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Abstract—Synchronisation is an important part of collabo-
rative music systems, and with such systems implemented on
mobile devices, the implementation of algorithms for synchroni-
sation without central control becomes increasingly important.
Decentralised synchronisation has been researched in many
areas, and some challenges are solved. However, some of the
assumptions that are often made in this research are not suit-
able for mobile musical systems. We present an implementation
of a firefly-inspired algorithm for synchronisation of musical
agents with fixed and equal tempo, and lay out the road ahead
towards synchronisation between agents with large differences
in tempo. The effect of introducing human-controlled nodes in
the network of otherwise agent-controlled nodes is examined.

Keywords-Pulse coupled oscillators, fireflies, interactive mu-
sic, synchronization

I. INTRODUCTION

Research on interactive music systems has become in-

creasingly popular with the emergence of so-called ubiq-

uitous computing. Mobile technologies allow people to

consume or perform music anywhere. While portable tech-

nologies for music playback have been widespread since the

1980s, the developments in last decade have also allowed an

increased research effort towards developing novel musical

instruments on mobile platforms. Traditionally, a distinction

has been made between the performer, creating the music,

and the perceiver, receiving the music. Musical instruments
are used by performers, and allow a high degree of control

of the musical output. Correspondingly, music players are

used by perceivers, allowing simple controls such as play,

pause, skip, and turning the volume up and down.

Active music technologies challenge the traditional dis-

tinction between musical instruments and music players. The

two may be seen as two extremes on a continuum, where

technologies along the continuum allow different degrees

of interaction with the music. Active music technologies

provide users with a higher degree of control than traditional

music players, yet not requiring the expertise of professional

performers on musical instruments. Examples of such tech-

nologies are music games [1], composition software [2],

devices that allow controlling musical parameters based on

various sensor inputs, e.g. by jogging [3], and also a large

variety of apps for mobile phones allowing people to interact

with music anywhere (e.g. [4]).

A. Collaborative active music

Our focus of research is on collaborative active music,

here referring to a group of people who are using their

mobile phones to interact with music at a level where the

degree of control is higher than traditional media players, but

still more restricted than traditional musical instruments. By

allowing users to control the devices, while at the same time

retaining some degree of control to be held by an adaptive

algorithm in the device itself, users with less musical training

are enabled to participate in a collaborative active music

experience. We have previously shown that some degree of

“musicality” can be preserved in a band made up of of non-

musicians, by applying an economics-inspired approach to

assist the circulation of solos when a group of non-musicians

are playing together [5].

We describe collaborative active music systems as a

network of nodes, where each node is a mobile device that

is controlled by a human user or by a computational agent.

To ensure maximum flexibility, allowing anyone to enter or

leave the network at any time, we require the system to

be decentralised, which means there exists no central point

of control in the network. Thus, desired global behaviour

has to emerge from the actions of and interactions between

nodes via algorithms implemented locally on each node. As

such, we specify self-awareness as a requirement for the

nodes [6], implying a need for mechanisms for analysing

the musical scenario within which the nodes are playing, and

mechanisms for adapting their musical output accordingly.

B. Synchronisation

Many challenging research topics exist in the scenario

we have laid out thus far. This particular paper addresses

the problem of decentralised synchronisation of musical

agents. Synchronisation is a so-called protomusical be-

haviour, meaning a behaviour that exhibits musical features,

such as harmonic oscillations or rhythmic patterns, but lack-

ing cultural realisation as music [7]. As such, development of

agents able to exhibit protomusical behaviours like musical

synchronisation is an important step in the development of

decentralised collaborative music systems.

In order to tackle the problems of decentralised synchro-

nisation of musical agents, we take inspiration from previous

research in computational biology and adaptive systems. We

present an effective implementation of Mirollo and Strogatz’
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firefly-inspired algorithm for synchronising the phase of

pulse-coupled oscillators implemented on mobile devices

[8]. To remove the need for any external communication pro-

tocol, all communication is done through audio. Each node is

able to output short impulsive tones through its loudspeaker,

and to obtain audio data through its microphone. The node

is required to extract tone onsets from the audio input, but

is unable to distinguish between the output from different

nodes.

II. BACKGROUND

Theoretical research on modelling the emergence of syn-

chronisation in nature via oscillators has been around since

the 1960s [9]. While most early work focused on smooth

couplings between oscillators, Mirollo and Strogatz, inspired

by the work of C.S. Peskin, argued that many oscillators

in nature are coupled by pulse-like interactions, giving the

example of certain species of fireflies which adapt their

flashing rhythms when observing flashes from other fireflies

[8]. Building on Peskin’s model to admit more dynamics,

Mirollo and Strogatz presented a pulse-coupled oscillator

model that converges towards synchrony for an arbitrary

number of oscillators.

The need for synchronisation in decentralised computing

systems has triggered the application of the pulse-coupled

oscillator approach in such systems in recent years. Research

efforts have been seen in the field of peer-to-peer networks

where peers or nodes need to synchronise their clock cycles

in order to efficiently carry out tasks that involve timely

communication with other nodes [10], and in wireless net-

works where the idea is for nodes to have synchronized sleep

schedules in order to reduce the power consumption in the

network [11]. The field of artificial intelligence, specifically

distributed robotic systems, have also found it useful to

consider the pulse-coupled oscillator framework to dealing

with synchronisation in robotic swarms [12]. Klinglmayr et

al. target the problem of robustness against faulty nodes,

e.g. nodes that become defective, or malicious intruding

nodes, that may disturb the operation of the network [13].

While the pulse-coupled oscillator framework predominantly

considers excitatory coupling, in that, the phase adjustments

at the receiving nodes push their phases forward in time,

inhibitory coupling (pushing phase backward in time) is

shown to help against faults.

A. Attributes of Pulse-Coupled Oscillators

Whether theory or applications, various attributes can

characterise the type of distributed synchronisation problem

one aims at tackling. Indeed, the pulse-coupled oscillator

framework has gained much attention at modeling and

tackling such problems with varying degrees of success.

Some of these attributes are:

• Type of coupling: the coupling between the oscillators

can vary from being a tight all-to-all (e.g. pulses sent

received by all) one, to couplings characterised by local

interactions in systems with a spatial structure with

nodes only able to communicate with local neighbour-

hoods.

• Heterogeneity: oscillators may have the same frequency

in which case they are known as identical, or there may

be heterogeneity in the frequencies with which they

oscillate.

• Communication medium for coupling: the communica-

tion of pulses may be in the form of packets on a net-

work, or may be more physically restrictive, e.g. light

or indeed sound/audio signals.

• Decentralisation: there may or may not be a single

timing source to synchronise with.

The decentralised synchronisation problem within the

musical setting that we consider in this paper, as described

in Sections I-A and I-B, can be characterised by a system

of pulse-coupled oscillators interacting locally via audio

signals, without a timing source to synchronise with, and

where the oscillators may or may not be identical.

III. PHASE ADJUSTMENT IN PULSE-COUPLED

OSCILLATORS

An oscillator i in our system is represented by its phase,

φi(t). The phase is initialised randomly (between 0 an 1),

and evolves over time (t) toward 1 at a rate of ωi(t) =
dφi

dt ,

this rate is the frequency of the oscillator. When the phase of

oscillator i reaches maximum, the node “fires” by playing

a tone, and resets back to 0 before it continues to evolve

toward 1.
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Figure 1. The figure shows the phase φ of a single oscillator evolving
over time t at rate ω. The red dots indicate that the node fires.

In this section, we assume that all oscillators in the system

oscillate at the same frequency, as is also an assumption

in Mirollo and Strogatz’ work. We define a phase update
function, P (φi(t)), that describes how a node adjusts its

own phase upon receiving a fire event from another node.

Each time a node i perceives a fire event from a node j, it

immediately increases its own phase by some amount. More

precisely:

φj(t) = 1⇒
{
φj(t

+) = 0

φi(t
+) = P (φi(t)) ∀i �= j

, (1)

where t+ denotes the time step immediately after t. The

phase update function is given by:

P (φ) = (1 + α)φ, (2)
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where α is a constant denoting the coupling strength between

nodes.

Mirollo and Strogatz’ evidence for synchronisation of

pulse-coupled oscillators assumes that communication be-

tween nodes is done by infinitely short impulses without

transmission delay. Since our system is communicating

through audio, it will inevitably contain delays. To cope

with this, a refractory period, tref, is introduced immediately

after each firefly has fired [14], [15]. During this period

the oscillator is prevented from from adjusting its phase.

The process of synchronising the phase of two oscillators is

illustrated in Figure 2.
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Figure 2. Synchronisation of two pulse-coupled oscillators with equal
frequency using Mirollo-Strogatz algorithm and a refractory period.

A. Implementation

Our system has been prototyped in the graphical program-

ming environment Max,1 where each node is represented

by a single Max patch that is able to send and receive

audio signals from a common channel. By opening several

instances of this patch, we simulate several fireflies within

audible range of each other. The Max patch contains four

main elements.

1) A listener, detecting onsets in the input audio stream.

2) An oscillator, oscillating between 0 and 1 with a given

frequency and phase.

3) A phase-adjustment patch, adjusting the phase of the

oscillator.

4) A synthesiser, generating short, impulsive sounds

when the oscillator reaches maximum.

A flowchart of the system is displayed in Figure 3.

In the prototyping stage, Andrew Robertson’s

aubioonset∼ object for Max, based on the aubio library

by Paul Brossier, has been used for onset detection. Upon

perceived activations from other fireflies, the listener

initiates calculation of phase adjustment of the oscillator,

1http://www.cycling74.com

Phase

adjustment

Synthesiser
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Listener
audio in α

ф(t  )+

Figure 3. Schematic overview of the structure of the firefly Max patch.

and the oscillator phase is updated accordingly. The

synthesiser is based on FM synthesis, set to output a

random note from a pentatonic scale (C4, D4, E4, G4, A4).

The use of a pentatonic scale ensures a certain degree of

harmony between the tones, even when tones are selected

randomly. An impulsive dynamic envelope (rise-time 6 ms,

decay-time 300 ms) is used to allow easy onset detection.

In addition to the functional elements, a visualisation of

each node has been created, showing a drawing of a firefly

whose tail lights up upon firing.

Figure 4. Screen shot from a setup in Max with 12 fireflies synchronising.

We have implemented part of the synchronisation system

in PureData2 (PD), which enables the algorithm to be run

on other operating systems that those able to install Max.

We use the iOS application MobMuPlat [16] to run the PD

patch on iOS devices. The MobMuPlat application is only

able to run components from the most basic distribution of

PD (known as PD vanilla), which complicates the process

of porting the system from Max. A video of the PD patch

running on six iOS devices is available online.3

B. Experiments and results

A simple test was set up to evaluate the time needed

for the system to synchronise for various α-values and

various number of nodes. All nodes were set to fire at

1 Hz, and their phases were randomised at the start of

each test run. The refractory period was set to 50 ms. We

measured the time from the start until when the overall

2http://puredata.info
3http://vimeo.com/67205605
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system reached a state with all nodes firing within a 50

ms window three times in a row as shown in Figure 5.

To minimize variations in synchronisation times caused by

differences in the initial state of the system, 30 runs were

carried out for each parameter settings for each number of

nodes. Figure 6 shows the synchronisation times for three

different parameter settings. The overall best results (shown

in the middle) were found for α = 0.1, where the system

would quite often reach a synchronised state within ∼10

seconds, even when as many as 30 nodes were involved. A

lower value for α drastically increased the times needed to

synchronise as shown in the top plot in Figure 6. The bottom

plot shows synchronisation times for α = 0.2, where the

synchronisation times increased with the number of nodes.

Node 3

Node 2

Node 1

All firings within 50 msTwo nodes in sync

Node firing followed 
by 50 ms grey area Three times in a

row = synchrony

Figure 5. The algorithm parameters were evaluated by measuring the time
from the initial state to the time when all nodes fired within a 50 ms period
three times in a row.
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Figure 6. The figure shows the times needed to synchronise for a varying
number of nodes using three different parameter settings.

In an interactive music system, autonomous synchronisa-

tion is useful for allowing agent-controlled nodes to adjust

to the rhythm of human users, or to assist human users who

find it difficult to follow the rhythm. A second experiment

was set up to evaluate the ability of agent-controlled nodes

to adjust to a human user. We allowed a user to override the

internally controlled firing of a node by using a shoe with

internal force sensing resistors. By tapping his foot out of

phase with the rest of the nodes, the other nodes started to

adapt to his rhythm. Figure 7 shows how the nodes in the

esperiment adjusted within just a few seconds.

0 10 20 30 40 50

FireFly 1

FireFly 2

FireFly 3

FireFly 4

All fireflies in sync
Tapping 
out of phase

Back in sync

Time (s)

Tapping 
out of phase Back in sync

Figure 7. The figure shows the interaction between four nodes when one
of them is controlled using the wearable sensor. Each vertical line denotes
the firing of a firefly. The firings of fireflies 2, 3 and 4 are in black and the
firings of the first firefly are marked in red extended across the entire range
of fireflies to facilitate assessment of the degree of synchrony. The phase
of node 1 is overridden twice by tapping while wearing the sensor shoe.
This is deliberately done out of phase. Notice how nodes 2-4 adjust to the
phase of the first node within a few seconds. In this example α = 0.1.

IV. THE CHALLENGE: FREQUENCY ADJUSTMENT IN

PULSE-COUPLED OSCILLATORS

The approach presented above assumes the frequencies of

all the nodes to be fixed and equal. When this assumption

is not made, the problem becomes more relevant to a

real musical application, since human users may find it

difficult to keep a steady beat. At the same time, a system

with different frequencies is also much more complex.

Consequently, the approach from phase synchronisation is

not directly applicable in frequency synchronisation. We

are working on this challenge and would like to propose

some guidelines that may act as a roadmap towards solving

frequency synchronisation in decentralised interactive music

systems. Significant differences in starting frequency can

be allowed if certain considerations are made regarding the

synchronisation objective and the function used to update

the frequency of each node, as will be discussed below.

A. Harmonic Synchrony
Some publications (e.g. [15]) using pulse-coupled oscil-

lators allow the nodes to have slightly different frequencies,

since minor differences in frequency will be overridden by

phase adjustments. However, in our musical system, we

would prefer the possibility of having a large deviation in

starting frequencies. When listening to music people do not

necessarily agree on a common pulse; while some people

may entrain to one tempo, others might find the double or

half of this tempo to be more natural [17]. This is a good

reason for modifying the synchronisation goal in interactive

music systems.
To illustrate the challenge, Figure 8 shows three oscillators

with large differences in frequency. In the figure, the fre-

quencies of node 2 and 3, respectively, are close to half and
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double that of node 1. A normal synchronisation objective

would be for all of the nodes to fire at the same time. Such

an objective, here called strict synchrony, would require all

of the nodes to converge toward the same frequency. In cases

like the one in Figure 8, it might be a more suitable approach

to allow the frequencies of nodes to be integer multiples of

the node with the lowest frequency. This would allow nodes

to obtain a state of what we call harmonic synchrony.
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Figure 8. Three nodes with large differences in frequency. In this case,
harmonic synchrony may be a more suitable objective than strict synchrony.

B. Bi-directional frequency adjustment

The phase update function presented in Section III causes

positive phase jumps when a fire event is received. The use

of only positive phase jumps is possible because φ resets

to 0 as soon as it reaches 1. The frequency update function

cannot rely solely on positive phase jumps, since this would

cause nodes to increase the frequency uncontrollably and

eventually reach an unstable state. For this reason, the fre-

quency update function must be able to cause both positive

and negative adjustment of the frequency. We suggest using

a function that is positive when φ < 0.5 and negative when

φ > 0.5. Or in other words, if a node is less than half-way

through its cycle when a fire event is received, it should

increase its frequency to “catch up” with the firing node.

For example, by using the factor ρ calculated as follows:

ρ = sin(2πφ(t)) (3)

C. Self-awareness

To strengthen the nodes in the system that are the most

synchronised with the rest of the group, a well-synchronised

node should make less adjustments to its own frequency

compared with a poorly synchronised node. For this to be

possible, a node should be self-aware, here understood as

being able to assess its own level of synchrony with the

other nodes.

We suggest the use of an error-measure for a node to

assess its own level of synchrony. Each time a node detects a

fire event from another node, it calculates a value, ε ∈ [0, 1],
which is at its highest value when φ = 0.5, and lowest value

when φ is equal to 0 or 1. If we let

ε = sin(πφ(t))2, (4)

with the special case that ε = 0 if a fire event is perceived

within the refractory period, we can use ε(n) as a discrete

function of the n-th fire event received by a node. Self-

synchrony-assessment of node, s, may then be calculated

by applying a running median filter to ε(n):

s = median{ε(n), ε(n− 1), ..., ε(n−m)}, (5)

where m+1 is the length of the median filter. Thus, s takes

a high value when the node is out of phase with the past

received fire events, and a low value when the node is in

phase with the past perceived fire events. The effect of using

s as a factor in the frequency update function is that nodes

with a high level of synchrony make smaller changes in

frequency.

To update the frequency of a node, we specify the discrete

function H(n) for the n-th perceived fire event:

H(n) = ρ(n)s(n), (6)

where ρ(n) and s(n) are discrete functions of the fire events

perceived by a node. Note that H (as opposed to P from

section III) does not output a new value for ω, but rather

a value between -1 and 1 indicating whether ω should be

decreased or increased.

D. The Reachback Firefly Algoritm

In section III, phase adjustment was done immediately

whenever a node received a fire event from another node.

With the suggested function, H , for frequency adjustment,

immediate changes in frequency might potentially cause a

bias towards increase in frequency, since the time period

when φ > 0.5 gets shorter if a fire event is received before

φ reaches 0.5. To prevent this bias, we suggest a variation

of the reachback firefly algorithm (RFA) [18]. Originally

designed for phase updates with the purpose of preventing

“deafness” in a firefly system, the concept of RFA is useful

also in frequency updates. RFA specifies a system which,

rather than making immediate phase jumps upon received

fire events, collects the received fire events and applies

the total phase jump at the beginning of its next cycle.

Figure 9 illustrates application of RFA in the frequency

update function.

We may summarise the considerations provided above in

the following frequency update function:

φi(t) = 1⇒

⎧⎪⎪⎨
⎪⎪⎩
F (n) = β ·

y−1∑
x=0

H(n− x)

y

ωi(t
+) = ωi(t) · 2F (n)

, (7)

where β ∈ [0, 1] is a constant denoting the coupling strength

between the nodes, and y is the number of received fire

events during the latest oscillator period. This function
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allows ωi(t
+) values in the range 1

2ωi(t) to 2ωi(t). The

extreme values occur only when φ = 0.25 or 0.75 and

β = s = 1.
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Figure 9. The top figure displays how the frequency adjustment of a node
may be biased towards positive values when received fire events causes
immediate frequency adjutments. The bottom figure shows how a variant
of the reachback firefly algorithm may be used to tackle this problem. The
algorithm collects values from the H function during its entire preiod, and
adjusts the frequency at the end of the period by the mean of these values.

We believe these considerations may act as a roadmap

towards solving the problem of frequency synchronisation

in collaborative interactive music systems.

V. CONCLUSIONS AND FUTURE WORK

We have presented an implementation of a variant of

the Mirollo-Strogatz algorithm for phase-synchronisation of

pulse-coupled oscillators running in iOS aimed at interactive

and collaborative musical systems. In most of the tested

cases, the implementation obtained a state of synchrony

within 10 seconds, regardless of the number of nodes (up

to 30 simultaneous nodes were tested). When introducing

an out-of-sync human-controlled node to the group, the

group quickly synchronised to the beat of the human-

controlled node. Further, we have presented the challenge

of decentralised frequency synchronisation in such systems,

and a roadmap towards a potential solution. We suggest a

redefinition of the synchrony objective, by allowing nodes

to fire at frequencies that are integer multiples of other

nodes, and to incorporate self-assessment within a node of

the degree of synchrony with other nodes.
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