. This means that
the data displayed in the plots in the coming section will all be scaled between 0
and 1. A similar normalization was performed on all of the single-value features.

5 Analysis and Results

The following sections present comparisons between three different aspects of
the sounds. We will start in Section 5.1 by introducing our analysis method.
In Section 5.2, the effect of the onset properties of the sounds are presented. In
Sections 5.3 and 5.4, we present how the envelopes of pitch and spectral centroid
tend to influence the sound tracings. Finally, in Section 5.5, differences between
pitched and non-pitched sounds are presented.

5.1 Analysis Method

Our analysis is based on statistical comparisons between the individual data
series, both sample-by-sample in serial features, and also on a higher level, com-
paring single-value features for the whole data series. The analyses of serial
features are presented in plots where the individual data series are displayed
together with the average vector of the data series. To facilitate the reading of
these plots, we include a small example plot in Figure 5. This particular plot
displays five data series ranging between 0 (white) and 1 (black). The vertical
dashed lines show the beginning and end of the sound file, the motion capture
recording began 0.5 seconds before the start of the sound file, and also lasted
beyond the entire duration of the sound file. The black solid and dashed lines
show the mean and standard deviations across the five data series on a sample-
by-sample basis. From this figure, it is difficult to get precise readings of the
values of the individual sound tracings, but the horizontal grayscale plots still
give some impression of the distribution of this data set. The 0-1 scale on the
y-axis is for the mean and standard deviation curves.

When certain tendencies are observed for different groups, we evaluate the
statistical significance of the tendencies by applying one-tailed t-tests.® Results
from the tests are presented in tables, where df denotes the degrees of freedom,’
and ¢ is the t-value from the ¢-test. p is calculated based on df and ¢, and denotes
the probability that the two data sets are equally distributed, a p-value of less
than 0.05 denotes a statistically significant difference between the groups.

Two subgroups were selected from the data set for analyzing the impact
of musical training on the results in the experiment. Because of the somewhat
imprecise classification of subjects’ level of musical training, we chose to look at
only the subjects that labeled themselves as having either no musical training
or extensive musical training. This was done to ensure that there was indeed a
difference in musical experience between the two groups.

> A t-test is a method to estimate the probability that a difference between two data
sets is due to chance. See http://en.wikipedia.org/wiki/T-test for details.

6 df is a statistical variable related to the ¢-test, denoting the size of the data material.
It is not to be confused with e.g. 6DOF position-and-orientation data.
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Fig. 5. The figure explains how to read the plots presented below. This is a reduced
example with only 5 data series. The data series range between 0 (white) and 1 (black).
Please refer to the text for explanation. A single subject is typically associated with
multiple data-series, and tick marks on the right Y-axis denote different subjects. The
ticks are not equidistant since some recordings were discarded (cf. Section 4.1). Fur-
thermore, some plots display more data series per subject than others, thus the Y-axis
resolution differs between plots.

5.2 Omnset Acceleration for Impulsive and Non-impulsive Sounds

We evaluated how the onset characteristics of sound influence sound tracings
by comparing the acceleration envelopes of impulsive sounds to non-impulsive
sounds. We observed a distinct difference in acceleration envelope for sound
tracings of the impulsive sounds compared to the rest of the data set, as displayed
in Figure 6. To evaluate the significance of this difference, we compared the
onset acceleration of the sound tracings. Onset acceleration is a single-value
feature, which was calculated as the mean acceleration in the beginning of the
sound tracing. Figure 6(b) shows that most subjects made an accentuated attack
after the start of the sound file. Therefore we used a window from 0.2 seconds
(20 samples) before the sound started to 0.5 seconds (50 samples) after the
sound started to calculate the onset acceleration. The results of ¢-tests comparing
the onset acceleration for impulsive and non-impulsive sounds are displayed in
Table 2. The table shows that onset acceleration values for impulsive sounds are
significantly higher than non-impulsive sounds, #(526) = 13.65, p < 0.01.7
Figure 7 displays separate acceleration curves of impulsive sounds for musical
experts and non-experts. The figure shows that both groups have similar onset
acceleration levels, and a t-test showed no statistical difference between the onset
acceleration levels from the two groups, ¢(84) = 0.55, p = 0.29. However, the
plots do show a difference in timing. By defining time of onset as the time of
maximum acceleration within the previously defined onset interval, experts hit
on average 163 ms after the start of the sound file, while non-experts hit 238 ms
after the start of the sound file, a difference which was statistically significant,
t(63) = 2.51, p = 0.007. This calculation was based only on Sounds 16-18,
because several subjects did not perform an accentuated onset for Sound 15.

 This is the American Psychological Association style for reporting statistical results.
Please refer to [1] for details.
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Acceleration plot for non-impulsive sounds (sounds 1 — 14) Acceleration plot for impulsive sounds (sounds 15 — 18)
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Fig. 6. Acceleration for (a) non-impulsive sounds (406 sound tracings) and (b) impul-
sive sounds (122 sound tracings). The black solid and dashed lines show the mean value
and standard deviation across all sound tracings. Each horizontal line in the image dis-
plays the acceleration vector of a single sound tracing ranging between 0 (white) and 1
(black), normalized per subject. See Figure 5 for guidelines on how to read these plots.

Table 2. Results from t-tests comparing onset acceleration for impulsive sounds to
non-impulsive sounds. There was a significant difference between the groups for both
expert and non-expert subjects. See the text for explanation of the variables.

Onset acceleration, impulsive and non-impulsive sounds

Test description daf t p
Impulsive vs non-impulsive, all subjects 526 13.65 < 0.01
Impulsive vs non-impulsive, expert subjects 182 8.65 < 0.01
Impulsive vs non-impulsive, non-expert subjects 183 7.86 < 0.01
Onset acceleration level, experts vs non-experts 84 0.55 0.29
Onset time, expert vs non-expert subjects 63 2.51 < 0.01
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Fig. 7. The plot from Figure 6(b) separated into (a) experts and (b) non-experts.
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5.3 Vertical Position and Sound Frequency Features

As mentioned in Section 2, other researchers have documented a relationship
between vertical position and pitch. Not surprisingly, this relationship was also
found in the data set presented in this paper. In addition to pitch, we observed
that the frequency of the spectral centroid is relevant to the vertical position.
Sounds 1, 4 and 5 all had rising pitch envelopes, and Sounds 8 and 11 had ris-
ing spectral centroids combined with stable pitch and noise respectively. For the
sound tracings of these sounds, there was a clear tendency of upward movement.
Similarly, for the sounds with falling pitch, or with falling spectral centroid,
there was a clear tendency of downward movement. t-tests comparing the aver-
age vertical velocity of the “rising” sounds to the “falling” sounds showed highly
significant distinctions between the groups, as shown in Table 3. The mean nor-
malized vertical velocity for the first group was 0.74, and for the second group
0.28 (a value of 0.5 indicates no vertical motion). This is shown in Figure 8.
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Fig. 8. Vertical position for (a) rising sounds (142 sound tracings) and (b) falling sounds
(144 sound tracings). The black line shows the mean value across all the data series,
each horizontal line in the image displays the vertical position of a single sound tracing
normalized per subject between 0 (lower position, white) and 1 (higher position, black).

Table 3. T-tests comparing the average vertical velocity of rising and falling sounds.

Average vertical velocity, rising and falling sounds

Test description daf t P
Rising vs falling, all subjects 284 18.89 < 0.01
Rising vs falling, non-expert subjects 98 8.86 < 0.01
Rising vs falling, expert subjects 97 11.69 < 0.01
Rising, experts vs non-experts 98 0.58 0.28
Falling, experts vs non-experts 97 1.79 0.04
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There was no significant difference between the average vertical velocity for
experts and non-experts for the rising sounds, however, for the falling sounds
there was some difference between the two groups. Experts had a higher extent
of downward motion than non-experts, ¢(97) = 1.7982, p = 0.04.

It is worth noting that even though Sounds 1 and 2 had increasing and
decreasing pitch envelopes, respectively, they had opposing spectral centroid
envelopes. When the spectral centroid envelope and the pitch envelope moved in
opposite directions, most subjects in our data set chose to let the vertical motion
follow the direction of the pitch envelope. The direction of vertical motion seems
to be more strongly related to pitch than to spectral centroid.

The observed difference between sounds with varying pitch and sounds with
only varying spectral centroid makes it interesting to take a more in depth look
at the individual sounds in the rising and falling classes. Since subjects tended
to follow pitch more than spectral centroid in the sounds where the two feature
envelopes moved in opposite directions, it is natural to assume that subjects
would move more to sounds where the pitch was varied, than to sounds where
only the spectral centroid was varied. Figure 9 displays box plots of the average
vertical velocities for rising and falling sounds. In Figures 9(a) and 9(b), we
observed that the difference between the sounds is larger for falling than for
rising sounds. We can also see that Sounds 7 and 8, which are sounds where the
pitch is constant but spectral centroid is moving, show less extreme values than
the rest of the sounds. Figures 9(c) and 9(d) suggest that the difference between
the sounds is larger for expert subjects than for non-expert subjects. There also
seems to be more inter-subjective similarities among experts than non-experts,
as the variances among experts are lower.

Table 4 shows the results of one-way analyses of variance (ANOVAs) applied
to the sound tracings in the rising and falling class, respectively. The table shows
that on the one hand, the difference in vertical velocity between the falling
sounds was statistically significant F'(4, 139) = 7.76, p < 0.01. On the other
hand, the corresponding difference between the rising sounds was not statistically
significant F'(4, 137) = 1.53, p = 0.20. The table also reveals that the significant
difference between the groups was only present for expert subjects, F'(4, 44) =
4.92, p < 0.01, and not for non-experts, F'(4, 45) = 1.52, p = 0.21.

Table 4. Results from one-way ANOVAs of the vertical velocity for sound tracings
within the rising and falling classes. There is a significant difference between the five
falling sounds for expert subjects. df are the degrees of freedom (between groups,
within groups), F' is the F-value with the associated f-test, p is the probability that
the null-hypothesis is true.

Subjects Rising sounds Falling sounds
df F p daf F p
All subjects (4, 137) | 1.53 | 0.20 | (4, 139) | 7.76 | < 0.01
Expert subjects (4,45) [ 0.39 | 0.81 | (4,44) | 492 | < 0.01
Non-expert subjects | (4, 45) | 0.25 | 0.90 | (4, 45) | 1.52 0.21
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Fig. 9. Box plots of average vertical velocities for (a) rising sounds and (b) falling
sounds. The difference between the sounds is greater for falling sounds than for rising
sounds, and greater for (c) experts than for (d) non-experts. Note also that the sounds
where the pitch is constant and only the spectral centroid is manipulated (Sounds 7
and 8) have the least extreme values in all the plots.

5.4 Pitch and Distance Between Hands

Eitan and Timmers pointed out that the relationship between pitch and motion
features may be more complex than mapping pitch to vertical position [6]. For
this reason, we have also analyzed how the distance between the hands corre-
sponds to pitch frequency.

Figures 10(a) and 10(b) display the distance between the hands for sound
tracings to rising and falling sounds, respectively. On the one hand, the black
lines displaying the average distance features do not show very clear overall
tendencies towards increasing or decreasing distance, but on the other hand, the
underlying images, displaying the individual sound tracings, show that there is
a substantial amount of change in the distance between the hands, both for the
rising and the falling sounds.
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Fig. 10. Distance between hands for (a) rising sounds (142 sound tracings) and (b)
falling sounds (144 sound tracings). The black line shows the mean value across all the
data series, each horizontal line in the image displays the vertical position of a single
sound tracing normalized per subject between 0 (hands close together, white) and 1
(hands far apart, black).

Figure 10 seems to vaguely suggest that participants let the hand distance
increase for sounds with increasing pitch. Table 5 compares the change in dis-
tance for rising sounds versus falling sounds. For the two sounds where only the
pitch is varied, there is a significant difference between the rising and falling
sound tracings. The same is true when all of the rising sounds are compared to
the falling sounds. On the contrary, we do not observe significant differences in
the instances where the spectral centroid is varied.

Table 5. Results from ¢-tests comparing the average change in distance between hands
of rising and falling sounds.

Average change in hand distance, rising versus falling sounds

Sounds Varying features daf t p
5 vs. 6 Pitch 52 3.24 < 0.01
4vs. 3 Pitch and spectral centroid 54 1.50 0.07
1 vs. 2 Pitch, opposing spectral centroid 53 1.09 0.14
8 vs. 7 Spectral centroid, pitched 60 0.48 0.32
11 vs. 10 Spectral centroid, non-pitched 57 -0.44 0.67
All rising sounds vs. all falling sounds 284 2.60 < 0.01

5.5 Acceleration Envelope for Pitched and Non-pitched Sounds

We have evaluated how the presence of a distinct pitch influences the sound trac-
ing by comparing acceleration envelopes of sound tracings performed to pitched
sounds and non-pitched sounds.



166

A Statistical Approach to Analyzing Sound Tracings

Three of the sounds used in the experiment were based on noise, and three
were based on a stable tone with a fundamental frequency of 342 Hz. Within each
of these categories, one sound had a falling spectral centroid, one had a rising
spectral centroid and one had a stable spectral centroid.® Figure 11 shows the ac-
celeration curves from the sound tracings to non-pitched and pitched sounds re-
spectively. The mean acceleration was significantly higher for non-pitched sounds
than pitched sounds, ¢(179) = 5.53, p < 0.01. For non-pitched sounds the mean
normalized acceleration was 0.52, and for pitched sounds it was 0.28.

This significant distinction between acceleration values for pitched and non-
pitched sounds was also found when the data from experts and non-experts was
analyzed individually. Furthermore, no significant difference was found between
the acceleration levels of experts and non-experts, p = 0.46 for both pitched and
non-pitched sounds, respectively. See Table 6 for statistical results.

Table 6. Results from ¢-tests comparing acceleration of pitched to non-pitched sounds.

Acceleration, non-pitched and pitched sounds

Test description df t p
Non-pitched vs pitched, all subjects 179 5.53 < 0.01
Non-pitched vs pitched, expert subjects 62 3.31 < 0.01
Non-pitched vs pitched, non-expert subjects 62 3.68 < 0.01
Noise, experts vs non-experts 61 0.10 0.46
Stable tone, experts vs non-experts 63 0.11 0.46
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Fig. 11. Acceleration for (a) non-pitched sounds and (b) pitched sounds. The black
line shows the mean value per sample, each horizontal line displays the acceleration
of a single sound tracing ranging from 0 (white) to 1 (black). The mean acceleration
levels for the non-pitched sounds are generally higher than for pitched sounds.

8 Sounds based on noise: 10, 11, and 12. Sounds based on a stable tone: 7, 8, and 9.
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5.6 Summary of the Results

The results in this section have shown that the participants produced sound trac-
ings with higher onset acceleration for impulsive sounds than for non-impulsive
sounds. This was true for experts and non-experts. The onset time of musical ex-
perts was on average 75 ms ahead of non-experts. Furthermore, sounds without
a distinct pitch seem to induce higher acceleration than pitched sounds.

Vertical displacement of the hands was found to be related to pitch and to
spectral centroid. When pitch and spectral centroid moved in opposite directions,
most subjects let the vertical position of the hands follow the perceived pitch.
When only the spectral centroid was varied, there was less vertical motion than
for sounds with varying pitch. This was particularly true for sounds with a
stable pitch, as opposed to no perceivable pitch. Overall, falling sounds induced
more vertical motion than rising sounds. For the falling sounds, the variance
between the vertical velocity of the subjects was low, suggesting that there is
more consistency within the expert group than in the non-expert group. Finally,
there was significant difference between the change in hand distance for some
of the sounds with falling and rising envelopes. We will discuss these findings in
the next section.

6 Discussion

The following discussion will address the analysis method, the results from the
previous section, as well as how the experiment setup and task may have influ-
enced the results. We will put the results into context in relation to previous
research, and in this way try to assess what can be learned from our findings.
For certain sound features and specific motion features, we have observed a
quite high consistency across the subjects. This supports the claim that there is
a relationship between auditory and motor modalities.

The discussion is structured as follows: The statistical approach is discussed
in Section 6.1. In Section 6.2, we evaluate the results from Section 5.2. Section
6.3 discusses the results from Sections 5.3 and 5.4, and results from Section 5.5
are discussed in Section 6.4. In Section 6.5, we provide a more general evaluation
of the results.

6.1 Statistical Method

Using statistics to evaluate the differences between the groups does provide some
indication of the tendencies in our data set. However, it should be noted that
the t-test and ANOVA methods assume that the data is normally distributed.
The subsets of data in our statistical analyses were tested for normality using
a Jaque-Bera test? with significance level 0.05. This test revealed that 13 out
of the 52 data sets in our experiments do not follow a normal distribution, and
thus the statistical results can not alone be used to make strong conclusions.

? http://en.wikipedia.org/wiki/Jarque-Bera_test
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Nevertheless, the results from the statistical tests support the results that are
shown in the corresponding feature plots. This gives us reason to believe that
the statistical results are trustworthy.

It should be noted that for the sample-by-sample based plots, the standard
deviations are quite high, particularly for the acceleration curves shown in Fig-
ure 11. Since these plots were derived on a sample-by sample basis, the high
standard deviations are not very surprising. In Figure 11, the high standard de-
viation reflects that even though several subjects had a high overall acceleration,
they vary between high and low acceleration throughout the sound tracing. This
demonstrates the importance of looking at the individual sound tracings in the
plot, not only the mean and standard deviation curves.

6.2 Impulsive Sound Onset

Let us have a look at the results presented in Section 5.2, where the onset accel-
eration of sound tracings to impulsive sounds was shown to be much higher than
for non-impulsive sounds. In our opinion, these results can best be explained
from a causation perspective. In other words: people link the impulsive charac-
teristics of the sound to some sort of impulsive action that could have generated
it. An example of an impulsive action is displayed in Figure 12. The figure shows
how the subject performs an accentuated attack, with high acceleration, followed
by a slower falling slope down to a resting position. The sound tracing resembles
that of crashing two cymbals together.
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Fig. 12. The figure displays an impulsive action, with motion history images and the
calculated motion features for the left (black) and right (red) hand. Motion history
images show the current frame and the average frame difference for past video frames
[16]. x (back/forth), y (sideways) and z (up/down) are position coordinates from the
motion capture system.
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Lakoff and Johnson [18| talk about causation as an important element in
understanding objects and events in the world. As an example, they mention
a paper airplane which we understand primarily as paper, and secondarily as
airplane. The making, or cause, of the paper airplane is an essential element
in our understanding of this object. It is interesting to compare the causation
term to Schaeffer’s theory of the sonic object [26]. According to Schaeffer, sonic
objects are defined by their causal coherence, something which Godgy linked to
gesture-sensations and chunking in sound [9]. According to Lakoff and Johnson
[18], the causation of an object is partly emergent, or something that is present
in the object itself, which makes it possible to understand an object as a holistic
and metaphorical unit. Again, compared with the sonic object, this emergent
property works well with Schaeffer’s principle of stress-articulation, or natural
discontinuities in the continuous sound signal [26].

Following these thoughts, it seems apparent that people link the impulsive
onset of sounds to some sort of impulsive or ballistic action or event. Given the
constraints of two handles to imitate the sound, some participants imitated the
action of crashing two cymbals together, while others imitated a single-handed
or two-handed striking action. The discontinuity of stress-articulation in sound
has its motor counterpart in the higher derivatives of position data, here shown
by a high onset acceleration.

6.3 Sound Frequency Features

In addition to the causation perspective, Lakoff and Johnson also introduced the
metaphor perspective. Metaphors are crucial to our understanding of events and
objects. We understand some event or object by using a metaphor to describe
it. According to Eitan and Timmers [6], Cox [4] has linked the metaphor “more
is up” to a perceptual relationship between vertical position and pitch. In our
experiment, the results show clearly that there is a relationship between these
features, and that most subjects follow rising pitch with upward motion, and
falling pitch with downward motion.

However, Eitan and Timmers have shown that for pitch, up is not always the
best metaphor [6]. In their experiments, low pitch has also been associated with
with metaphors like “heavy” or “big”. Also, Walker 27| described rising pitch
to be a good descriptor for increasing temperature. For this exact reason, we
also investigated if the motion feature hand distance was related to the rising
and falling envelopes. Our results show that when all the rising sounds were
compared to the falling ones, there was a significant difference in the average
change in hand distance. However, a closer look at the results revealed that on
average, for sounds with a rising envelope and with a falling envelope alike, the
distance between the hands increased. The significant difference was therefore
only due to a faster increase in distance for rising sounds than for falling sounds.
In addition, a significant difference between rising and falling envelopes occurred
when only the parameter pitch was varied. In this case, the average hand distance
decreased for falling pitch and increased for rising pitch, and thus to some extent,
defined a relationship between these features. Nevertheless, even though several
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subjects did change the distance between their hands for these sounds, there
was much less similarity among the subjects compared to the vertical position
feature. Some subjects moved their hands apart while other moved them towards
each other. So to conclude, the “more-is-up” metaphor for pitch seems to be the
best metaphor to describe the results in our data set.

An example of a sound tracing performed to a sound with falling pitch and
rising spectral centroid is shown in Figure 13. The motion history images show
how the subject prepares for the sound tracing by moving his hands up, then
moving them down and out in such a way that the vertical position follows
the pitch envelope. At the end of the sound tracing, the subjects increasingly
vibrates the right hand, as shown in the acceleration plot. This might be a
gesture performed to imitate the increased spectral centroid which is increasingly
prominent towards the end of the sound file. As the motion history images show,
the hand distance first increases and then decreases in a sound where the pitch
is constantly falling and the spectral centroid is constantly rising.

Absolute Velocity Absolute Acceleration

Velocity (m/s)

Fig. 13. The figure displays motion history images and feature plots for the left and
right hand for a sound tracing performed to a sound with falling pitch, rising spectral
centroid, and a bell-shaped dynamic envelope.

An interesting feature regarding the rising and falling sounds, and the cor-
relation to vertical position, is that sound seems to be more descriptive than
motion. Our results show that even though the sounds were easy to tell apart,
the sound tracings that were performed to the different sounds were similar. This
implies that although you can describe certain perceptual features of the sound
through an action, it is not necessarily clear which perceptual feature(s) the ac-
tion imitates. Elevating a hand might refer to increasing pitch or to increasing
spectral centroid, or to something else.
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6.4 Pitched versus Non-pitched Sounds

We observed a significantly higher amount of acceleration in sound tracings
performed to non-pitched sounds than to pitched sounds. This may be explained
by participant’s associations with this sound property. Sounds based on noise
have wind-like properties, which might cause people to move a lot, as if they
were blowing with the wind or creating the wind themselves. Pitched sounds, on
the other hand, seem to provide something stable for the participants to “hold
on to”, that is not provided by the non-pitched sounds.

For Sounds 9 and 12, which both had stable spectral centroids, we observed
that some participants started shaking or rotating their hands, gradually increas-
ing the frequency or amplitude of the shaking. One example of this is shown in
Figure 14. As these sounds had no change in pitch or spectral centroid, the
loudness envelope of the sounds seem to have been the main influence in these
instances. The increased shaking or rotation intensity may be explained by some
sort of engine metaphor: we believe participants wanted to follow the gradually
increasing loudness envelope by supplying more and more energy to the sound
through their motion.
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Fig. 14. The figure shows motion history images of a subject moving to a noise-based
sound. Plots of xyz-position, velocity, and acceleration are shown below.

6.5 Final Remarks

Admittedly, the results presented in this paper are related to the context of the
experiment, and cannot necessarily be claimed to be valid outside this setting.
The way in which subjects solved the task may have been influenced by the
instructions, which were to imagine that moving the hands in the air created the
sound. Even though we did not provide the subjects with an a priori metaphor
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connecting upward motion to increasing pitch, the options for movement were
limited. Godgy has postulated that our musical motions are goal-directed, and
that these motions are guided by goal-postures describing the shape and posi-
tion of our end-effectors [11]. These positional goal-points may have been more
consciously exposed than features describing the relationship between the hands
or details of the trajectory between, for instance, a high and low goal point. In
light of the experiment task, other pitch relationships like the one between low
pitch and “heavy” or “big” [6], may have been less accessible than drawing a tra-
jectory between two positional goal points. Some subjects may have consciously
or unconsciously used a feature like hand distance to describe pitch, but as our
results show, this was more inconsistent between subjects.

Even though the experimental setup may have prevented the subjects from
using other descriptors than spatio-temporal ones, we are confident that the
results show some indication of how people relate spatio-temporal features of
motion to features of sound. The participants were given an imagined instrument,
and they made their own mental model of how this instrument worked. Some
aspects of these mental models were similar for the majority of the subjects.

7 Conclusions and Future Work

We have presented an experiment on sound tracing, where motions performed to
sound have been analyzed from micro and meso timescale perspectives. Plotting
of serial motion features at the micro timescale was used to obtain impressions
of general tendencies in the data set, and statistical evaluations of single-value
features at the meso timescale indicated the significance of these tendencies.

Rising pitch, and rising spectral centroid correlated strongly with upward
motion, and similarly, falling pitch and spectral centroid, correlated strongly
with downward motion. When pitch and spectral centroid moved in opposite di-
rections, participants followed the pitch feature. Furthermore, sounds based on
noise induced higher overall acceleration than sounds based on a steady pitch,
and sounds with an impulsive onset caused a high acceleration peak in the be-
ginning of the sound tracing.

To follow up on this experiment, we are currently starting to evaluate advan-
tages and disadvantages of different methods for analyzing sound tracings. We
believe that the different approaches that have been taken to analyze such data
provide different types of knowledge, and that the choice of analysis method is
important. For instance, some methods may be good at revealing action-sound
relationships at a low timescale level, while others may work better at chunk-
level or higher. We are also moving towards applying the results from our studies
in development of new interfaces for musical expression.
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