
1

ReconOS – An Operating System Approach for
Reconfigurable Computing

Andreas Agne, Markus Happe, Ariane Keller, Enno Lübbers,
Bernhard Plattner, Marco Platzner, and Christian Plessl1

Abstract―The ReconOS operating system for

reconfigurable computing offers a unified multi-threaded
programming model and operating system services for
threads executing in software and threads mapped to
reconfigurable hardware. The operating system interface
allows hardware threads to interact with software threads
using well-known mechanisms such as semaphores,
mutexes, condition variables, and message queues. By
semantically integrating hardware accelerators into a
standard operating system environment, ReconOS allows
for rapid design space exploration, supports a structured
application development process and improves the
portability of applications between different reconfigurable
computing systems.

Keywords―operating system, reconfigurable

computing, multi-threading

1 Introduction
Today’s high-density FPGAs allow for implementing very complex circuits.
Still, reconfigurable computing applications are rarely mapped exclusively to the
FPGA accelerator. Application parts amenable to parallel execution,
customization, and deep pipelining are often implemented as custom hardware to
improve performance or energy-efficiency. Other parts, especially code that is
highly sequential or difficult to implement as custom hardware, are executed in
software mapped to a CPU. This decomposition of applications into separate,
communicating parts that require synchronization among them is also widely
used in pure software systems for achieving a separation of concerns and
concurrent or asynchronous processing. In software systems the operating
system standardizes these communication and synchronization mechanisms and
provides abstractions for encapsulating the unit of execution (processes,
threads), communication, and synchronization.

A. Agne, M. Platzner, and C. Plessl are with University of Paderborn, Germany.
M. Happe, A. Keller, and B. Plattner are with ETH Zurich, Switzerland.
E. Lübbers is with Intel Labs Europe, Munich, Germany.

2

Reconfigurable computing systems still lack an established operating system
foundation that covers both software and hardware parts. Instead,
communication and synchronization are usually handled in a highly system and
application-specific way, which tends to be error prone, limit the productivity of
the designer, and prevent portability of applications between different
reconfigurable computing systems.

The ReconOS operating system, programming model and system
architecture offers unified operating system services for functions executing in
software and hardware and a standardized interface for integrating custom
hardware accelerators. ReconOS leverages the well-established multi-threading
programming model and extends a host operating system with support for
hardware threads. These extensions allow the hardware threads to interact with
software threads using the same, standardized operating system mechanisms, for
example, semaphores, mutexes, condition variables, and message queues. From
the perspective of an application it is thus completely transparent whether a
thread is executing in software or hardware. The availability of an operating
system layer providing symmetry between software and hardware threads
provides the following benefits for reconfigurable computing systems:

• The application development process can be structured in a step-by-step
fashion with an all-in-software implementation as a starting point.
Performance-critical application parts can then be turned into hardware
threads one-by-one to explore the hardware/software design space
successively.

• The portability of applications between different reconfigurable
computing systems is improved by using defined operating system
interfaces for communication and synchronization instead of low-level
platform-specific interfaces.

• The unified appearance of hard and software threads from the
application’s perspective allows for moving functions between software
and hardware during runtime, which supports the design of adaptive
computing systems that exploit partial reconfiguration.

The evolution of operating systems for reconfigurable computing and how
ReconOS relates to this heritage is discussed in the “Sidebar: Operating Systems
for Reconfigurable Computing”.

2 Programming Model
The key idea of ReconOS is extending the multi-threading programming model
across the hardware/software interface. In multi-threaded programming,
applications are composed of objects such as threads, message queues, and
semaphores, each of which has a strictly defined interface and purpose. The
application’s functionality is partitioned into threads, which in our case can be
either blocks of sequential software or parallel hardware modules. Threads

3

communicate and synchronize using one or more of the remaining objects of the
programming model: for example, they can pass data using message queues or
mailboxes, explicitly coordinate execution through barriers or semaphores, or
implicitly synchronize access to shared resources by locking and unlocking
mutually exclusive locks (mutexes). These objects and their interactions are
widely used in well-established APIs for programming multi-threaded software
applications. One of the major advantages developers can draw from the
ReconOS approach is that these abstractions can not only be used for software
threads but also for optimized hardware implementations of data-parallel
functions—the hardware threads—without sacrificing the expressiveness and
portability of the application description.

Consider the example software thread sketched in Listing 1. The thread
receives packets streaming in via ingress mailbox mbox_in, processes them in
a user-defined way, sends the processed packets to egress mailbox mbox_out,
and updates a packet counter stored in a shared variable protected by lock
count_mutex. Using standard APIs for message passing and synchronization,
the software thread accesses operating system services in an expressive,
straightforward, and portable way. As an additional benefit, such a thread
description manages to clearly separate thread-specific processing from
operating system calls.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

extern mutex_t *count_mutex; // mutex protecting packet counter
extern mqd_t mbox_in, // ingress packets
 mbox_out; // egress packets

void *thread_a_entry(void *count_ptr) {
 data_t buf; // buffer for packet processing

 while (true) {
 buf = mbox_get(mbox_in); // receive new packet
 process(buf); // process packet
 mbox_put(mbox_out, buf); // send processed packet
 mutex_lock(count_mutex); // acquire lock
 ((count_t) *count_ptr)++; // update counter
 mutex_unlock(count_mutex); // release lock
 }
}

Listing 1: Example of a stream processing software thread using operating
system services.

Figure 1 shows a ReconOS hardware implementation of the same thread,
partitioned into similar thread-specific logic and operating system interactions.
While the thread-specific user logic contains the hardware thread’s data path and
is only limited by available FPGA resources, the operating system interactions of
a hardware thread are captured by the OS synchronization finite state machine
(OSFSM). Together with the OS interface (OSIF), this state machine enables
seamless operating system calls from within hardware modules. The developer
specifies the OSFSM using a standard VHDL state machine description, as
shown in Listing 2. For accessing operating system functions in this state
machine ReconOS provides a VHDL library that wraps all operating system

4

calls with VHDL procedures. The transitions of the OSFSM are guarded by an
OS-controlled signal done (line 47), so that blocking operating system calls—
such as mutex_lock()—can temporarily inhibit the execution of a hardware
thread.

GET_DATA
PROCESSi_osif

o_osif

transitions
occur only
when OS

interface is
ready

OS synchronization finite state machine (OSFSM)

Hardware thread

/ mbox_get
(MBOX_IN, data_in)

ready = '1' /
run <= '0'

ready = '0' /
run <= '1'

O
S

in
te

rf
ac

e
(O

SI
F)

LOCK

READ

WRITE

UNLOCK

/ mutex_lock
(COUNT_MUTEX)

/ mutex_unlock
(COUNT_MUTEX)

/ write(count + 1)

/ read(count)

User logic (custom data path)

M
em

or
y

in
te

rf
ac

e
(M

EM
IF

) i_memif

o_memif

PUT_DATA

/ mbox_put
(MBOX_OUT, data_out)

in
gr

es
s

m
em

or
y

eg
re

ss

m
em

or
y

run

ready

data_in

data_out

Figure 1: A ReconOS hardware thread comprises the OS synchronization finite
state machine and the user logic implementing the data path.

5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

OSFSM: process(clk, reset)
 variable ack: boolean;
begin

 if reset = '1' then
 state <= GET_DATA;
 run <= '0';
 osif_reset (o_osif , i_osif);
 memif_reset(o_memif, i_memif);
 elsif rising_edge(clk) then

 case state is

 when GET_DATA =>
 mbox_get(o_osif,i_osif,MB_IN,data_in,done); -- receive new packet
 next_state <= COMPUTE;

 when COMPUTE =>
 run <= '1'; -- process packet
 if ready = '1' then
 run <= '0';
 next_state <= PUT_DATA;
 end if;

 when PUT_DATA =>
 mbox_put(o_osif,i_osif,MB_OUT,data_out,done); -- send processed packet
 next_state <= LOCK;

 when LOCK =>
 mutex_lock(o_osif,i_osif,CNT_MUTEX,done); -- acquire lock
 next_state <= READ;

 when READ =>
 read(o_memif,i_memif,addr,count,done);
 next_state <= WRITE

 when WRITE =>
 write(o_memif,i_memif,addr,count + 1,done); -- update counter
 next_state <= UNLOCK;

 when UNLOCK =>
 mutex_unlock(o_osif,i_osif,CNT_MUTEX,done); -- release lock
 next_state <= GET_DATA;

 end case;

 if done then state <= next_state; end if;

 end if;
end process;

Listing 2: OS synchronization finite state machine for a stream processing
hardware thread.

Consequently, the OSFSM in VHDL closely mimics the sequence of
operating system calls within the equivalent software thread: it reads a packet
from a mailbox, passes it to a separate module to be processed, writes the
processed packet back to another mailbox, and increments a thread-safe counter.
The description of the actual user logic, however, may well differ from the
software realization, as this is the area where the fine-grained parallel execution
of an FPGA-optimized implementation can realize its strengths—unhindered by
the necessarily sequential execution of operating system calls.

6

3 ReconOS Architecture

ap
pl
ic
at
io
n

Figure 2: Conceptual overview of the ReconOS system architecture. Software
threads interact directly with the OS kernel, while hardware threads connect
through an OSIF and delegate threads.

The ReconOS run-time system architecture provides the structural
foundation to support the multi-threading programming model and its execution
on CPU/FPGA platforms. Figure 2 shows a conceptual view of a typical system
that is decomposed into application software, OS kernel and hardware
architecture. The application’s software threads are usually executed on the main
CPU alongside the host OS kernel that encapsulates APIs, libraries, and all
programming model objects as well as lower level functions such as memory
management and device drivers. The ReconOS run-time environment consists of
hardware components that provide interfaces, communication channels, and
other functionality such as memory access and address translation to the
hardware threads. Additionally, the runtime system comprises software
components in the form of libraries and kernel modules that offer an interface to
the hardware, the operating system, and the application’s software threads.

A key component for multi-threading across the hardware/software boundary
is the delegate thread, which is a light-weight software thread that interfaces

7

between the hardware thread and the operating system. When a hardware thread
needs to execute an operating system function, it relays this request through the
operating system interface (OSIF) to the delegate thread using platform-specific
(but application-independent) communication interfaces. The delegate thread
then executes the desired operating system functions on behalf of its associated
hardware thread. Hence, from the OS kernel’s point of view, only software
threads exist and interact, while the hardware threads are completely hidden
behind their respective delegate threads. From the application programmer’s
point of view however, the delegate threads are hidden by the ReconOS runtime
environment and only the application’s hardware and software threads exist.
This delegate mechanism together with the unified thread interfaces gives
ReconOS exceptional transparency regarding the execution mode of a thread,
i.e., whether it runs in software or hardware. While the delegate mechanism
causes a certain overhead for executing OS calls, the resulting simplicity of
switching thread implementations between software and hardware greatly
facilitates system generation and design space exploration.

The ReconOS concept is rather general and has been ported to several FPGA
families, main CPU architectures, and host operating systems (see “Sidebar:
ReconOS Versions and Availability”). For the remainder of this article we
describe the implementation of ReconOS v3, which is the most recent version of
ReconOS targeting Xilinx Virtex-6 FPGAs and utilizing a MicroBlaze/Linux
environment.

Figure 3: A finite state machine nested within the OS synchronization finite state
machine handles the communication between the hardware thread and the OS
(via OSIF and delegate thread). The OSIF contains two FIFOs that connect the
hardware thread with the CPU. The operating system relays the hardware
thread's request to the respective delegate thread where the request is carried out.

8

Figure 4: Example instance of an ReconOS hardware architecture with a CPU
and two reconfigurable hardware slots.

To assist developers with creating the OSFSM for a hardware thread,
ReconOS provides a library that wraps convenient VHDL procedures around the
operating system call signaling, e.g., mutex_lock() as used in Listing 2.

Technically, the VHDL procedures implement further state machines that are
nested within the OSFSM and access the two FIFOs i_osif and o_osif to
connect to the OSIF. Figure 3 outlines the relationship between the OSFSM, the
nested state machine implementing the mutex_lock procedure and the two
FIFOs. Synchronization between the nested state machines and the OSFSM is
controlled via the handshaking signal done. Towards the delegate thread, we
use a communication protocol that encodes an OS request as a sequence of
words comprising a function identifier and a call-specific number of parameters.
The encoded request is written to the outgoing FIFO o_osif. For a hardware
thread, a function call is completed when an acknowledgement has been sent by
the delegate thread and, optionally, a return value has been read from the
incoming FIFO i_osif.

Hardware threads reside in reconfigurable slots, which are predefined areas
of reconfigurable logic equipped with the necessary communication interfaces.
Figure 4 shows an instance of a ReconOS hardware architecture with a CPU,
two reconfigurable slots, the memory subsystem and various peripherals.
Besides communicating with the OS kernel on the host CPU, hardware threads

9

residing in reconfigurable slots can also access the system memory. To that end,
a hardware thread uses its memory interface (MEMIF) shown in Figure 1 to
connect to the ReconOS memory subsystem. The memory subsystem arbitrates
and aligns the hardware threads’ memory requests and can handle single word as
well as burst accesses. To support Linux with virtual addressing as host
operating system, ReconOS implements a full-featured memory management
unit (MMU), including a translation lookaside buffer, that can autonomously
translate addresses using the Linux kernel’s page tables [1]. Hardware threads
use FIFOs to communicate with the memory subsystem; one outgoing and one
incoming FIFO per hardware thread. Requests for memory transactions are
encoded and written to the outgoing FIFO followed by data in the case of a write
request. In the case of a read request, data become available on the incoming
FIFO upon completion of the memory transfer. Similar to the communication
with the OS, we provide a library of VHDL procedures to conveniently handle
memory operations. These procedures encode the requests, synchronize with the
memory FIFOs, and automatically transfer data from/to local memory elements
within the hardware thread.

4 Application Development with ReconOS
Over the years, ReconOS has been used to implement several applications on
hybrid CPU/FPGA systems. These experiences have confirmed that the hybrid
multi-threading approach offered by ReconOS simplifies the development
process, which is typically structured in three steps: First, the developer
prototypes the application’s functionality in multi-threaded software using, for
example, the Pthreads library on Linux. This first software-based
implementation allows for functional testing. Second, the multi-threaded
software is ported to the embedded CPU on the targeted platform FPGA, e.g., a
MicroBlaze running Linux. The developer can now use profiling to identify the
application’s potential for parallel execution, i.e., those threads that could benefit
from the fine-grained parallelism of a hardware realization, and those code
segments that are amenable to a coarser-grained parallel implementation with
multiple threads. The third step includes creating the hardware threads and the
ReconOS system architecture. At this point, ReconOS easily allows the
developer to evaluate different mappings of threads to hardware and software
and to quickly assess the overall performance on the target system.

10

Figure 5: Tool flow for assembling a ReconOS system on a Linux target.
ReconOS-specific steps are colored green.

4.1 ReconOS Tool Flow
Figure 5 captures the ReconOS v3 tool flow. The required sources comprise the
software threads, the hardware threads and the specification of the ReconOS
hardware architecture. We code software threads in C and hardware threads in
VHDL, using the ReconOS-provided VHDL libraries for OS communication
and memory access. An automatic synthesis of hardware threads is not part of
the ReconOS project; developers are, however, free to use any hardware
description language or high-level synthesis tool to create hardware threads.
ReconOS extends the process for building a reconfigurable system-on-chip using
standard vendor tools. On the software side, the delegate threads and device
drivers for transparent communication with hardware threads are linked into the
application executable and kernel image, respectively. On the hardware side,
components such as the OS and memory interfaces as well as support logic for
hardware threads are integrated into the tool flow. The ReconOS System Builder
assembles the base system design and the hardware threads into a reference
design and automatically connects bus interfaces, interrupts, and I/O. The build
process then creates an FPGA configuration bitstream for the reference design
using conventional synthesis and implementation tools.

During design space exploration, the developer will create both hardware
and software implementations for some of the threads. Switching between these
implementations is a matter of replacing a single thread instantiation statement,
e.g., using rthread_create() instead of pthread_create(). Such a
decision for software or hardware can even be taken during runtime, see
“Sidebar: Applications of ReconOS”.

11

4.2 Case Study: Video Object Tracker
To illustrate the benefits of the ReconOS approach, we present a particle-filter
based video object tracker [2] for continuos estimation of an object’s position
and size in a video sequence. A particle filter is a robust technique for video
object tracking because it maintains several estimates (particles) for the position
and size of the tracked object. The filter iterates over video frames and processes
the particles in three consecutive stages: 1) sampling estimates where the object
might have been moved; 2) importance weights all estimated particles by
comparison with the observed next video frame; 3) resampling eliminates low-
weighted particles and duplicates high-weighted ones to create the particle set
for the next filter iteration.

For our implementation we start with an existing video object tracker [3]
implemented in C. First, we transform the monolithic code into a multi-threaded
implementation on a desktop using POSIX Pthreads under Linux. Each filter
stage can be naturally turned into a software thread and the particles, grouped
into chunks, are forwarded between the filter stages via message boxes. Since
the particles are independent and thus can be processed in parallel, each of the
stages is represented by multiple thread instances exploiting data parallelism.
Second, we port our multi-threaded software implementation from the desktop to
the CPU embedded in a Xilinx FPGA. Video data is streamed from the desktop
to the FPGA via Ethernet. Overall, this step requires very little effort because
both platforms offer the same OS and APIs. Third, we profile the execution
times of all filter stages and confirm that the execution times strongly depend on
the input data because the filter computes color histograms in variable-sized
regions of interest, in which the tracked object is searched. We identify two
functions that are typically performance-critical, color histogram computation
(observation, o) and color histogram comparison (importance, i) and implement
hardware thread versions for both functions.

12

0
5

10
15
20
25
30
35
40
45

0 50 100 150 200 250 300 350 400

m
ill

io
n

cl
oc

k
cy

cl
es

/fr
am

e

frame

sw
hwo

hwoo
hwi
hwii
hwoi

hwooi
hwooii

Figure 6: Design space exploration for a video object tracker: The graph shows
the computational effort for tracking vs. time in video frames for a specific video
(taken from [3]). The individual curves represent ReconOS implementations
with different hardware software mappings, where sw denotes an all-in-software
system, and curves labelled with hw denote systems with one to four threads of
type observation (o) and importance (i) running in reconfigurable hardware.

Using the hardware threads for observation and importance as well as the
multi-threaded software implementation, we perform a swift design space
exploration measuring the required computational effort for a given video
sequence using hardware/software mappings with different resource
requirements. Figure 6 shows the required computational effort in execution
time per frame of various mappings for tracking a soccer player. The tracker
employing four hardware threads, two for observation and two for importance
(mapping hwooii), achieves the highest performance. Clearly the required effort
decreases when the object moves into the background. There, mapping hwi with
a single hardware thread for importance achieves comparable performance
results.

5 Conclusion
Among the existing operating system approaches for reconfigurable computers,
ReconOS stands out by providing a deep semantic integration of hardware
accelerators into an operating system environment while leveraging standard
operating system kernels. Hardware threads can access a rich set of operating

13

system functions, making them essentially identical to software threads with
respect to operating system interaction. Consequently, hardware threads can
easily be exchanged for software threads and vice versa, which allow for rapid
design space exploration at design time and even migration of function across
the hardware/software border at run-time. The use of standard operating system
kernels in ReconOS leads on to a structured design process starting with a,
possibly monolithic, software implementation and to improved portability. Our
experience shows that these features can significantly lower the entry barrier for
reconfigurable computing technology.

14

6 Sidebar: Applications of ReconOS
ReconOS defines a standardized interface for hardware threads, which simplifies
exchanging them, not only at design time but also during runtime using dynamic
partial reconfiguration (DPR). DPR allows for exploiting FPGA resources in
unconventional ways, for example, by loading hardware threads on demand,
moving functionality between software and hardware, or even multi-tasking
hardware slots by time-multiplexing. ReconOS supports DPR by dividing the
architecture in a static and a dynamic part. The static part contains the processor,
the memory subsystem, OSIFs, MEMIFs, and peripherals. The dynamic part is
reserved for hardware threads, which can be reconfigured into the hardware
slots. Our DPR tool flow builds on Xilinx PlanAhead and creates the static
subsystem and the partial bitstreams for each desired hardware thread/slot
combination. Time-multiplexing of hardware slots is supported through
cooperative multi-tasking [4].

We use ReconOS to implement adaptive network architectures that
continuously optimize the network protocol stack on a per-application basis to
cope with varying transmission characteristics, security requirements, and
compute resources availability. The developed architecture [5] autonomously
adapts itself by offloading performance-critical, network processing tasks to
hardware threads, which are loaded at runtime using dynamic partial
reconfiguration.

Another line of research also leverages the unified software/hardware
interface and partial reconfiguration to create self-adaptive and self-aware
computing systems that autonomously optimize performance goals under
varying workloads. For example, we have created self-adaptive implementations
of the particle filter presented in Section 4 that start and stop additional threads
on worker CPUs and in reconfigurable hardware slots to keep the resulting frame
rate for the video object tracker within a pre-defined band. In the EPiCS project 1
funded by the European Commission, we even advance the autonomy of
computing systems and enable them to optimize for diverse goals such as
performance, energy consumption and chip temperature based on the current
quality-of-service requirements, workload characteristics and system state.

So far ReconOS has been used in embedded systems where the CPU and the
hardware cores are implemented in Xilinx platform FPGAs. The general
approach of ReconOS is equally attractive in a high-performance computing
context. For example, ReconOS is currently being evaluated for use in high-
speed data acquisition and particle physics applications 2. In current work 3 we
also are studying how ReconOS can be ported to x86-based server systems that
attach FPGA accelerator cards via PCIe.

1 http://www.epics-project.eu
2 http://openlab.web.cern.ch/ice-dip
3 http://sfb901.uni-paderborn.de

15

7 Sidebar: Operating Systems for Reconfigurable
Computing
The introduction of the partially reconfigurable Xilinx XC6200 FPGA series in
the mid 1990’s and, later on, the JBits software library for bitstream
manipulation inspired researchers to investigate dynamic resource management
for reconfigurable hardware. Early works, e.g., [6], [7], [8] drew an analogy
between tasks in software and so-called virtual or swappable hardware modules
and studied fundamental operations such as scheduling; placement, relocation
and defragmentation; slot-based device partitioning and reconfiguration
schemes; and inter-module routing. Although these works suggested to
centralize resource management in a runtime layer for convenience, an
integration with a software OS was not a predominant design goal. The very few
projects that resulted in implementations used FIFOs or shared memory to
interface reconfigurable hardware modules with other parts of an application
running in software. However, the nature of these hardware modules was still
that of a passive coprocessor, which was fed with data from software tasks.

After the development of more sophisticated prototypes, e.g., a multimedia
appliance using multitasking in hardware [9], several researchers, e.g., [10],
[11], [12], concurrently pushed the idea of treating hardware tasks as
independent execution units, equipped with similar access to operating system
functions as their software peers. Around 2004, these projects fundamentally
changed the concept of reconfigurable hardware operating systems since the
emerging prototypes turned hardware modules into threads or processes and
offered them a set of operating system functions for inter-task communication
and synchronization. These approaches can be considered the first operating
systems directly dedicated to reconfigurable computing.

Soon after these first operating systems have been developed it was found
that promoting hardware tasks to peers of software threads while carrying over a
manually managed local memory architecture was too restrictive. Thus,
researchers have studied how hardware tasks can autonomously access the main
memory. For reconfigurable operating systems that build on general purpose OS
such as Linux, this meant that virtual memory had to be supported. The first
approaches, e.g., [13], [14], solve this challenge by creating a transparently-
managed local copy of the main memory and modifying the host operating
system to handle page misses on the CPU. To improve the efficiency of
accessing main memory, especially for non-linear data access patterns, ReconOS
has later pioneered a hardware memory management unit [1] for hardware
modules that translates virtual addresses without the CPU.

Current research projects on operating systems for reconfigurable computing
differ mainly with respect to whether a hardware module is turned into a process,
a thread or a kernel module, and in the richness of OS services made available to
reconfigurable hardware. While projects such as BORPH [15] choose UNIX

16

processes, Hthreads [16] and ReconOS use a light-weight threading model to
represent hardware modules. More recently, SPREAD [17] started to integrate
multithreading and streaming paradigms, while FUSE [18] focuses on a closer,
more efficient kernel integration of hardware accelerators.

Compared to other approaches leveraging the threading model, especially
Hthreads that focuses on low-jitter hardware implementations of operating
system services, ReconOS with its unified hardware/software interfaces allows
us to offer an essentially identical and rich set of OS services to both software
and hardware threads. ReconOS does not require any change to the host OS,
which leads to a comparatively simple tool flow for building applications, to an
improved portability and interoperability through standard OS kernels, and to a
step-by-step design process starting with a fully functional software prototype on
a desktop.

17

8 Sidebar: ReconOS Versions and Availability
ReconOS has been actively developed since its inception in 2006. Since then it
has gone through three major revisions and has been ported to several operating
systems and hardware platforms. The first version of ReconOS used the eCos
operating system running on PowerPC CPUs embedded in Xilinx Virtex-2 Pro
and Virtex-4 FPGAs. Version 2 improved on the original version by providing
FIFO interconnects between hardware threads, adding support for the Linux
operating system, and offering a common virtual address space between
hardware and software threads. Version 3, which was released in early 2013, is a
major overhaul that streamlines the hardware architecture towards a more
lightweight and modular design. It brings ReconOS to the Microblaze/Linux and
Microblaze/Xilkernel architectures and has been used extensively on Virtex-6
FPGAs. A port to the new Xilinx Zynq platform will be released soon. ReconOS
is open source. The source code and further information is available at
http://www.reconos.de.

18

Acknowledgments
This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901),
the International Graduate School of Dynamic Intelligent Systems, and the
European Union Seventh Framework Programme under grant agreement 257906
(EPiCS).

References
[1] A. Agne, M. Platzner, and E. Lübbers, “Memory virtualization for

multithreaded reconfigurable hardware,” in Proc. Int. Conf. on Field
Programmable Logic and Applications (FPL). IEEE Computer Society,
Sep. 2011, pp. 185–188.

[2] M. Happe, E. Lübbers, and M. Platzner, “A self-adaptive heterogeneous
multi-core architecture for embedded real-time video object tracking,”
Journal of Real-Time Image Processing, pp. 1–16, 2011,
10.1007/s11554-011-0212-y.

[3] R. Hess, “Particle Filter Object Tracking - C code,”
http://blogs.oregonstate.edu/hess/code/particles, May 2013.

[4] E. Lübbers and M. Platzner, “Cooperative multithreading in dynamically
reconfigurable systems,” in Proc. Int. Conf. on Field Programmable Logic
and Applications (FPL). IEEE, 2009, pp. 1–4.

[5] A. Keller, B. Plattner, E. Lübbers, M. Platzner, and C. Plessl,
“Reconfigurable nodes for future networks,” in Proc. Worksh. on Network
of the Future (FutureNet). IEEE, 2010, p. 372–376.

[6] G. Brebner, “A virtual hardware operating system for the Xilinx XC6200,”
in Proc. Int. Workshop Field-Programmable Logic and Applications
(FPL), 1996, pp. 327–336.

[7] K. Compton, J. Cooley, S. Knol, and S. Hauck, “Configuration relocation
and defragmentation for reconfigurable computing,” in Proc. Int. Symp.
on Field-Programmable Custom Computing Machines (FCCM), 2000, pp.
279–280.

[8] K. Bazargan, R. Kaster, and M. Sarrafzadeh, “Fast template placement for
reconfigurable computing systems,” IEEE Design and Test of Computers,
vol. 17, no. 1, pp. 68–83, 2000.

[9] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins,
“Designing an operating system for a heterogeneous reconfigurable
SoC,” in Proc. Reconfigurable Architectures Workshop (RAW), 2003.

[10] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie,
J. Ortiz, E. Komp, and P. Ashenden, “Programming models for hybrid
FPGA-CPU computational components: A missing link,” IEEE Micro, vol.
24, no. 4, pp. 42–53, Jul. 2004.

19

[11] C. Steiger, H. Walder, and M. Platzner, “Operating systems for
reconfigurable embedded platforms: Online scheduling of real-time
tasks,” IEEE Transactions on Computers, vol. 53, no. 11, pp. 1392–1407,
Nov. 2004.

[12] N. W. Bergmann, J. A. Williams, J. Han, and Y. Chen, “A process model
for hardware modules in reconfigurable system-on-chip,” in Proc. Int.
Conf. on Architecture of Computing Systems (ARC), ser. Lecture Notes in
Informatics, vol. 81, no. 3894. Bonn, Germany: Gesellschaft für
Informatik (GI), Mar. 2006, pp. 205–214.

[13] M. Vuletic, L. Pozzi, and P. Ienne, “Seamless hardware-software
integration in reconfigurable computing systems,” IEEE Design &
Test of Computers, vol. 22, no. 2, pp. 102–113, 2005.

[14] P. Garcia and K. Compton, “A reconfigurable hardware interface for a
modern computing system,” in Proc. Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM). IEEE Computer Society, Apr.
2007, pp. 73–84.

[15] H. K.-H. So and R. Brodersen, “A unified hardware/software runtime
environment for FPGA-based reconfigurable computers using BORPH,”
IEEE Transactions on Computers, vol. 7, no. 2, pp. 1–28, 2008.

[16] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J. Stevens, F.
Baijot, and E. Komp, “Achieving programming model abstractions for
reconfigurable computing,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 1, pp. 34–44, 2008.

[17] Y. Wang, J. Yan, X. Zhou, L. Wang, W. Luk, C. Peng, and J. Tong,
“A partially reconfigurable architecture supporting hardware threads,” in
Proc. Int. Conf. on Field-Programmable Technology (FPT), 2012.

[18] A. Ismail and L. Shannon, “FUSE: Front-end user frame-work for O/S
abstraction of hardware accelerators,” in Proc. Int. Symp. on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2011.

Biographies
Andreas Agne is a PhD Student at the Computer Engineering Group at the
University of Paderborn. His research interests include reconfigurable
computing and operating systems for heterogeneous multi-core architectures.

Markus Happe is a senior researcher at the Communication Systems Group at
ETH Zurich. His research interests include networking architectures, self-
adaptation strategies, and reconfigurable systems.

Enno Lübbers is a senior researcher at the Intel Open Lab in Munich, which is
part of Intel Labs Europe. His research interests include adaptive systems and
heterogeneous architectures for high-performance, embedded and safety-critical
applications.

20

Ariane Keller is a PhD Student at the Communication Systems Group at ETH
Zurich. Her research interests include computer architectures for self-organizing
networks.

Bernhard Plattner is a Full Professor of computer engineering at ETH Zurich,
where he leads the Communication Systems Group. His current research
interests are in self-organizing networks, mobile and opportunistic networking,
and practical aspects of information security.

Marco Platzner is professor for Computer Engineering at the University of
Paderborn. His research interests include reconfigurable computing, hardware-
software codesign, and parallel architectures.

Christian Plessl is assistant professor for Custom Computing at the University
of Paderborn. His research interests include parallel and reconfigurable computer
architectures, high-performance computing, and adaptive computing systems.

