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Abstract―The ReconOS operating system for 

reconfigurable computing offers a unified multi-threaded 
programming model and operating system services for 
threads executing in software and threads mapped to 
reconfigurable hardware. The operating system interface 
allows hardware threads to interact with software threads 
using well-known mechanisms such as semaphores, 
mutexes, condition variables, and message queues. By 
semantically integrating hardware accelerators into a 
standard operating system environment, ReconOS allows 
for rapid design space exploration, supports a structured 
application development process and improves the 
portability of applications between different reconfigurable 
computing systems. 
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1  Introduction 
Today’s high-density FPGAs allow for implementing very complex circuits. 
Still, reconfigurable computing applications are rarely mapped exclusively to the 
FPGA accelerator. Application parts amenable to parallel execution, 
customization, and deep pipelining are often implemented as custom hardware to 
improve performance or energy-efficiency. Other parts, especially code that is 
highly sequential or difficult to implement as custom hardware, are executed in 
software mapped to a CPU. This decomposition of applications into separate, 
communicating parts that require synchronization among them is also widely 
used in pure software systems for achieving a separation of concerns and 
concurrent or asynchronous processing. In software systems the operating 
system standardizes these communication and synchronization mechanisms and 
provides abstractions for encapsulating the unit of execution (processes, 
threads), communication, and synchronization.  
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Reconfigurable computing systems still lack an established operating system 
foundation that covers both software and hardware parts. Instead, 
communication and synchronization are usually handled in a highly system and 
application-specific way, which tends to be error prone, limit the productivity of 
the designer, and prevent portability of applications between different 
reconfigurable computing systems. 

The ReconOS operating system, programming model and system 
architecture offers unified operating system services for functions executing in 
software and hardware and a standardized interface for integrating custom 
hardware accelerators. ReconOS leverages the well-established multi-threading 
programming model and extends a host operating system with support for 
hardware threads. These extensions allow the hardware threads to interact with 
software threads using the same, standardized operating system mechanisms, for 
example, semaphores, mutexes, condition variables, and message queues. From 
the perspective of an application it is thus completely transparent whether a 
thread is executing in software or hardware. The availability of an operating 
system layer providing symmetry between software and hardware threads 
provides the following benefits for reconfigurable computing systems:  

• The application development process can be structured in a step-by-step 
fashion with an all-in-software implementation as a starting point. 
Performance-critical application parts can then be turned into hardware 
threads one-by-one to explore the hardware/software design space 
successively. 

• The portability of applications between different reconfigurable 
computing systems is improved by using defined operating system 
interfaces for communication and synchronization instead of low-level 
platform-specific interfaces. 

• The unified appearance of hard and software threads from the 
application’s perspective allows for moving functions between software 
and hardware during runtime, which supports the design of adaptive 
computing systems that exploit partial reconfiguration. 

The evolution of operating systems for reconfigurable computing and how 
ReconOS relates to this heritage is discussed in the “Sidebar: Operating Systems 
for Reconfigurable Computing”. 

2  Programming Model 
The key idea of ReconOS is extending the multi-threading programming model 
across the hardware/software interface. In multi-threaded programming, 
applications are composed of objects such as threads, message queues, and 
semaphores, each of which has a strictly defined interface and purpose. The 
application’s functionality is partitioned into threads, which in our case can be 
either blocks of sequential software or parallel hardware modules. Threads 
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communicate and synchronize using one or more of the remaining objects of the 
programming model: for example, they can pass data using message queues or 
mailboxes, explicitly coordinate execution through barriers or semaphores, or 
implicitly synchronize access to shared resources by locking and unlocking 
mutually exclusive locks (mutexes). These objects and their interactions are 
widely used in well-established APIs for programming multi-threaded software 
applications. One of the major advantages developers can draw from the 
ReconOS approach is that these abstractions can not only be used for software 
threads but also for optimized hardware implementations of data-parallel 
functions—the hardware threads—without sacrificing the expressiveness and 
portability of the application description. 

Consider the example software thread sketched in Listing 1. The thread 
receives packets streaming in via ingress mailbox mbox_in, processes them in 
a user-defined way, sends the processed packets to egress mailbox mbox_out, 
and updates a packet counter stored in a shared variable protected by lock 
count_mutex. Using standard APIs for message passing and synchronization, 
the software thread accesses operating system services in an expressive, 
straightforward, and portable way. As an additional benefit, such a thread 
description manages to clearly separate thread-specific processing from 
operating system calls.  
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extern mutex_t *count_mutex;              // mutex protecting packet counter 
extern mqd_t mbox_in,                     // ingress packets 
             mbox_out;                    // egress packets 
                                                
void *thread_a_entry( void *count_ptr ) {       
  data_t buf;                             // buffer for packet processing 
                                                
  while ( true ) {                              
    buf = mbox_get( mbox_in );            // receive new packet 
    process( buf );                       // process packet 
    mbox_put( mbox_out, buf );            // send processed packet 
    mutex_lock( count_mutex );            // acquire lock 
    ( (count_t) *count_ptr )++;           // update counter 
    mutex_unlock( count_mutex );          // release lock 
  } 
} 

Listing 1: Example of a stream processing software thread using operating 
system services. 

Figure 1 shows a ReconOS hardware implementation of the same thread, 
partitioned into similar thread-specific logic and operating system interactions. 
While the thread-specific user logic contains the hardware thread’s data path and 
is only limited by available FPGA resources, the operating system interactions of 
a hardware thread are captured by the OS synchronization finite state machine 
(OSFSM). Together with the OS interface (OSIF), this state machine enables 
seamless operating system calls from within hardware modules. The developer 
specifies the OSFSM using a standard VHDL state machine description, as 
shown in Listing 2. For accessing operating system functions in this state 
machine ReconOS provides a VHDL library that wraps all operating system 



4 

calls with VHDL procedures. The transitions of the OSFSM are guarded by an 
OS-controlled signal done (line 47), so that blocking operating system calls—
such as mutex_lock()—can temporarily inhibit the execution of a hardware 
thread.   
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Figure 1: A ReconOS hardware thread comprises the OS synchronization finite 
state machine and the user logic implementing the data path. 
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OSFSM: process(clk, reset) 
  variable ack: boolean; 
begin 
 
  if reset = '1' then 
    state <= GET_DATA; 
    run <= '0'; 
    osif_reset (o_osif , i_osif); 
    memif_reset(o_memif, i_memif); 
  elsif rising_edge(clk) then 
 
    case state is 
 
      when GET_DATA =>  
        mbox_get(o_osif,i_osif,MB_IN,data_in,done);   -- receive new packet 
        next_state <= COMPUTE; 
 
      when COMPUTE =>         
        run <= '1';                                   -- process packet 
        if ready = '1' then 
          run <= '0'; 
          next_state <= PUT_DATA; 
        end if; 
 
      when PUT_DATA => 
        mbox_put(o_osif,i_osif,MB_OUT,data_out,done); -- send processed packet 
        next_state <= LOCK; 
 
      when LOCK => 
        mutex_lock(o_osif,i_osif,CNT_MUTEX,done);     -- acquire lock 
        next_state <= READ; 
 
      when READ => 
        read(o_memif,i_memif,addr,count,done); 
        next_state <= WRITE 
 
      when WRITE => 
        write(o_memif,i_memif,addr,count + 1,done);   -- update counter 
        next_state <= UNLOCK; 
 
      when UNLOCK => 
        mutex_unlock(o_osif,i_osif,CNT_MUTEX,done);   -- release lock 
        next_state <= GET_DATA; 
 
    end case; 
 
    if done then state <= next_state; end if; 
 
  end if; 
end process; 

Listing 2: OS synchronization finite state machine for a stream processing 
hardware thread. 

Consequently, the OSFSM in VHDL closely mimics the sequence of 
operating system calls within the equivalent software thread: it reads a packet 
from a mailbox, passes it to a separate module to be processed, writes the 
processed packet back to another mailbox, and increments a thread-safe counter. 
The description of the actual user logic, however, may well differ from the 
software realization, as this is the area where the fine-grained parallel execution 
of an FPGA-optimized implementation can realize its strengths—unhindered by 
the necessarily sequential execution of operating system calls. 



6 

3  ReconOS Architecture 

 

ap
pl
ic
at
io
n

 

Figure 2: Conceptual overview of the ReconOS system architecture. Software 
threads interact directly with the OS kernel, while hardware threads connect 
through an OSIF and delegate threads. 

The ReconOS run-time system architecture provides the structural 
foundation to support the multi-threading programming model and its execution 
on CPU/FPGA platforms. Figure 2 shows a conceptual view of a typical system 
that is decomposed into application software, OS kernel and hardware 
architecture. The application’s software threads are usually executed on the main 
CPU alongside the host OS kernel that encapsulates APIs, libraries, and all 
programming model objects as well as lower level functions such as memory 
management and device drivers. The ReconOS run-time environment consists of 
hardware components that provide interfaces, communication channels, and 
other functionality such as memory access and address translation to the 
hardware threads. Additionally, the runtime system comprises software 
components in the form of libraries and kernel modules that offer an interface to 
the hardware, the operating system, and the application’s software threads. 

A key component for multi-threading across the hardware/software boundary 
is the delegate thread, which is a light-weight software thread that interfaces 
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between the hardware thread and the operating system. When a hardware thread 
needs to execute an operating system function, it relays this request through the 
operating system interface (OSIF) to the delegate thread using platform-specific 
(but application-independent) communication interfaces. The delegate thread 
then executes the desired operating system functions on behalf of its associated 
hardware thread. Hence, from the OS kernel’s point of view, only software 
threads exist and interact, while the hardware threads are completely hidden 
behind their respective delegate threads. From the application programmer’s 
point of view however, the delegate threads are hidden by the ReconOS runtime 
environment and only the application’s hardware and software threads exist. 
This delegate mechanism together with the unified thread interfaces gives 
ReconOS exceptional transparency regarding the execution mode of a thread, 
i.e., whether it runs in software or hardware. While the delegate mechanism 
causes a certain overhead for executing OS calls, the resulting simplicity of 
switching thread implementations between software and hardware greatly 
facilitates system generation and design space exploration. 

The ReconOS concept is rather general and has been ported to several FPGA 
families, main CPU architectures, and host operating systems (see “Sidebar: 
ReconOS Versions and Availability”). For the remainder of this article we 
describe the implementation of ReconOS v3, which is the most recent version of 
ReconOS targeting Xilinx Virtex-6 FPGAs and utilizing a MicroBlaze/Linux 
environment.  

 

Figure 3: A finite state machine nested within the OS synchronization finite state 
machine handles the communication between the hardware thread and the OS 
(via OSIF and delegate thread). The OSIF contains two FIFOs that connect the 
hardware thread with the CPU. The operating system relays the hardware 
thread's request to the respective delegate thread where the request is carried out. 
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Figure 4: Example instance of an ReconOS hardware architecture with a CPU 
and two reconfigurable hardware slots. 

To assist developers with creating the OSFSM for a hardware thread, 
ReconOS provides a library that wraps convenient VHDL procedures around the 
operating system call signaling, e.g., mutex_lock() as used in Listing 2. 

Technically, the VHDL procedures implement further state machines that are 
nested within the OSFSM and access the two FIFOs i_osif and o_osif to 
connect to the OSIF. Figure 3 outlines the relationship between the OSFSM, the 
nested state machine implementing the mutex_lock procedure and the two 
FIFOs. Synchronization between the nested state machines and the OSFSM is 
controlled via the handshaking signal done. Towards the delegate thread, we 
use a communication protocol that encodes an OS request as a sequence of 
words comprising a function identifier and a call-specific number of parameters. 
The encoded request is written to the outgoing FIFO o_osif. For a hardware 
thread, a function call is completed when an acknowledgement has been sent by 
the delegate thread and, optionally, a return value has been read from the 
incoming FIFO i_osif.  

Hardware threads reside in reconfigurable slots, which are predefined areas 
of reconfigurable logic equipped with the necessary communication interfaces. 
Figure 4 shows an instance of a ReconOS hardware architecture with a CPU, 
two reconfigurable slots, the memory subsystem and various peripherals. 
Besides communicating with the OS kernel on the host CPU, hardware threads 
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residing in reconfigurable slots can also access the system memory. To that end, 
a hardware thread uses its memory interface (MEMIF) shown in Figure 1 to 
connect to the ReconOS memory subsystem. The memory subsystem arbitrates 
and aligns the hardware threads’ memory requests and can handle single word as 
well as burst accesses. To support Linux with virtual addressing as host 
operating system, ReconOS implements a full-featured memory management 
unit (MMU), including a translation lookaside buffer, that can autonomously 
translate addresses using the Linux kernel’s page tables [1]. Hardware threads 
use FIFOs to communicate with the memory subsystem; one outgoing and one 
incoming FIFO per hardware thread. Requests for memory transactions are 
encoded and written to the outgoing FIFO followed by data in the case of a write 
request. In the case of a read request, data become available on the incoming 
FIFO upon completion of the memory transfer. Similar to the communication 
with the OS, we provide a library of VHDL procedures to conveniently handle 
memory operations. These procedures encode the requests, synchronize with the 
memory FIFOs, and automatically transfer data from/to local memory elements 
within the hardware thread. 

4  Application Development with ReconOS 
Over the years, ReconOS has been used to implement several applications on 
hybrid CPU/FPGA systems. These experiences have confirmed that the hybrid 
multi-threading approach offered by ReconOS simplifies the development 
process, which is typically structured in three steps: First, the developer 
prototypes the application’s functionality in multi-threaded software using, for 
example, the Pthreads library on Linux. This first software-based 
implementation allows for functional testing. Second, the multi-threaded 
software is ported to the embedded CPU on the targeted platform FPGA, e.g., a 
MicroBlaze running Linux. The developer can now use profiling to identify the 
application’s potential for parallel execution, i.e., those threads that could benefit 
from the fine-grained parallelism of a hardware realization, and those code 
segments that are amenable to a coarser-grained parallel implementation with 
multiple threads. The third step includes creating the hardware threads and the 
ReconOS system architecture. At this point, ReconOS easily allows the 
developer to evaluate different mappings of threads to hardware and software 
and to quickly assess the overall performance on the target system. 
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Figure 5: Tool flow for assembling a ReconOS system on a Linux target. 
ReconOS-specific steps are colored green. 

4.1  ReconOS Tool Flow 
Figure 5 captures the ReconOS v3 tool flow. The required sources comprise the 
software threads, the hardware threads and the specification of the ReconOS 
hardware architecture. We code software threads in C and hardware threads in 
VHDL, using the ReconOS-provided VHDL libraries for OS communication 
and memory access. An automatic synthesis of hardware threads is not part of 
the ReconOS project; developers are, however, free to use any hardware 
description language or high-level synthesis tool to create hardware threads. 
ReconOS extends the process for building a reconfigurable system-on-chip using 
standard vendor tools. On the software side, the delegate threads and device 
drivers for transparent communication with hardware threads are linked into the 
application executable and kernel image, respectively. On the hardware side, 
components such as the OS and memory interfaces as well as support logic for 
hardware threads are integrated into the tool flow. The ReconOS System Builder 
assembles the base system design and the hardware threads into a reference 
design and automatically connects bus interfaces, interrupts, and I/O. The build 
process then creates an FPGA configuration bitstream for the reference design 
using conventional synthesis and implementation tools. 

During design space exploration, the developer will create both hardware 
and software implementations for some of the threads. Switching between these 
implementations is a matter of replacing a single thread instantiation statement, 
e.g., using rthread_create() instead of pthread_create(). Such a 
decision for software or hardware can even be taken during runtime, see 
“Sidebar: Applications of ReconOS”. 
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4.2  Case Study: Video Object Tracker 
To illustrate the benefits of the ReconOS approach, we present a particle-filter 
based video object tracker [2] for continuos estimation of an object’s position 
and size in a video sequence. A particle filter is a robust technique for video 
object tracking because it maintains several estimates (particles) for the position 
and size of the tracked object. The filter iterates over video frames and processes 
the particles in three consecutive stages: 1) sampling estimates where the object 
might have been moved; 2) importance weights all estimated particles by 
comparison with the observed next video frame; 3) resampling eliminates low-
weighted particles and duplicates high-weighted ones to create the particle set 
for the next filter iteration. 

For our implementation we start with an existing video object tracker [3] 
implemented in C. First, we transform the monolithic code into a multi-threaded 
implementation on a desktop using POSIX Pthreads under Linux. Each filter 
stage can be naturally turned into a software thread and the particles, grouped 
into chunks, are forwarded between the filter stages via message boxes. Since 
the particles are independent and thus can be processed in parallel, each of the 
stages is represented by multiple thread instances exploiting data parallelism. 
Second, we port our multi-threaded software implementation from the desktop to 
the CPU embedded in a Xilinx FPGA. Video data is streamed from the desktop 
to the FPGA via Ethernet. Overall, this step requires very little effort because 
both platforms offer the same OS and APIs. Third, we profile the execution 
times of all filter stages and confirm that the execution times strongly depend on 
the input data because the filter computes color histograms in variable-sized 
regions of interest, in which the tracked object is searched. We identify two 
functions that are typically performance-critical, color histogram computation 
(observation, o) and color histogram comparison (importance, i) and implement 
hardware thread versions for both functions.  
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Figure 6: Design space exploration for a video object tracker: The graph shows 
the computational effort for tracking vs. time in video frames for a specific video 
(taken from [3]). The individual curves represent ReconOS implementations 
with different hardware software mappings, where sw denotes an all-in-software 
system, and curves labelled with hw denote systems with one to four threads of 
type observation (o) and importance (i) running in reconfigurable hardware. 

Using the hardware threads for observation and importance as well as the 
multi-threaded software implementation, we perform a swift design space 
exploration measuring the required computational effort for a given video 
sequence using hardware/software mappings with different resource 
requirements. Figure 6 shows the required computational effort in execution 
time per frame of various mappings for tracking a soccer player. The tracker 
employing four hardware threads, two for observation and two for importance 
(mapping hwooii), achieves the highest performance. Clearly the required effort 
decreases when the object moves into the background. There, mapping hwi with 
a single hardware thread for importance achieves comparable performance 
results. 

5  Conclusion 
Among the existing operating system approaches for reconfigurable computers, 
ReconOS stands out by providing a deep semantic integration of hardware 
accelerators into an operating system environment while leveraging standard 
operating system kernels. Hardware threads can access a rich set of operating 
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system functions, making them essentially identical to software threads with 
respect to operating system interaction. Consequently, hardware threads can 
easily be exchanged for software threads and vice versa, which allow for rapid 
design space exploration at design time and even migration of function across 
the hardware/software border at run-time. The use of standard operating system 
kernels in ReconOS leads on to a structured design process starting with a, 
possibly monolithic, software implementation and to improved portability. Our 
experience shows that these features can significantly lower the entry barrier for 
reconfigurable computing technology. 
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6  Sidebar: Applications of ReconOS 
ReconOS defines a standardized interface for hardware threads, which simplifies 
exchanging them, not only at design time but also during runtime using dynamic 
partial reconfiguration (DPR). DPR allows for exploiting FPGA resources in 
unconventional ways, for example, by loading hardware threads on demand, 
moving functionality between software and hardware, or even multi-tasking 
hardware slots by time-multiplexing. ReconOS supports DPR by dividing the 
architecture in a static and a dynamic part. The static part contains the processor, 
the memory subsystem, OSIFs, MEMIFs, and peripherals. The dynamic part is 
reserved for hardware threads, which can be reconfigured into the hardware 
slots. Our DPR tool flow builds on Xilinx PlanAhead and creates the static 
subsystem and the partial bitstreams for each desired hardware thread/slot 
combination. Time-multiplexing of hardware slots is supported through 
cooperative multi-tasking [4].  

We use ReconOS to implement adaptive network architectures that 
continuously optimize the network protocol stack on a per-application basis to 
cope with varying transmission characteristics, security requirements, and 
compute resources availability. The developed architecture [5] autonomously 
adapts itself by offloading performance-critical, network processing tasks to 
hardware threads, which are loaded at runtime using dynamic partial 
reconfiguration. 

Another line of research also leverages the unified software/hardware 
interface and partial reconfiguration to create self-adaptive and self-aware 
computing systems that autonomously optimize performance goals under 
varying workloads. For example, we have created self-adaptive implementations 
of the particle filter presented in Section 4 that start and stop additional threads 
on worker CPUs and in reconfigurable hardware slots to keep the resulting frame 
rate for the video object tracker within a pre-defined band. In the EPiCS project 1 
funded by the European Commission, we even advance the autonomy of 
computing systems and enable them to optimize for diverse goals such as 
performance, energy consumption and chip temperature based on the current 
quality-of-service requirements, workload characteristics and system state.  

So far ReconOS has been used in embedded systems where the CPU and the 
hardware cores are implemented in Xilinx platform FPGAs. The general 
approach of ReconOS is equally attractive in a high-performance computing 
context. For example, ReconOS is currently being evaluated for use in high-
speed data acquisition and particle physics applications 2. In current work 3 we 
also are studying how ReconOS can be ported to x86-based server systems that 
attach FPGA accelerator cards via PCIe. 

                                                
1 http://www.epics-project.eu 
2 http://openlab.web.cern.ch/ice-dip 
3 http://sfb901.uni-paderborn.de 
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7  Sidebar: Operating Systems for Reconfigurable 
Computing 
The introduction of the partially reconfigurable Xilinx XC6200 FPGA series in 
the mid 1990’s and, later on, the JBits software library for bitstream 
manipulation inspired researchers to investigate dynamic resource management 
for reconfigurable hardware. Early works, e.g., [6], [7], [8] drew an analogy 
between tasks in software and so-called virtual or swappable hardware modules 
and studied fundamental operations such as scheduling; placement, relocation 
and defragmentation; slot-based device partitioning and reconfiguration 
schemes; and inter-module routing. Although these works suggested to 
centralize resource management in a runtime layer for convenience, an 
integration with a software OS was not a predominant design goal. The very few 
projects that resulted in implementations used FIFOs or shared memory to 
interface reconfigurable hardware modules with other parts of an application 
running in software. However, the nature of these hardware modules was still 
that of a passive coprocessor, which was fed with data from software tasks. 

After the development of more sophisticated prototypes, e.g., a multimedia 
appliance using multitasking in hardware [9], several researchers, e.g., [10], 
[11], [12], concurrently pushed the idea of treating hardware tasks as 
independent execution units, equipped with similar access to operating system 
functions as their software peers. Around 2004, these projects fundamentally 
changed the concept of reconfigurable hardware operating systems since the 
emerging prototypes turned hardware modules into threads or processes and 
offered them a set of operating system functions for inter-task communication 
and synchronization. These approaches can be considered the first operating 
systems directly dedicated to reconfigurable computing. 

Soon after these first operating systems have been developed it was found 
that promoting hardware tasks to peers of software threads while carrying over a 
manually managed local memory architecture was too restrictive. Thus, 
researchers have studied how hardware tasks can autonomously access the main 
memory. For reconfigurable operating systems that build on general purpose OS 
such as Linux, this meant that virtual memory had to be supported. The first 
approaches, e.g., [13], [14], solve this challenge by creating a transparently-
managed local copy of the main memory and modifying the host operating 
system to handle page misses on the CPU. To improve the efficiency of 
accessing main memory, especially for non-linear data access patterns, ReconOS 
has later pioneered a hardware memory management unit [1] for hardware 
modules that translates virtual addresses without the CPU. 

Current research projects on operating systems for reconfigurable computing 
differ mainly with respect to whether a hardware module is turned into a process, 
a thread or a kernel module, and in the richness of OS services made available to 
reconfigurable hardware. While projects such as BORPH [15] choose UNIX 
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processes, Hthreads [16] and ReconOS use a light-weight threading model to 
represent hardware modules. More recently, SPREAD [17] started to integrate 
multithreading and streaming paradigms, while FUSE [18] focuses on a closer, 
more efficient kernel integration of hardware accelerators.  

Compared to other approaches leveraging the threading model, especially 
Hthreads that focuses on low-jitter hardware implementations of operating 
system services, ReconOS with its unified hardware/software interfaces allows 
us to offer an essentially identical and rich set of OS services to both software 
and hardware threads. ReconOS does not require any change to the host OS, 
which leads to a comparatively simple tool flow for building applications, to an 
improved portability and interoperability through standard OS kernels, and to a 
step-by-step design process starting with a fully functional software prototype on 
a desktop. 
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8  Sidebar: ReconOS Versions and Availability 
ReconOS has been actively developed since its inception in 2006. Since then it 
has gone through three major revisions and has been ported to several operating 
systems and hardware platforms. The first version of ReconOS used the eCos 
operating system running on PowerPC CPUs embedded in Xilinx Virtex-2 Pro 
and Virtex-4 FPGAs. Version 2 improved on the original version by providing 
FIFO interconnects between hardware threads, adding support for the Linux 
operating system, and offering a common virtual address space between 
hardware and software threads. Version 3, which was released in early 2013, is a 
major overhaul that streamlines the hardware architecture towards a more 
lightweight and modular design. It brings ReconOS to the Microblaze/Linux and 
Microblaze/Xilkernel architectures and has been used extensively on Virtex-6 
FPGAs. A port to the new Xilinx Zynq platform will be released soon. ReconOS 
is open source. The source code and further information is available at 
http://www.reconos.de. 
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