
An Ant Learning Algorithm for Gesture

Recognition with One-Instance Training

Sichao Song, Arjun Chandra and Jim Torresen

Department of Informatics, University of Oslo, Norway

{sichaos|chandra|jimtoer}@ifi.uio.no

Abstract—In this paper, we introduce a novel gesture recogni-
tion algorithm named the ant learning algorithm (ALA), which
aims at eliminating some of the limitations with the current
leading algorithms, especially Hidden Markov Models. It requires
minimal training instances and greatly reduces the computational
overhead required by both training and classification. ALA
takes advantage of the pheromone mechanism from ant colony
optimization. It uses pheromone tables to represent gestures,
which scales well with gesture complexity. Our experimental
results show that ALA can achieve a high recognition accuracy
of 91.3% with only one training instance, and exhibits good
generalization.

Index Terms—Gesture recognition, accelerometer-data classi-
fication, ant colony optimization, ant learning.

I. INTRODUCTION

Gesture recognition techniques have extensively been dis-

cussed in recent decades, and are expected to be the next-

generation human machine interaction (HMI) solutions. Cur-

rently, there are various techniques being used for recognizing

gestures, such as camera-based methods and sensor-based

methods. With the popularity of hand-held devices, such as

iPhone and iPod Touch1, accelerometer-based gesture recog-

nition for facilitating such interactions is becoming ever more

pervasive and promising.

While the classical leading method, Hidden Markov Model

(HMM), has proved to be effective for gesture recognition,

it still has several shortcomings. HMM-based methods suffer

from high time complexity for training and inference [1],

[2], and their performance depends highly on the number

of training instances [3]. Consequently, using HMM-based

gesture recognition systems can be quite difficult in several

scenarios. For example, it requires quite a long time and exten-

sive physical work to build a gesture library with the necessary

amount of gestures. As a result, user fatigue can greatly reduce

the quality of training gesture instances, and lengthy training

can be very tedious as well. Moreover, such systems could be

weak in cases like real-time gesture recognition on low-end

devices.

We note that dynamic time warping (DTW) is a very

effective technique for recognizing accelerometer-based ges-

tures [2], [4] and has extensively been studied recently. It

requires low computational overhead and few training samples,

which can be performed on a mobile device with promising

performance. However, to the best of our knowledge, both

1Apple Inc’s products, see http://www.apple.com/.

the length and number of templates increase the classification

time. Compared with DTW, classification in our ant learning

algorithm requires much less processing time, since it only

needs to calculate the distances between pheromone tables

which have fixed sizes, independent of gesture types.

For addressing these limitations, we propose an ant learn-

ing algorithm (ALA) for gesture recognition. ALA aims at

reducing both the number of training instances and computa-

tional overhead requirements, while still maintaining a high

recognition accuracy. Our work has proven that ALA is a

very effective technique for recognizing accelerometer-based

gestures.

The rest of the paper is organized as follow: In Section II,

we cover some of the related work in the field, which leads to

the problem description. The methodologies and approaches

are described in Section III. Section IV shows the experiment

results, and we conclude our work in Section V.

II. BACKGROUND

There are many studies on accelerometer-based gesture

recognition systems which have used HMMs in their ap-

proaches [5], [6], [7], [8]. Pylvánáinen et al. in [5] used

continuous HMMs to recognize gestures. In their work, they

focused on demonstrating effects of data quality on recognition

performance, which included both gesture sampling rate and

vector quantization. Schlómer et al. in [6] estimated the

performance of both left-to-right and ergodic HMM on 5

simple gestures, given the classic recognition pipeline. A Wii-

controller2 was used as the input device. In their work, they

evaluated effects of codebooks3 with different sizes k = 8, 14

and 18, respectively. They showed that, using a codebook with

a size k = 14, their algorithm performed best. Based on their

research, we choose the codebook size to be 14 for quantizing

acceleration vectors.

For our own gesture recognition algorithm, ALA takes

advantage of the pheromone mechanism from the Ant Colony

Optimization (ACO) algorithm [9], [10]. ACO takes inspira-

tion from the foraging behavior of ants in nature. Basically,

ants wander randomly for finding food, while at the same time

laying down pheromone trails on their respective paths, and

these pheromone trails evaporate gradually. A path is more

2The handheld controller for Nintendo’s Wii console, see http://us.wii.com/
iwata asks/wii remote/.

3A codebook is a set of prototype vectors which are used for quantizing
raw acceleration vectors.

attractive to ants if it has larger amounts of pheromone, the

shortest (or optimal) path thus becoming the most attractive.

In ACO, the artificial ants deposit pheromone on their paths

while moving, and a probabilistic model is used to decide

future movements of these ants. Pheromone deposits on the

paths happen according to:

τi j = τi j +
m

∑
k=1

∆τk
i j,∀i, j ∈ N, (1)

and evaporates as:

τi j = (1−ρ)τi j,∀i, j ∈ N, (2)

where τi j is the amount of pheromone already present on the

path linking states i and j, ∆τk
i j is the amount of pheromone

laid by ant k on the path connecting i and j, m is the

population size of the colony, N is the set of states, and ρ
is the evaporation rate.

While the computational model of ACO is primarily used

for solving optimization problems, it can be adapted for

gesture recognition as well, as will be described in Section

III-C.

A. Problem Description

While there are popular methods for gesture recognition

systems at present, certain limitations of these algorithms

have not been satisfactorily addressed in the literature. These

limitations are:

• HMM suffers from high time complexity for both training

and inference, making it inefficient with large gesture

libraries.

• HMM requires a sizable amount of training data. It needs

quite a long time, and much physical work, if many

gestures are required. The side-effect of this is that the

quality of training gesture samples can be greatly reduced

due to user fatigue.

• The processing time of DTW depends on both the length

and number of templates.

Our algorithm aims at addressing these issues.

III. METHODOLOGIES AND APPROACHES

An iPod Touch 4th generation is used to sense the ac-

celeration produced by the hand motions of the user. Each

acceleration vector is transformed into OSC4 packets and sent

over Wifi to a computer running the ALA. These vectors are

mapped on to characteristic states which represent prototype

vectors in the codebook. The characteristic states are selected

as consecutive integers ranging from 1 to 14 in this paper since

a codebook of size 14 is chosen. Each acceleration vector

is mapped to the nearest state based on Euclidean distance,

details of such quantization further described in Section III-B.

4Open Sound Control (OSC), see http://opensoundcontrol.org/.

Fig. 1. System operational pipeline for the ant learning algorithm.

The magnitude of each acceleration vector i can be com-

puted using the 3 values which represent acceleration magni-

tudes along the x, y and z axes respectively as:

acci =
√

acci
x

2 +acci
y

2 +acci
z
2

(3)

The vector i is then normalized before quantization as acci
x =

acci
x

acci , acci
y =

acci
y

acci , and acci
z =

acci
z

acci .

In accelerometer-based gesture recognition, every single

gesture is represented by a sequence of characteristic states.

Consequently, a system operational pipeline is needed to pre-

process input gesture data for both training and recognition

purposes. Our system pipeline is shown in Fig. 1. It consists of

4 main components: data pre-processing, vector quantization,

ant learning model, and classification.

Once a user starts to perform a gesture, the iPod Touch

continuously sends OSC packets over Wifi. The packets are

received in a laptop and unpacked to get the acceleration

data. After pre-processing and quantization, the gesture is then

represented by a sequence of characteristic states. If the gesture

is performed for training, a new pheromone table (representing

characteristic state transitions) labeled with the corresponding

gesture type, is produced by the ant learning model and added

in the gesture library for future recognition. If the gesture

is performed for recognition, first a new pheromone table

corresponding to the gesture is produced. This new table is

used in conjunction with the tables in the gesture library by a

classifier, giving a recognition result.

A. Data Pre-processing

Differing from HMM-based methods, a “directional equiv-

alence” filter [11], [6], which eliminates all redundant vec-

tors that are roughly equivalent to their predecessors, is not

required for ALA. On the contrary, it is very important

for ALA to record the number of immediate repetitions of

all characteristic states in a gesture, for both training and

classification.

In order to eliminate noise that may adversely effect the

recognition result, an “idle” filter is used. We set ∆ = 0.6g

empirically, where g represents the acceleration due to gravity.

It filters out all the acceleration vectors ~a for |~a|< ∆. With the

idle filter implemented, the user can make pauses during the

performance of a gesture.

B. Vector Quantization

A vector quantizer maps each incoming acceleration vector

onto a finite set of characteristic vectors, which is known as

the codebook. In accordance with Schlömer [6], we choose a

codebook with size k = 14, see Fig. 2.

Fig. 2. Distribution of 14 characteristic vectors. Integers from 1 to 14 are
assigned to each of them as per [6].

During quantization, an acceleration vector i is mapped

to the closest characteristic vector with a state si based on

Euclidean distance

si = argmin
n

√

(acci
x−accn

x)
2 +(acci

y−accn
y)

2 +(acci
z−accn

z)
2

(4)

where state n ∈ N, N being the set of states {1,2,3, ..,14}.
As a consequence, the gesture is eventually represented by a

sequence of characteristic states after quantization.

C. Ant Learning Model

Inspired by [10], [12], [13], we introduced the pheromone

mechanism to our learning model. As compared to both

HMM-based and DTW-based methods, the ant learning model

is easier to implement and deploy.

In ALA, an artificial ant moves in the state graph which

is shown in Fig. 3 and deposits pheromone on edges that

link these states. It moves whenever a new acceleration vector

is received, and a pheromone value ∆τ is laid on the edge

linking the previous vector (state) and the current input vector

(state). Since we only use one artificial ant in our algorithm,

pheromone deposits on the edges happen according to:

τi j = τi j +∆τ,∀i, j ∈ N (5)

This is simpler as compared to equation 1. Pheromone evapo-

rates according to equation 2, which is the same as in ACO. ∆τ
is set to a default value based on extensive experiments (see

Section IV-A). Since the ant learning model is used for both

gesture training and recognition, both ∆τtraining and ∆τrecognition

Fig. 4. The pheromone table is generated according to the incoming
acceleration vector stream.

are allowed to be set separately. In this paper, we set ∆τtraining

equal to ∆τrecognition.

The initial values in pheromone tables are set to zero. Once

the algorithm starts to record a gesture, all values in the

pheromone table are updated every time a new acceleration

vector is received and quantized. To illustrate, Fig. 4 shows

an example of a pheromone table with a codebook sized 4,

which is produced corresponding to the acceleration vectors

below the table. All the vectors follow a chronological order.

The leading diagonal values show the number of immediate

repetitions of each acceleration vector and the remaining val-

ues show the numbers of each transition point. The sequence of

vectors starts from the indicated point and we assume that the

initial state is ↑. A pheromone value ∆τ = 1 is added whenever

the system receives a new vector. Each arrow listed in the

first column represents the previously received vector and each

arrow in the first row represents the currently received vector.

The dotted circle shows a transition point between vector ↑
and →, so it adds 1 in the corresponding cell in the table.

The dashed ellipse shows a series of 3 vectors ↓. The first

vector produces a transition point between → and ↓, so it does

not update the pheromone value in the cell pointed to by the

dashed arrow. After this, the system receives 2 more vectors

↓. As a result, a total value of 2 is added to the corresponding

cell in the table.

Once the recording of the gesture is finished, both leading

diagonal values and the remaining values in the table are

normalized separately. We see this as a way of affecting gener-

alization, since normalized values are transform-independent,

meaning that gesture type will be represented by correspond-

ing pheromone table, independent of its size and performing

speed5.

Each newly trained table is stored in the gesture library and

available in the operational pipeline for recognition purpose. In

this paper, values in a trained table will not be further modified

5The speed should be greater than a certain value, otherwise the input
acceleration vectors will be filtered out by the “idle” filter.

Fig. 3. Example of a graph with 14 states. States 10 – 14 are omitted for simplification purposes. The artificial ant can move from one state to another or
stay in the same state.

once they are normalized. However, they can potentially be re-

updated by a recognized gesture which is the same gesture type

as the one that produced the pheromone table. This will make

ALA an online gesture learning and recognition algorithm, and

will be studied as part of our future work.

D. Classification

A new pheromone table is generated as soon as the user

starts to perform a gesture. Once the gesture is done, a

classifier based on Euclidean distance is used to match the

new table to each of the trained gesture tables. Distance cm is

calculated as:

cm =
k=14

∑
i=1, j=1

(τ1
i, j− τ2

i, j)
2 (6)

where τ1
i, j and τ2

i, j represent the pheromone values in the

corresponding two tables, the gesture that corresponds to the

closest matching gesture table m, is the recognition result. In

this paper, we set m∈{1-Square, 2-Circle, 3-Triangle, 4-Eight,

5-Roll} according to the gestures used in our experiment.

We propose three classification methods in this paper:

• Leading diagonal distance classifier: It takes the leading

diagonal values from the pheromone table into account.

All other values are set to 0s. It examines the similarities

between two gestures based on the number of immediate

repetitions of all characteristic states according to equa-

tion 6 with i = j.

• Rest-of-table distance classifier: It evaluates all the values

except for the leading diagonal values in the pheromone

table. It evaluates the similarities with regards to the

transition information in different gestures according to

equation 6 with i 6= j.

• Hybrid classifier: It is a combination of the two methods

whereby, both i = j and i 6= j are used.

The reason for considering the first two classification meth-

ods was to see whether or not gestures could be classified well

based on minimal features (immediate repetitions or transition

points) from within the incoming gesture data.

Each recognized gesture is mapped to a trained gesture type

which has the shortest distance between them. Since we do not

set any threshold for this distance, even gestures which have

not been trained will still be recognized to the most similar

trained gesture type. One advantage of doing so is that it

provides tolerance for noise in gesture data. For example, it is

not necessary to do a standard square in order to be correctly

recognized, as long as the gesture has the shortest distance

to the trained “Square” sample. As a result, ALA might have

good performance in user-independent cases. This is out the

scope of this paper but will be part of our future work.

According to the experimental results, the hybrid classifier

leads to the highest average recognition rates. Thus, it is

chosen as our classification method. The results can be seen

in Section IV-A.

IV. EXPERIMENTS AND RESULTS

In order to ensure platform independence, we implemented

ALA and the algorithms (HMM and DTW) to which we

compare ALA, in Java. These implementations were done

within the NetBeans IDE 7.2.1 environment. A Processing

library OSC P56 is used to transmit acceleration data from

the iPod touch to a laptop via WiFi.

Five gestures are considered for the experiments, see Fig. 5.

All samples of each gesture should be recorded or performed

using the same iPod orientation.

Fig. 5. Five simple gestures considered.

The starting point is flexible for all gestures except (e) only

if an evaporation rate ρ = 1 is used. The effect of a ρ < 1 is

that the acceleration vectors constituting the ending part of a

gesture contribute more to the pheromone accumulated in the

edges, as compared to those constituting the starting part. As a

result, the values in the pheromone table for the same gesture

type can vary due to different starting points.

Differing from HMM-based methods, only one training

instance is required by ALA for each gesture type. Instead

of generating several instances, one can immediately repeat

the same gesture many times during one training. It makes

the training less tedious and more efficient. We use a number

of training instance t to represent the number of immediate

repetitions of each gesture. Since we are interested in observ-

ing ALA’s performance on training gestures with t = 1, we

mainly focused on one-instance training and recognition in

our experiments.

A. Parameter Tuning

As in ACO, different values of parameters have impacts on

its performance, so it is important to find satisfying parameters.

Similarly, ALA parameters need to be tuned first in order to

guarantee a good overall performance. Main parameters of

ALA are the following:

• Codebook size k = 14 (fixed in our case)

• Pheromone value ∆τ
• Evaporation rate ρ
• Classifier

The strategy for finding a satisfying combination of parame-

ters is: Decide reasonable ranges and values within the ranges

for both ∆τ and ρ first, then test each pair of values for ∆τ and

ρ with different classification methods. Since the recognition

results are more affected by the quality of gesture data rather

than parameter settings, it is not necessary to test ALA on

all possible combinations of ∆τ and ρ. Thus, we only picked

6oscP5 is an OSC implementation for the programming environment
Processing. It can be used for Java based projects.

parameter sets with limited values distributed between certain

ranges for both of them empirically.

The parameter tuning experiment was divided into 3 parts

based on the different classification methods: leading diagonal

distance classifier, rest-of-table distance classifier, and hybrid

classifier. In each part of the test, the average recognition rates

across pheromone value ∆τ ∈ {0.01,0.05,0.1,0.5,1,2,5,10}
and evaporation rate ρ ∈ {0.1,0.3,0.5,0.7,0.9} were exam-

ined. In order to keep the gesture samples consistent for all

the tests, we first recorded the raw acceleration vectors during

performing the gestures, and loaded them into the system

operational pipeline afterwards. For the training dataset, each

gesture was performed with different number of training

instances t ∈ {1,2,5,10,15}; For the recognition dataset, each

gesture was performed with t = 1. In the experiment, each

gesture type was tested using 20 separately recorded gesture

instances and a recognition rate was averaged over these. Both

training and recognition trails were performed by the same

person.

Table 1 shows results for ALA parameter tuning. Here

we can see that ALA can achieve much higher average

recognition rates with hybrid classifier rather than the other

two classifiers. This is expected since the hybrid classifier

uses both information of repetitions of each character states

(leading diagonal values) and numbers of transition points

(remaining values), which makes it generalise to different

gesture types. As a result, we selected the hybrid classifier

for ALA.

It is also noticed from the table that ALA achieved almost

the same recognition results independent of both pheromone

value ∆τ and evaporation rate ρ. However, ALA tends to

achieve higher recognition rates with lager ∆τ and in-between

values of evaporation rates. We assume that lower evaporation

rates allow ALA to “forget” previously incoming acceleration

vectors of a gesture, so they contribute less to the pheromone

table as compared to the acceleration vectors which are re-

ceived later. The side-effect of evaporation is that it makes the

recognizer rely more on the latter part of gestures. This might

strengthen the online learning ability of ALA since the newly

received acceleration vectors could refine the pheromone table

accordingly. We will evaluate the online learning ability of

ALA in our future work.

According to the results, the final parameters of ALA are

set as following:

• Codebook size k = 14 (it is fixed in our project)

• Pheromone value ∆τ = 10

• Evaporation rate ρ = 0.5

• Classifier=Hybrid classifier

Although the parameters are decided based on extensive

tests, they are not optimal, since we did not exhaustively

enumerate all the combination of ∆τ and ρ in the experiment.

Nevertheless, it should be feasible to adjust both ∆τ and ρ
according to the practical need.

TABLE I
RESULTS FOR PARAMETER TUNING: PHEROMONE VALUE ∆τ, EVAPORATION RATE ρ AND CLASSIFICATION METHODS. THE RESULTS ARE AVERAGED

ACROSS 5 GESTURES: SQUARE, CIRCLE, TRIANGLE, EIGHT AND ROLL.

P
P

P
P

PP
ρ

∆τ
0.01 0.05 0.1 0.5 1 2 5 10

Leading diagonal Distance Classifier

0.1 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o%

0.3 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o%

0.5 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o%

0.7 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o%

0.9 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o% 82.o%

Rest-of-table Distance Classifier

0.1 86.8% 91.4% 91.4% 91.6% 91.6% 91.6% 91.6% 91.6%

0.3 86.8% 91.4% 91.4% 91.6% 91.6% 91.6% 91.6% 91.6%

0.5 91.6% 91.6% 91.6% 91.6% 91.6% 91.6% 91.6% 91.6%

0.7 91.6% 91.6% 91.6% 91.6% 91.6% 91.6% 91.6% 91.6%

0.9 91.4% 91.4% 91.4% 91.4% 91.4% 91.4% 91.6% 91.6%

Hybrid Classifier

0.1 93.6% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2%

0.3 94.2% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2%

0.5 94.2% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2%

0.7 94.2% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2%

0.9 94.2% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2% 94.2%

B. Evaluation

The evaluation was conducted in three parts. In the first part,

we used cross validation to observe the generalization perfor-

mance of ALA, HMM and DTW, in the case of one-instance

training. A comparison is given in table II. In the second

part, we measured the execution time of the three algorithms

with different number of training instances t ∈ {1,2,3, ...,15},
averaged across all the five gesture types. Finally, the third part

comprised of six tests performed at different time periods. The

reason for doing this is that a person could be in different states

during the day, or across days, both physically and mentally,

which could affect the quality of gesture data.

Since it is impossible for a person to perform exactly the

same two gesture samples, noise is inevitably included in the

datasets. Thus, we first used cross validation to evaluate the

generalization of our ant learning model with the chosen pa-

rameters, and compared ALA’s performance with both HMM

and DTW. HMM was implemented based on the Wiigee7

library, and DTW was implemented based on [14].

For each gesture, we recorded 20 gesture instances. Of the

20 instances, a single recorded instance was picked as training

data and the remaining 19 instances were used as the test

data. This was then repeated 20 times, with each instance used

exactly once as the training data. An average recognition rate

(across the 19 test instances) was computed after each test

run, and the final result was averaged over the 20 runs. The

same recorded gesture samples were used for all the three

algorithms.

Results in table II indicate that, among the three algorithms,

DTW achieved the best recognition performance with all

five gestures always being correctly recognized. While ALA

7A Java-based gesture recognition library for the Wii remote, see http:
//www.wiigee.org/. Based on this, we implemented a HMM-based gesture
recognition system using the iPod Touch as input device.

TABLE II
RESULTS FOR CROSS VALIDATION ON FIVE GESTURES: SQUARE, CIRCLE,

TRIANGLE, EIGHT AND ROLL.

ALA HMM DTW

Square 97.11%±10.73% 30.79%±26.14% 100.0%±0.0%

Circle 98.95%±3.66% 92.89%±9.7% 100.0%±0.0%

Triangle 96.84%±6.48% 81.32%±26.09% 100.0%±0.0%

Eight 100.0%±0.0% 68.95%±27.69% 100.0%±0.0%

Roll 100.0%±0.0% 60.0%±32.6% 100.0%±0.0%

achieved a lower recognition accuracy compared with DTW, it

still showed a recognition rate of 98.58% averaged across the

five test gesture types. Both ALA and DTW performed much

better than HMM. AS a result, we show that both ALA and

DTW have very good generalization performance with only

one training instance, thus able to produce precise predictions

of new gesture samples.

From the cross validation results of ALA, we note that

the quality of training samples might affect the recognition

results significantly. We find that in some specific tests, the

recognition rates are much below the average. For example,

from the cross validation result of the gesture type “Square”,

we observed that for one of the training instances, ALA

achieved an average recognition rate of 52.63%, which is

much lower than the average 97.11%. This indicates that

this particular instance could be very different from other

instances. In fact, this training sample contained more noise

than the average, thus was very inconsistent with the others.

Using such instances as training data could lead to very

high misclassification rates. Thus, gestures need to have some

degree of consistency and such inconsistent gesture samples

should not be used as training instances.

The execution time of the three algorithms was measured on

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
v
e
ra

g
e
d
 e

x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Number of training instances

ALA

HMM

DTW

Fig. 6. Averaged execution time vs. Number of training instances, measured for ALA, HMM and DTW, respectively.

a Thinkpad E420 114139c laptop with an Intel(R) Core(TM)

i5-2410M Dual-core processor (2.30GHz, 2.30GHz) with 4GB

RAM. The test was performed on Windows 7 (64-bits). The

execution time we measured consists of both training and

recognition.

Each algorithm was tested on gestures with different number

of training instances t ∈ {1,2,3, ...,15}. For each number of

training instance t, the execution time was averaged across all

the five gestures.

Fig. 6 shows that, as compared to both HMM and DTW,

ALA’s averaged execution time was much shorter, and re-

mained more or less the same, independent of the number of

training instances. While DTW had an execution time similar

to HMM when the number of training instances was below

7, it performed much slower than HMM when more than 8

training instances were used.

Thus, we can see that ALA requires extremely low com-

putational overhead, and outperforms both HMM and DTW

with regards to execution time.

Finally, in order to evaluate the performance of our system

in practice, we conducted 6 separate tests. All the tests were

carried out by the same person in different periods during

2 days: 3 tests were performed separately in the morning,

afternoon and evening in the first day, and the other 3 tests

were performed in the same periods during the second day,

respectively. In each test, all the gesture types were re-trained

before recognition.

The same 5 gestures as shown in Fig. 5 were used for

the evaluation. 100 gesture trails were performed in each

test with 20 trails for each gesture. As a result, in total

600 gesture samples were recorded in the experiment. An

average recognition rate of 91.3% across the five gestures

was observed. The average recognition rate for each gesture

is shown in Fig. 7 and the average recognition rate for each

Fig. 7. Average recognition rates of the five gestures. The results
were Square = 90.8%, Circle = 82.5%, Triangle = 85.0%, Eight =
98.3% and Roll = 100.0%, respectively.

test is shown in Fig. 8.

Results in Fig. 8 show that the recognition rates can vary

corresponding to different training samples, even though they

are trained by the same person. Hence, the quality of training

data can affect the recognition accuracy.

C. Discussion

The experiment results show that ALA can achieve an

average 91.3% recognition rate with one-instance training. It

indicates that ALA can recognize gestures with high accuracy

while using minimal training data compared to HMM-based

method. Thus, a user can easily build a large gesture library

with many types of gestures and re-train gestures with much

less effort. It should suits well to applications such as motion

based music performance and video game playing.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

A
v
e

ra
g

e
 r

e
c
o

g
n

it
io

n
 r

a
te

Test

Fig. 8. Average recognition rates of the 6 tests. The results were
89.0%, 91.0%, 89.0%, 97.0%, 91.0% and 91.0%.

We can see from the cross validation experiment that ALA

has good generalization performance. It outperforms HMM

in the case of one-instance training. However, a bad training

sample could significantly reduce the recognition rate. Thus,

we should re-train the gesture if the current training sample

leads to a very low recognition accuracy.

We show that ALA requires the shortest execution time

among all the three algorithms. With the number of training

instances ranging from 1 to 15, ALA’s execution time remains

more or less the same.

V. CONCLUSION

Accelerometer-based gesture recognition methods are ex-

pected to be exciting techniques for developing human ma-

chine interaction applications. In our work, we propose a novel

algorithm based on ant colony optimization which requires

minimal training effort and very low computational overhead.

This is desirable for enhancing the interactive experience and

make gesture recognition technique more pervasive. Moreover,

devices with low computing power can also benefit from it and

achieve real-time gesture recognition. A result of an over 90

percent recognition rate can be achieved, which is promising

but leaves room for further improvement.

Future work could be observing how ALA performs in

online learning cases. We plan to evaluate the recognition

results on-the-fly, where trained pheromone tables are contin-

uously updated during recognition. Besides, user-independent

experiments will be carried out to see how ALA performs

in those cases. It will also be very interesting to explore the

applicability of ALA to pattern recognition problems other

than gesture recognition.

ACKNOWLEDGMENT

The research leading to these results was conducted in

the EPiCS project (Engineering Proprioception in Comput-

ing Systems) and has received funding from the European

Union Seventh Framework Programme under grant agreement

no 257906. http://www.epics-project.eu/

REFERENCES

[1] S. Rajko, G. Qian, T. Ingalls, and J. James, “Real-time gesture recog-
nition with minimal training requirements and on-line learning,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR’07). IEEE, 2007, pp. 1–8.
[2] G. Niezen and G. P. Hancke, “Evaluating and optimising accelerometer-

based gesture recognition techniques for mobile devices,” in Proc.

AFRICON (AFRICON’09). IEEE, 2009, pp. 1–6.
[3] L. Yin, M. Dong, Y. Duan, W. Deng, K. Zhao, and J. Guo, “A

high-performance training-free approach for hand gesture recognition
with accelerometer,” Multimedia Tools and Applications, pp. 1–22,
2013. [Online]. Available: http://dx.doi.org/10.1007/s11042-013-1368-1

[4] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uWave:
Accelerometer-based personalized gesture recognition and its applica-
tions,” Pervasive and Mobile Computing, vol. 5, no. 6, pp. 657–675,
2009.

[5] T. Pylvänäinen, “Accelerometer based gesture recognition using
continuous HMMs,” in Pattern Recognition and Image Analysis, ser.
Lecture Notes in Computer Science, J. S. Marques, N. Pérez de la
Blanca, and P. Pina, Eds. Springer, 2005, vol. 3522, pp. 639–646.
[Online]. Available: http://dx.doi.org/10.1007/11492429 77

[6] T. Schlömer, B. Poppinga, N. Henze, and S. Boll, “Gesture recognition
with a Wii controller,” in Proc. 2nd International Conference on Tangible

and Embedded Interaction (TEI’08). ACM, 2008, pp. 11–14.
[7] F. Bevilacqua, B. Zamborlin, A. Sypniewski, N. Schnell, F. Guédy,

and N. Rasamimanana, “Continuous realtime gesture following and
recognition,” in Gesture in Embodied Communication and Human-

Computer Interaction, ser. Lecture Notes in Computer Science, S. Kopp
and I. Wachsmuth, Eds. Springer, 2010, vol. 5934, pp. 73–84.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-12553-9 7

[8] J. Kela, P. Korpipää, J. Mäntyjärvi, S. Kallio, G. Savino, L. Jozzo, and
D. Marca, “Accelerometer-based gesture control for a design environ-
ment,” Personal and Ubiquitous Computing, vol. 10, no. 5, pp. 285–299,
2006.

[9] M. Dorigo, “Learning and natural algorithms,” Doctoral dissertation,
Politecnico di Milano, Italie, 1992.

[10] A. Colorni, M. Dorigo, V. Maniezzo et al., “Distributed optimization
by ant colonies,” in Proc. 1st European Conference on Artificial Life

(ECAL’91), vol. 142. Paris, France: Elsevier, 1991, pp. 134–142.
[11] M. Klingmann, “Accelerometer-based Gesture Recognition with the

iPhone,” Master’s thesis, Goldsmiths University of London, London,
UK, 2009.

[12] C. Guéret, N. Monmarché, and M. Slimane, “Ants can play music,” in
Ant Colony Optimization and Swarm Intelligence, ser. Lecture Notes in
Computer Science, M. Dorigo, M. Birattari, C. Blum, L. Gambardella,
F. Mondada, and T. Sttzle, Eds. Springer, 2004, vol. 3172, pp. 310–317.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-28646-2 29

[13] A. Hamdi, V. Antoine, N. Monmarché, and M. Slimane, “Artificial ants:
from collective intelligence to real life optimization and beyond,” 2010.

[14] N. Gillian, R. B. Knapp, and S. O’Modhrain, “Recognition of mul-
tivariate temporal musical gestures using n-dimensional dynamic time
warping,” in Proc. 11th International Conference on New Interfaces for

Musical Expression (NIME’11), 2011.

