
GENERATION OF MULTI-CORE SYSTEMS FROM MULTITHREADED SOFTWARE

Alexander Wold, Jim Torresen

Department of Informatics
University of Oslo, Norway

email: {alexawo,jimtoer}@ifi.uio.no

Andreas Agne

Computer Engineering Department
University of Paderborn, Germany

email: agne@upb.de

ABSTRACT

A heterogeneous system with soft CPU tailored to the indi-
vidual threads of the application, while still software based,
offers the potential for improved performance and resource
utilization over a homogeneous system. In this paper we
present a method to automatically create a heterogeneous
multi-core system from a multithreaded software applica-
tion. The resulting system consists of processing elements
based on customized MIPS soft CPUs coupled with their re-
spective programs. Using instruction set architecture (ISA)
subsetting, we adapt the individual soft CPUs to the specific
computations they have to perform. We have carried out a
case study with a constraint solver application for which we
find a performance increase of 1.54 accompanied with an
area reduction of 22.5% compared to a homogeneous multi-
core system. We also present an automated toolchain that
generates synthesizable IP-cores from software threads with
little additional development overhead.

1. INTRODUCTION

FPGAs allow not only the implementation of custom mul-
tiprocessors systems, but also implementation of complete
application specific systems. This can be further exploited
to implement a heterogeneous multi-core system [1]. These
system may consist of multiple soft CPUs with a custom in-
terconnect [2, 3]. Compared to a single feature rich CPU,
multiple lightweight CPUs have the potential to improve
performance of multithreaded applications implemented on
FPGAs. This takes into account that even parallel applica-
tions typically contain significant parts of sequential code.
In this paper, we combine multi-core processing and light-
weight application specific soft CPUs, to allow concurrent
execution of multithreaded applications.

We partition the application into a set of threads which
are concurrently executed. Our goal is to exploit concurrent
execution, increased memory throughput (each soft CPU has
dedicated local memory), and data locality. In addition, we
optimize the soft CPUs individually to each software thread
at compile time. The result is an optimized, lightweight soft
CPU that typically allows an increase in clock frequency in
addition to reduced resource requirements.

A soft CPU can be adapted to a particular program. One
way to accomplish this is with instruction set extensions
(ISEs) [4]. Typically, soft CPU customization is undertaken

with the target of accelerating the most frequently used func-
tions. This has resulted in performance improvements as re-
ported in previous publications [5, 6]. ISEs usually target
applications where the CPU time is dominated by smaller
code sections (i.e. compute kernels). Compute kernels are
prevalent for example in audio and video applications. In
applications without compute kernels, the effect of ISEs is
limited, and may also be detrimental to performance/area. In
this case, a CPU without ISEs may offer higher performance
per area than a CPU with ISEs. We customize the soft CPUs
by implementing only instructions that are actually used by
the software. This is known as ISA subsetting [6]. We ac-
complish this by parsing the compiled code and then remove
unused instructions from the soft CPU.

Our work targets the ReconOS [7] framework. The Re-
conOS framework is an operating system layer that imple-
ments the multithreaded programming model for software as
well as for hardware threads. ReconOS features a POSIX in-
terface for inter-thread synchronisation and communication
in software as well as in hardware. This is implemented us-
ing FIFO based channels that connect the hardware threads
to the main CPU that executes a multithreading host op-
erating system. ReconOS supports message passing and
shared memory, enabling seamless communication between
hardware and software threads. Since ReconOS hardware
threads are typically specified in a HDL, a wide range of
hardware can be integrated as hardware threads. In our ap-
proach, we implement MIPS based multi-cores as ReconOS
hardware threads. We generate ReconOS hardware threads
as IP-cores compatible with EDK/ISE and other electronic
design automation (EDA) tools. The IP-cores consist of a
ROM containing the instructions of the pre-compiled soft-
ware threads, the custom soft CPUs, and other generated
HDL code and project files. In addition, for simulation, test-
benches are generated. This allows unit testing of the IP-
core. Communication between ReconOS and the hardware
threads is implemented by memory mapping the hardware
thread’s memory and operating system interfaces to the data
bus of the soft CPU system. This allows the generated IP-
cores to be implemented as ReconOS hardware threads. The
customization and generation of the soft CPUs is fully auto-
mated in the tool flow.

The remainder of the paper is organized as follows: back-
ground and related work are presented in the following sec-
tion. In Section 3 we describe our system architecture that is
based on ReconOS. In Section 4, we present our toolchain.
Results are presented in Section 5. This is followed by a

!"#$%&'()#

*)+$,-+%'.,/0$1%,/0$'!23$'456#

.21'+7$%89"',8$%:87+',8$%:9288%9$

)(+7;%<=%928>!

?5!=@
*7#$%:'5A

?5!=@
!+7B%'5A

?5!=@
!+7B%'5A

C%+%/7$%
D0:%7E

=%928>!
>!F!*

C)7+'-2:$
=@*

Fig. 1. A ReconOS hardware thread capable of executing
multithreaded software concurrently.

conclusion in Section 6.

2. BACKGROUND AND RELATED WORK

Within the FPGA and network on chip (NoC) community,
several related publications focus on multicore architectures
on FPGAs. The majority of publications on multicore sys-
tems consider homogeneous processing elements. In [2],
Kinsy et al. present a MIPS based multicore system. The
system features a fully parameterizable NoC style intercon-
nect. In addition, the memory system is parameterizable
for each soft CPU. In [3], Motruk et al. describes the use
of such a system in a safety application. In [1], Tumeo
et al. present a heterogeneous multiprocessor FPGA plat-
form. Tumeo et al. use both hard core PowerPC CPUs and
MicroBlaze soft CPUs. The main difference between these
publications, and the work presented in this paper, is that we
present a toolchain to generate systems consisting of soft
CPUs which are optimized for particular threads.

A significant amount of related work on application spe-
cific customization of processors has been undertaken. A
survey on ISEs is presented in [4]. To implement ISEs,
first it has to be determined which functions of an applica-
tion have potential benefit of acceleration. Functions can be
identified manually or with profiling. Customizations target-
ing the ISA are usually tightly coupled to the CPU giving ac-
cess to registers. The ISEs then have to be implemented and
integrated into the CPU. The tool chain has to be extended
with support for the ISEs. Furthermore, the application has
to be adapted to use the ISEs. This can be accomplished with
inline assembly in the source code. The process can be man-
ually undertaken or with support of automated frameworks.
In [8], [9], work to automate the process is presented.

In addition to ISEs, unused instructions can be removed
from the soft CPU. Eliminating unused instructions improves
performance per area. The design is simplified and typically,
as a result, runs at a higher frequency. The term ISA sub-
setting is used for removing unused parts of the instruction
set. ISA subsetting is undertaken by parsing the compiled
code, and removing instructions not used from the soft CPU.

The customized soft CPU executes unchanged applications.
In [6], Yiannacouras et al. report area reductions of up to
60% and clock frequency increases from 4% to 20%. In the
results presented in [6], 25% to 50% of the MIPS-I instruc-
tion set is unused. ISA subsetting is typically more useful
for compute kernels. Compute kernels tend to use a smaller
portion of the instruction set. Larger applications typically
use a greater part of the instruction set, and the impact of
ISA subsetting decreases, as fewer instructions can be re-
moved. For example, we found that the embedded operating
system uCos compiled with GCC use 48 (out of 75) dif-
ferent MIPS instructions (depending on compiler options).
Thus reduces of the amount of instructions which can be re-
moved. Thus, the benefit of ISA subsetting for larger appli-
cations is limited. Both ISEs and ISA subsetting can poten-
tially improve performance per area. In this work, we have
implemented ISA subsetting in order to show the benefit of
a heterogeneous multi-core system.

The number of different instructions an application use
can be reduced with compiler options. Compilers can be
configured to not use specific instructions such as floating-
point coprocessor instructions and multiplication/division in-
structions. Depending on how often the omitted instructions
are used, this can result in decreased application through-
put. However, the resource footprint of the soft CPU will be
reduced at the same time. Further, it is possible to emulate
instructions in software or to use run-time reconfiguration of
the CPU instruction set. This allows the use of binaries with
instructions not implemented in the soft CPU.

3. LIGHTWEIGHT PROCESSING ELEMENTS IN
RECONOS

ReconOS is an operating system layer that implements the
multithreaded programming model for software and hard-
ware threads. A ReconOS system usually consists of a re-
configurable system on chip (SoC) with a main CPU and
multiple threads implemented either in software or in hard-
ware. It provides a common interface to both software and
hardware threads. Up to 14 hardware threads are supported
in ReconOS. The hardware threads are typically implemented
in HDL (VHDL or Verilog).

In a ReconOS system, a host operating system with mul-
tithreading support runs on the main CPU. For each hard-
ware thread, there exists one software delegate thread that
transparently communicates with its associated hardware thr-
ead and executes operating system functions on behalf of
the hardware thread. The ReconOS delegate thread uses the
host operating system’s POSIX interface to handle commu-
nication, while a VHDL library offers a functionally equiv-
alent interface to the hardware thread. POSIX features such
as message passing, semaphores, and shared memory are
supported. A shared memory address space allows for com-
munication between the threads without invoking the main
CPU.

In our work, the hardware threads are lightweight processing
elements (PEs). A PE contains a soft CPU, local memory
and the program. The lightweight soft CPU is a parame-
terizable MIPS-derived CPU. The effect of ISA subsetting

Software Compilation Soft CPU Generation IP-Core Generation Sythesisable IP-Core
Multithreaded

Application
Source .c, .h

Compiler (GCC)

Object Files .o, .a

Linker (GCC)

Thread ELFs
Thread ELFs

Thread ELFs

ISA Extraction

Thread In-
structions

Implementation
HDL Templates

Soft CPU
Generation

Lightweight
MIPS Soft CPU

ELF to BRAM Program Data

EDK, ISE,
IP-XACT,

ReconOS, PCore
Templates

Project Gen-
eration

HDL Files

Top Level HDL
Generation

EDK PCore

ISE Project

ModelSim Project

Fig. 2. The tool flow depicts the process to generate thread specific soft CPUs

on performance and area depends on the number of differ-
ent instructions used. Each program uses only a limited set
of instructions. Thus, we instantiate soft CPUs with limited
functionality, potentially allowing removal of a large part of
the ISA.

A ReconOS hardware thread can be implemented with
multiple PEs. This is depicted in Fig. 1. In contrast to a
thread which posesses heavy-weight feature-rich interfaces
to the operating system and the system memory, PEs within
a thread may exchange data using a comparatively inexpen-
sive and fast communication infrastructure. This allows for
low latency communication between the PEs of a ReconOS
hardware thread where message passing, for example, can
be used without involving the main CPU. The soft CPUs
can be still be heterogeneous when implemented in a single
ReconOS thread. In this configuration, the soft CPUs are
partitioned into one master and a pool of slaves. Only the
master communicates with the delegate thread. This config-
uration targets applications where the master schedules jobs
on the slaves.

Internal communication within hardware thread between
the soft CPUs is implemented with FIFO based channels.
Generics are used in the implementation to adapt the FIFO
channels to the application. For example, both the chan-
nel width and the FIFO depth can be configured (manually).
A software library provides functions for asynchronous and
blocking message passing.

4. TOOLCHAIN

The toolchain allows implementation of a multithreaded ap-
plication into one or more of the IP-cores introduced in the
previous section. This is accomplished with scripts and a
template library. The template library contains project and

HDL files. IP-cores are generated by adapting the templates
to the application. We have automated this with scripts. The
complete tool flow is depicted in Fig. 2. In the following
sections we describe the tool flow in detail. Our flow con-
sists of the following steps:

The first step is to compile the application. Compilation
is undertaken with standard GNU tools. The compilation is
organized by a makefile. This builds a separate ELF file for
each soft CPU. However, it is up to the developer to partition
the application into appropriate threads.

The lightweight MIPS soft CPU is generated from a VH-
DL template. Each compiled thread is parsed to identify
used instructions. Only instructions present in the compiled
thread are implemented in the generated soft CPU. This ke-
eps the generated soft core lightweight. The resulting thread
specific soft CPU implements a subset of the MIPS ISA.

After a soft CPUs have been generated for each thread,
the interconnection infrastructure is generated. The inter-
connection infrastructure is adapted to the application. This
consists of generating a top level VHDL based on a tem-
plate. The top level file instantiates and connects the soft
CPUs to the internal interconnection infrastructure and the
ReconOS interfaces.

The result of the IP-core generation is an IP-core ready
to be integrated into ReconOS. The system can then be im-
plemented and simulated with FPGA vendor tools. Imple-
mentation can be done with Xilinx EDK. The IP-core also
contains simulation scripts written in TCL and ModelSim
project files.

5. EXPERIMENTAL RESULTS

We have implemented different variants of a concurrent em-
bedded constraint solver to evaluate our tool flow. The con-

0

2

4

6

8

10

12

3 5 7

PEs

Homogeneous and Heterogeneous Processing Elements

Hete. speedup
Hom. speedup

Heter. area
Hom. area

Fig. 3. Area and speedup of the constraint solver using ho-
mogeneous and heterogeneous PEs.

current constraint solver is using one, three, five and seven
PEs. We have measured speedup and resource increase us-
ing both homogeneous PEs and heterogeneous PEs. In Fig. 3,
the speedup relative to an single PE implementation is de-
picted for heterogeneous as well as homogeneous systems,
with varying number of PEs. Area is given normalized to
the resource usage of a single PE. The results show a perfor-
mance improvement of 1.54 for the heterogeneous system
for any number of PEs, and at the same time, an area reduc-
tion of up to 22.5% in the case of a 3 PE system. We observe
that the performance gain, and area reductions are in large
parts due to removing instructions that implement a barrel
shifter from the PEs. This confirms the findings of [6], that
removing the shifter leads to large area savings.

6. CONCLUSION

In this paper, we presented a heterogeneous multi-core sys-
tem for reconfigurable hardware consisting of application
specific processing elements contained in ReconOS hard-
ware threads. The processing elements are comprised of
MIPS based soft core CPUs combined with their respec-
tive program. The soft CPUs have been optimized for their
specific programs by removing unused instructions from the
implemented instruction set (ISA subsetting). The result-
ing tight coupling of program code with custom processing
hardware yields improved performance by increased clock
frequencies as well as significant savings in hardware re-
sources. We presented an automated toolflow that gener-
ates an application specific multi-core system from a multi-
threaded software implementation. In order to adapt an ap-
plication to our system, only minimal changes need to be
made to the conventional software design flow, enabling the
developer to benefit from a customized heterogeneous multi-
core system for almost no additional overhead in develop-

ment. We demonstrated the capabilities of our system by
conducting a case study for a multi-threaded constraint solver.
We evaluated the system’s performance and resource usage
for several points in design space, using up to 7 processing
elements. Our findings show that for the constraint solver
application we gain speedups of up to 1.54 accompanied by
an area reduction of 22.5% to a non-customized homoge-
neous multi-core system.

Acknowledgment
This work is funded by the Research Council of Norway
(grant 191156V30) and by the European Union (grant 257906).

7. REFERENCES

[1] A. Tumeo, M. Branca, L. Camerini, M. Ceriani,
M. Monchiero, G. Palermo, F. Ferrandi, and D. Sciuto,
“Prototyping pipelined applications on a heterogeneous FPGA
multiprocessor virtual platform,” in 2009 Asia and South

Pacific Design Automation Conference. IEEE, Jan. 2009.
[2] M. a. Kinsy, M. Pellauer, and S. Devadas, “Heracles: Fully

Synthesizable Parameterized MIPS-Based Multicore System,”
in 2011 21st International Conference on Field Programmable

Logic and Applications. IEEE, Sep. 2011.
[3] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic,

“IDAMC: A Many-Core Platform with Run-Time Monitoring
for Mixed-Criticality,” in 2012 IEEE 14th International

Symposium on High-Assurance Systems Engineering. IEEE,
Oct. 2012.

[4] C. Galuzzi and K. Bertels, “The Instruction-Set Extension
Problem,” ACM Transactions on Reconfigurable Technology

and Systems, vol. 4, no. 2, May 2011.
[5] C. Banz, C. Dolar, F. Cholewa, and H. Blume, “Instruction set

extension for high throughput disparity estimation in stereo
image processing,” in ASAP 2011 - 22nd IEEE International

Conference on Application-specific Systems, Architectures

and Processors. IEEE, Sep. 2011.
[6] P. Yiannacouras, J. G. Steffan, and J. Rose, “Exploration and

Customization of FPGA-Based Soft Processors,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 26, no. 2, Feb. 2007.
[7] E. Lubbers and M. Platzner, “ReconOS: An RTOS Supporting

Hard-and Software Threads,” in 2007 International Confer-

ence on Field Programmable Logic and Applications. IEEE,
Aug. 2007.

[8] D. Goodwin and D. Petkov, “Automatic generation of
application specific processors,” in Proceedings of the

international conference on Compilers, architectures and

synthesis for embedded systems - CASES ’03. New York,
New York, USA: ACM Press, 2003.

[9] A. Peymandoust, L. Pozzi, P. Ienne, and G. De Micheli,
“Automatic instruction set extension and utilization for
embedded processors,” in Proceedings IEEE International

Conference on Application-Specific Systems, Architectures,

and Processors. ASAP 2003. IEEE Comput. Soc, 2003.

