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Self-aware computing is a paradigm for structuring and simplifying the design and operation of computing
systems that face unprecedented levels of system dynamics and thus require novel forms of adaptivity.
The generality of the paradigm makes it applicable to many types of computing systems and, previously,
researchers started to introduce concepts of self-awareness to multicore architectures. In our work we build
on a recent reference architectural framework as a model for self-aware computing and instantiate it for
an FPGA-based heterogeneous multicore running the ReconOS reconfigurable architecture and operating
system. After presenting the model for self-aware computing and ReconOS, we demonstrate with a case
study how a multicore application built on the principle of self-awareness, autonomously adapts to changes
in the workload and system state. Our work shows that the reference architectural framework as a model for
self-aware computing can be practically applied and allows us to structure and simplify the design process,
which is essential for designing complex future computing systems.
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1. INTRODUCTION

Over the last decade researchers have been proposing and investigating the construc-
tion of systems with so-called self-* properties [IBM 2003; Schmeck et al. 2011]. The
self in self-* refers to the capability of a system to modify its own behavior or structure
without any external control in reaction to or even in anticipation of system dynam-
ics [Serugendo et al. 2011]. System dynamics can be caused by changes in the system
itself or by events external to the system. There are many instantiations of self-* such
as self-adaptive, self-optimizing, self-coordinating and self-healing, and the appeal of
self-* properties has fueled research fields such as self-organizing systems [Serugendo
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et al. 2011], multiagent systems [Wooldridge 2009], autonomic computing [Sterritt and
Hinchey 2010], and organic computing [Schmeck et al. 2011]. More recently and in a
sense on top of the evolution of self-* systems, we find systems attributed with the
characteristics of being self-aware [Agarwal et al. 2009].

The motivation for looking into self-* computing systems is two-fold: First, we can
observe a rapid increase of complexity when designing and operating computing sys-
tems and applications. Nowadays, many application domains exhibit quite divergent
requirements with respect to functionality and flexibility, performance, resource usage
and costs, reliability and safety, and security. Distributed systems grow in the num-
bers and heterogeneity of nodes and must be able to cope with an increasing level of
dynamics. The network topology and the collective resources of the distributed system
can vary strongly during runtime since nodes may be mobile, break, run out of bat-
tery, or generally leave and enter the network. The second motivation is that compute
nodes evolve towards parallel and heterogeneous architectures to realize performance
gains while minimizing their power consumption. Progress in nano-electronics allows
us to integrate more and more functionality on a single compute node, but at the same
time requires us to deal with increasing numbers of faulty and unreliable components.
Self-* approaches strive to embed higher levels of (computational) intelligence into the
systems and, thus, to master complex system design and operation.

In our work we focus on heterogeneous multicores implemented with field-
programmable gate arrays (FPGAs) and aim at developing models, architectures and
programming environments that allow for creating self-aware compute nodes. To this
end, we use a previously published reference architectural framework [Becker et al.
2011] as a model for managing heterogeneous multicores. In this article, we discuss
this model and contrast it with related and previous approaches in self-aware com-
puting systems. Our multicore implementation is based on ReconOS [Lübbers and
Platzner 2009], a heterogeneous multicore architecture and programming environment
which enables the creation of compute nodes according to the discussed model of self-
awareness. While many works have shown adaptivity aspects in multicores [Coskun
et al. 2008; Ebi et al. 2009; Mulas et al. 2009], the novel feature of our work is that
with ReconOS and an FPGA-based multicore architecture we are able to adapt the
number and type (software, hardware) of cores involved in executing an application
during runtime. In the longer term we envision future self-aware compute nodes able
to autonomously adapt to external changes in the workload and quality of service re-
quirements but also to internal changes such as thermal problems and failures, and
even anticipate such changes through modeling of the system and environment and
through online learning techniques.

The article is structured as follows: Section 2 reviews related approaches in self-*
systems, in particular self-aware systems, and introduces to the reference architectural
framework. Section 3 gives an overview over ReconOS. In Section 4, we report on ex-
periments with heterogeneous multicores exhibiting a rather high degree of adaptivity
which is made possible by clearly structuring the system implementation along the
proposed model of self-aware computing.

2. RELATED WORK IN SELF-AWARE COMPUTING

In this section, we first review important characterizations of previous self-* ap-
proaches and then turn to related work in self-aware compute nodes. Finally, we present
the reference architectural framework for self-awareness used in our work.

2.1. Origins of Self-Aware Computing

Self-organizing systems remained a rather broad and not that precisely defined cat-
egory in literature. According to Di Marzo Serugendo et al. [2011], a self-organizing
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system can change its internal structure and functionality at runtime without any
explicit direction mechanism.

Multiagent systems are one way for designing artificial self-organizing systems. Mul-
tiagent systems employ several autonomous software agents that make local decisions
and interact with each other to achieve their goals [Wooldridge 2009]. Multiagent
systems distinguish between two types of environments: physical and social environ-
ments. The environment can be characterized as accessible vs. inaccessible, determin-
istic vs. nondeterministic, discrete vs. continuous and static vs. dynamic.

Autonomic computing aims at solving the emerging complexity crisis in software en-
gineering. Since humans are no longer able to deal with the rising complexity, dynam-
ics, heterogeneity and uncertainty of future systems, these systems should be enabled
to (autonomically) manage themselves. Self-management includes self-configuration,
self-optimization, self-healing, and self-protection. Four self-* attributes have been
proposed for autonomic computing systems: self-awareness, environment-awareness,
self-monitoring, and self-adjustment [Sterritt and Hinchey 2010]. In an autonomous
computing system, all system components are autonomic themselves and an autonomic
manager monitors the components and the environment and develops and executes
plans based on the analysis of this information. This approach is closely related to a hi-
erarchical multiagent system. IBM, who as a main driving force behind the autonomic
computing idea, proposed a reference architecture named MAPE-k for the autonomic
manager, which executes the monitor, analyze, plan and execute (MAPE) control loop
and maintains a knowledge base [IBM 2003]. The architecture uses sensors to collect
information about the environment and the system itself.

Organic computing [Schmeck et al. 2011] is a related concept that on one hand ex-
tends autonomic computing by the properties of self-organization and self-explanation,
but on the other hand does not require systems to be fully autonomous. The approach
introduces an observer and a controller component on top of the adaptive system. Ex-
ternal users provide goals to the controller and only in case an adaptation violates these
goals or any other given constraints, the controller interferes. This has been denoted
as controlled autonomy.

Self-awareness appeared as key attribute in both autonomic and organic comput-
ing and, subsequently, research on self-aware computing systems has been fueled by
DARPA [Paulson 2003] and EC [European Commission 2013] funding lines.

2.2. Self-Aware Computing Nodes

Agarwal et al. [2009] defined a self-aware computer to be introspective, adaptive,
self-healing, goal-oriented, and approximate. The authors implement self-awareness
through an observe-decide-act control loop similar to the MAPE-k model. Such a control
loop found use in various prototypes [Santambrogio et al. 2010], including a heteroge-
neous system comprising a workstation and an FPGA accelerator [Sironi et al. 2011], a
multiprocessor inside a workstation [Sironi et al. 2012; Bartolini et al. 2012] and novel
computer architectures for exascale computing [Hoffmann et al. 2012]. The observation
phase employs monitors to measure metrics such as performance and power consump-
tion. Performance monitoring mostly relies on the Heartbeats framework [Hoffmann
et al. 2010], where a running application announces the completion of an application-
specific amount of processing by issuing a heart beat. Simple performance goals can
then be specified in terms of required heart beat rates. The decision phase allows for
using performance models and learning components to determine a suitable adaptation
whenever the goals are not met. The action phase actually performs the adaptation
by turning “switches” or “knobs.” For example, the switches might represent differ-
ent implementation variants of an application’s tasks and the knobs might represent
parameters such as the clock rate or supply voltage of the cores.
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Closely related to our work, Sironi et al. [2010] presented an FPGA-based self-aware
adaptive computing system based on heterogeneous multicores. Their system supports
performance monitoring through the Heartbeats framework, decision making and self-
adaption. Performance adaptation is enabled by mapping an application to a CPU, a
reconfigurable hardware core, or both. The authors used an encryption algorithm as
application and implemented their system on a Xilinx Virtex-II Pro FPGA. The ex-
periments covered only static measurements of the application’s performance without
swapping between implementations at runtime and provided self-adaptation only at
the conceptual level. More recently, Sironi et al. [2011] discussed a heterogeneous sys-
tem that consists of a multicore processor and a reconfigurable device. Experiments
were done on a platform with an Intel Core i7 and a Xilinx Virtex-5 FPGA. An appli-
cation that hashes data blocks was instantiated four times with certain performance
goals. Using a hot-swap mechanism that switches between a software and a hardware
implementation, all performance goals were met. In contrast to Sironi et al. [2010],
we provide actual measurements of a system that dynamically adapts the number of
used hardware cores in order to meet performance constraints. Unlike Sironi et al.
[2011], we target an embedded architecture where the entire system is implemented
on a single chip and, in addition to respecting performance constraints, our system can
also respect thermal constraints.

Further related work focuses on general methodologies to allow for autonomous
self-adaptation on embedded multicore systems. For instance, Zeppenfeld et al. [2011]
have developed an autonomic homogeneous multiprocessor system-on-chip architec-
ture, where each processor is connected to several monitors, actuators and a single
learning classifier table evaluator. The table stores condition-action rules where the
fitness is learned at runtime using reinforcement learning. Multiple optimization goals
were combined in a single objective function. Whenever the system performs a self-
adaptation the used strategy receives a reward or a penalty, which depends on how
much the system state has changed according to the objective function. The authors
applied their general approach on a networking scenario with two levels of adaptation.
On the one hand, the frequencies of each processor could be altered and, on the other
hand, tasks could be migrated between the processors. The paper shows that it is ben-
eficial when the autonomic network processors share workload information, defined as
frequency times core utilization. Diguet et al. [2011] proposed a generic self-adaptation
methodology for heterogeneous multicore architectures, which distinguishes between
algorithmic and architectural adaptations. A global configuration manager controls the
architectural adaptations, which optimize the HW/SW partitioning of the task set in
order to deal with trade-offs at the system-level, for instance, minimizing the overall
power consumption versus maximizing the performance of the applications. Further-
more, each application is continuously optimized by a local manager, which can choose
between different application specific algorithmic adaptations. The parameters for the
algorithmic adaptations have to be defined by the application developer at design-
time, for instance by using simulations. In contrast to Zeppenfeld et al. [2011] our
self-expression strategies do not yet include on-line learning. Moreover, we focus on
heterogeneous multicore systems with a CPU and multiple reconfigurable hardware
slots. In contrast to [Diguet et al. 2011] our approach does not differentiate between
application-specific and system-level adaptations, although both forms of adaptation
could be easily modeled and integrated into our system.

Several related works focused on balancing performance with power/energy con-
sumption and thermal constraints in compute nodes. Although these works have not
been using or stressing the term self-aware computing, they share the same scenarios,
objectives and often also the methods. For example, Niu et al. [2011] combined pro-
cessors with reconfigurable hardware cores by equipping nodes of a compute cluster
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Fig. 1. Reference architectural framework for a self-aware compute node [Becker et al. 2012].

with FPGA accelerator cards. The computational intensive part of an N-Body simula-
tion was mapped to the FPGA accelerator cards using multiple instances of a hardware
core on a single FPGA accelerator. A central controller receives status information of all
compute nodes over a wireless network, including temperature and power consumption
readings for the FPGAs. Based on this information, the controller can enable/disable
hardware cores on the FPGA accelerator cards and re-distribute workload inside the
cluster to maximize the performance at given thermal and power budgets.

Jones et al. [2007] proposed an adaptive FPGA-based architecture that switches
between a low and a high clock frequency in order to decrease the latency of an appli-
cation while maintaining a given thermal budget compared to a thermally-save static
solution. The system is using a high clock frequency when the measured tempera-
ture is inside the thermal budget and the application generates load; otherwise, the
clock frequency is lowered. The authors demonstrated their approach on a Field Pro-
grammable Extender (FPX) platform, where they compared their adaptive strategy
switching between 25 MHz and 100 MHz with a thermally-save static solution at 50
MHz. For longer workload bursts they reduced power consumption by 30% and doubled
the performance while maintaining a given temperature threshold of 70◦C.

Chen and John [2009] designed a scheduling technique for heterogeneous multicore
processors where the cores differ in instruction-level parallelism, branch predictor size,
and data cache size. The scheduling technique profiles an application to find the best
mapping with respect to high throughput and reduced energy consumption. Compared
to a naı̈ve scheduling technique, they could reduce the energy delay product by 24.5%
on a 64 core system.

2.3. Reference Architectural Framework for Self-aware Compute Nodes

We base our work on the reference architectural framework proposed by Becker et al.
[2012], which is depicted in Figure 1. While in its very basic functionality this frame-
work bears similarity with IBM’s MAPE-k model, Agrawal et al.’s observe-decide-act
control loop or the observer-controller structure of organic computing, it is more elab-
orate and draws inspiration from the notions of self-awareness and self-expression in
neurocognitive sciences [Duval and Wicklund 1972; Goukens et al. 2007]. For exam-
ple, neurocognitive sciences distinguish between private and public self-awareness and
introduce several levels of self-awareness.

According to Lewis et al. [2011], self-awareness requires the compute node to possess
knowledge of and based on phenomena internal and external to itself. The internal
phenomena are captured by sensors, for instance, utilization counters or thermal
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Fig. 2. A heterogeneous multicore architecture.

sensors, and handled by a private self-awareness engine. The external phenomena
are recognized through the environment, for instance, workload and varying quality
of service requirements, and handled by a public self-awareness engine. Both engines
interact with models of the system and the environment which are optionally learned
through this interaction, and altogether they provide the system with state and
context (dark-gray boxes in Figure 1).

Self-expression (medium-gray boxes in Figure 1) is the ability of a node to adapt
to changes in the system or the environment. To that end, the framework foresees a
self-expression engine containing either a single adaption strategy or multiple ones.
The self-expression engine takes the system state and context as input in order to
decide on an adaptation action. The adaptation itself is done by internal actuators,
for instance, power management or thermal management by migrating threads in a
heterogeneous multicore, or by taking external actions, for instance, communicating
with other compute nodes or a user. Self-expression is driven by a system’s goals,
values, objectives and constraints which might be given at design-time or dynamically
updated at runtime.

Referring to neurocognitive models, a compute node can optionally implement
meta-self-awareness which can be seen as a higher level of self-awareness where a
node is aware of its own awareness. In terms of the reference architectural frame-
work meta-self-awareness maps to a monitor/controller component (light-gray box in
Figure 1). Meta-self-awareness is required, for example, to select between different
sensors, actors, learning techniques or between multiple adaptation strategies, the
latter of which proved especially useful in presence of conflicting or rapidly changing
objectives [Esterle et al. 2011]. While the framework implements the basic feedback
loop of the MAPE-k model or Agarwal et al.’s observe-decide-act control loop with its
self-awareness and self-expression components (from sensors and external environ-
ment to actuators and external actions), the monitor/controller component relates to
the observer/controller of organic computing.

3. RECONOS

ReconOS is an architecture, programming model, and execution environment for
FPGA-based heterogeneous multicores [Lübbers and Platzner 2009; Agne et al. 2011].
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Fig. 3. An exemplary hardware thread with OSFSM, user logic, an internal RAM as well as the hardware
thread’s interfaces to memory and the OS.

ReconOS integrates reconfigurable logic cores with CPU cores and runs hardware/
software multithreaded applications on top of a common host operating system (see
Figure 3). Originally developed as extension layer on top of the eCos operating system,
ReconOS was later ported to MMU-less Linux running on PowerPC and Microblaze
cores. Over the years, ReconOS has been extended to support current FPGA archi-
tectures and design tool flows. The current version of ReconOS (v3) supports Xilinx
Virtex-6 FPGAs and as host operating systems both Linux with full virtual memory
support and the Xilkernel, a small lightweight operating system supplied by Xilinx.
ReconOS is available as open source [ReconOS 2013].

In this section, we provide an overview over the ReconOS v3 architecture and pro-
gramming and then discuss the suitability of ReconOS as architectural basis for imple-
menting self-aware compute nodes according to the reference architectural framework
of Section 2.

3.1. Architecture and Programming

ReconOS extends the well understood and widespread multithreaded programming
and execution model from software threads to hardware threads. To this end, classic
hardware accelerators or coprocessor cores are turned into hardware threads which
can execute concurrently to other software and hardware threads. A ReconOS system
contains reconfigurable regions on the FPGA, called reconfigurable hardware slots.
Hardware threads can either be mapped to reconfigurable hardware slots statically at
design time, or dynamically at runtime through partial reconfiguration. In ReconOS,
all threads share the same address space and may synchronize and communicate
with other threads through the use of operating system services, such as mutexes,
semaphores, message queues, etc. Whether a specific thread resides in hardware or
software is fully transparent to other threads.

While software threads have sequential execution semantics, typical hardware ac-
celerators extensively use fine and medium-grained parallelism. As shown in Figure 3,
we split hardware threads into two three main blocks. The user logic comprises the
accelerator datapaths of the thread and implements the main computations. The op-
erating system synchronization state machine (OSFSM) controls the datapaths via a
set of handshake signals and interacts with the host operating system in a sequential
manner. Finally, hardware threads may contain local memory to buffer data blocks for
processing. Access to the memory hierarchy is also controlled by the OSFSM.
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Table I. Supported VHDL Procedures for ReconOS Hardware Threads

Function Description
osif sem post()

POSIX semaphores (counting and binary)
osif sem wait()

osif mutex lock()

POSIX mutexesosif mutex trylock()

osif mutex unlock()

osif cond wait()

POSIX condition variablesosif cond signal()

osif cond broadcast()

osif mbox get()
message boxes that allow for monitoring of fill count and fill rate

osif mbox put()

osif rq send()
message queues

osif rq receive()

memif read()
(virtual) memory access

memif write()

ReconOS hardware threads are coded in VHDL. We provide a VHDL function library
with OS calls that is used to program the OSFSM. Table I gives an overview of the
functions currently available with ReconOS v3. Each hardware thread is assigned a
corresponding light-weight software thread, the so-called delegate thread. Whenever a
hardware thread’s OSFSM issues an OS call, the delegate thread becomes active and
performs the OS call to the host operating system on behalf of the hardware thread.
Through this concept neither the host OS kernel nor the user threads have to know
whether other threads run in software or hardware. This transparency with respect to
thread implementation greatly eases design space exploration and is key to adapting
the system by changing thread mappings across the hardware/software boundary at
runtime.

3.2. Sensors and Actuators

Under ReconOS we use a thread-level implementation of the reference architectural
framework (cf. Figure 1), where the self-awareness and self-expression engines are
wrapped into software threads. ReconOS itself enables the creation of self-aware com-
pute nodes mainly through sensors and actuators.

In the current version we provide sensors for capturing i) performance and utilization
as well as ii) temperature data. Sensing utilization is straight-forward and supported
by corresponding OS services, monitoring software threads and extensions to hardware
threads, for instance, activity counters that measure times where a hardware thread is
idle waiting for data or synchronization. Performance is typically defined and captured
in an application-specific way. We augment user level threads with calls to message
boxes to send events or performance data to the thread implementing the private self-
awareness engine. Being somewhat similar to the HeartBeats approach, our approach
is more flexible. Many services, for example FIFOs (message queues) in ReconOS, are
provided by operating system objects implemented in software. Data such as current
fill levels can be retrieved via the ReconOS API at any time by the self-awareness
engines. Periodic measurements of fill levels can be used to derive related utilization
and performance data, such as fill rates.

Sensing temperature data is far more involved. In case only one temperature reading
per time is required without any need for capturing the spatial temperature distribu-
tion, the FPGA’s built-in thermal diode can be used. The diode is precalibrated and can
be read out using the system monitor core provided by Xilinx. In addition, ReconOS
allows the designer to instantiate a thermal sensor array for finer-grained temperature
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measurements, in particular to measure the core temperatures in a multicore design.
The sensor array spans over the total reconfigurable area of the chip and - after a
calibration phase - delivers highly accurate, high frequency temperature readings
[Happe et al. 2011]. ReconOS includes device drivers for both ways of sensing the
temperature.

In general, the OS layer of a heterogeneous multicore can react to changes in the
system state and environment by power and thermal management including, for exam-
ple, starting, stopping and migrating threads. ReconOS currently supports actuators
that drive thread scheduling operations such as creating and killing threads. Besides
the POSIX-specified functions for software threads, there are currently two hardware
thread related API functions for that purpose: The function reconos hwt create()
is called to create a new hardware thread in a specific reconfigurable slot while
osif thread exit() exits the calling hardware thread, freeing the operating system
resources as well as the reconfigurable area associated with that thread.

4. CASE STUDY

The concept of self-awareness in compute nodes as described in Lewis et al. [2011]
provides a way to structure applications on heterogeneous multicores that have to deal
with unpredictable system dynamics at runtime. The resulting implementation is then
a (partial) instantiation of the architectural reference framework (cmp. Section 2). In
this section we report on a case study involving two applications running on a single
compute node at the same time, sorting and matrix multiplication. We first present the
applications and the workload generated by them and provide implementation details.
Then, in Section 4.1 we discuss strategies for dealing with performance constraints
and in Section 4.2 we examine temperature constraints together with performance
constraints. Finally, Section 4.3 compares the presented strategies.

For the sorting application we generate 8 kilobyte blocks of 32 bit integers at a
varying rate and insert them into the application’s input FIFO. We vary the rate to
mimic a fractal workload Ws exhibiting a degree of self-similarity that is commonly
observed in a number of application domains, such as networking [Leland et al. 1994].
The matrix multiplication operates on matrices of size 27 × 27. Using Strassen’s
algorithm [Strassen 1969] for matrix multiplication, larger matrices of size 2n × 2n

with n >= 7 can be handled by performing 7n−7 multiplications of matrices of size
27 ×27. This reduces the total number of scalar multiplications at the cost of additional
memory. We assume the workload Wm for the matrix multiplication to be infinite, that
is, there will always be matrices for the system to multiply.

We have implemented both applications on a ReconOS system running on a Virtex-6
FPGA (XC6VLX240T). The FPGA area is divided into 13 regions. One large region
contains the static system, including the Microblaze CPU, the memory controller and
a UART device used to transfer data to a workstation. Additionally, 12 partially recon-
figurable regions (slots) are allocated for the hardware threads. Any slot may contain
either one sorting thread or one matrix multiplication thread at a time. We use the
internal configuration access port (ICAP) of the Xilinx FPGA to partially reconfigure
these regions, which enables us to time-share FPGA resources between the two appli-
cations.

The system is highly heterogeneous because it contains two fundamentally different
kinds of compuntational cores: The instruction set based main CPU runs the operat-
ing system and scheduling components, as well as the matrix subdivision step of the
Strassen algorithm while dedicated hardware cores perform integer sorting and fixed
sized matrix multiplication.

The resource requirement (post-synthesis data) of a sorting hardware thread
amounts to 1452 6-LUTS, 424 flip-flops, and two block RAMs for local memory. A
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matrix multiplication hardware thread uses 1406 6-LUTS, 754 flip-flops, three multi-
ply accumulate blocks (DSP blocks), and 17 block RAMs for local storage. The complete
system, including CPU, hardware threads, and memory bus, runs at 100 MHz clock
frequency.

The typical execution time for sorting a block of integers is around 82 ms, and around
108 ms for a matrix multiplication. However, due to limited shared memory bandwidth
these numbers may vary during runtime depending on the system’s load. The best
achievable reconfiguration delay Dmin for a hardware thread is also determined by the
available bandwidth to system memory. While in an otherwise idle system we have
measured a Dmin of 42 ms, the reconfiguration delay increased by a factor of more
than 9× for heavily loaded systems.

4.1. Self-Expression under Performance Constraints

In this scenario, we combine a performance constraint for the sorting application with
the objective to maximize the number of matrix multiplications. With Lmax as the
capacity of the sorting application’s input FIFO, we want the FIFO’s fill level Ls(k)
at any time step k not to exceed the maximum level ∀k : Ls(k) ≤ Lmax, that is, the
FIFO should not overflow. Blocks that would lead to a FIFO overflow are discarded and
counted as constraint violations.

The challenge for finding a good self-expression strategy, that is an assignment of
hardware threads to slots and a corresponding schedule, meeting the constraint and
optimizing the objective arises from i) the workload imposed on the system, which is
not known in advance and ii) the internal dynamics of the system caused by mutual
interference between memory accesses for reconfiguration and processing. Since the
reconfiguration interface and the hardware threads share a single bus to main memory,
bandwidth used for transferring reconfiguration data is not available for transferring
processing data and vice versa. Moreover, when several hardware slots undergo recon-
figuration some of the hardware threads will be delayed because there is only one ICAP
reconfiguration interface. The resulting system dynamics are hard to model analyti-
cally, which motivates the self-aware computing approach.

We generate the sorting workload Ws deliberately to temporarily exceed the system’s
maximum sorting rate Rmax, that is, the maximum continuous rate at which blocks can
be inserted without overflowing the input FIFO. Our implementation would achieve
Rmax if all 12 hardware slots were configured with sorting threads. Workloads tem-
porarily exceeding Rmax stress the system’s self-expression strategy, because spikes in
the workload must be compensated for in order to meet the performance constraint.

According to the architectural reference framework, we implement a thread contain-
ing the private self-awareness engine. This engine collects and maintains information
about the system state, such as the FIFO fill level Ls(k), the current FIFO in-rate, and
the last measured reconfiguration delay Di for each reconfigurable hardware slot i. The
collected information is then used by the self-expression engine implementing the self-
expression strategy. We invoke the self-expression engine at discrete time steps with
the interval �t. The engine decides on the number of threads required for sorting and
for matrix multiplication and runs the scheduler that stops threads and triggers recon-
figuration if necessary. In terms of the reference architectural framework, the scheduler
acts as an actuator. The choice of �t has as significant impact on the behavior of the
self-awareness engine. A lower �t enables the system to respond faster to workload
changes at an increased computational overhead. In our experiments we use a �t of
one second which reduces the load caused by the self-awareness engine to a negligible
level while it still allows the system to react to workload changes sufficiently quick.

In the following, we discuss two fundamental, complementary self-expression strate-
gies and one metastrategy that decides on which fundamental strategy will be used.
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Fig. 4. Experimental evaluation of the proportional strategy. The figure is structured as follows: (a) work-
load, in blocks/s; (b) number of sorting threads; (c) input FIFO fill level, in percent; (d) the rate at which
blocks are sorted, in blocks/s; (e) the rate at which matrices are multiplied, in multiplications/s.

The metastrategy tries to incorporate the strengths of both sub-strategies while avoid-
ing their weaknesses.

Proportional strategy:. This strategy sets the number of required sorting threads
Ns(k) in time step k proportional to the current fill level of the FIFO Ls(k):

Ns(k) := kp · Ls(k)

with the proportional factor

kp := Nmax/Lmax,

where Nmax is the number of available hardware slots and Lmax is the capacity of
the input FIFO. The proportional strategy handles most workloads well that do not
surpass the maximum continuous sorting rate Rmax. It will however quickly violate the
performance constraint in the case the workload peaks greater than Rmax. Figure 4
summarizes the results for this strategy. Figure 4(a) displays the modulated fractal
sorting workload Ws in blocks per second (BPS). Figure 4(b) depicts the number of
currently configured sorting threads, ranging from 0 to 12, and Figures 4(c)–(e) present
the fill level of the input FIFO, Ls(k), the rate Rs(k) at which blocks are sorted in blocks
per second, as well as the rate Rm(k) at which matrix multiplications are performed in
multiplications per second (MPS). All measurements were taken on a single run of the
application over a period of 200 seconds. After 200 seconds, 126 blocks were dropped
by the proportional strategy in violation of the performance constraint.

All-or-nothing strategd. We designed the all-or-noting strategy to better handle work-
load peaks in excess of Rmax. Once engaged, the strategy tries to empty the input FIFO
completely and as quickly as possible, using all available hardware slots for sorting.
When Ls(k) drops to zero, all hardware slots are reconfigured to multiply matrices. By
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Fig. 5. Experimental evaluation of the all-or-nothing strategy. The figure is structured as follows: (a) work-
load, in blocks/s; (b) number of sorting threads; (c) input FIFO fill level, in percent; (d) the rate at which
blocks are sorted in blocks/s; (e) the rate at which matrices are multiplied, in multiplications/s.

monitoring the current fill rate of the input FIFO as well as recent reconfiguration
delays, the strategy calculates in each time step the fill level at which it must start
reconfiguring all hardware slots with sorting threads to avoid an overflow of the input
FIFO. In detail, the strategy decides on the number of required sorting threads Ns(k),
given the current input FIFO fill rate L′

s(k) = (Ls(k) − Ls(k − 1))/�t, and the recently
measured reconfiguration delays Di of the slots i, such that

Ns(k) :=
⎧⎨
⎩

0 if Ls(k) = 0
Nmax if Ls(k) > Ltrigger or L′

s(k) > α

Ns(k − 1) else,

with α being the critical fill rate given by

α := Lmax∑Nmax
i=1 Di−1

The purpose of the condition Ls(k) > Ltrigger is to avoid the FIFO slowly becoming full
without L′

s(k) ever surpassing α. In our experiments we found it sufficient to set Ltrigger
to Lmax/4. Figure 5 presents the experimental results for the all-or-nothing strategy.
While this strategy handles the sorting workload without constraint violations, it also
performs fewer multiplications than the proportional strategy, as the comparison in
Table II shows.

Metastrategy. We have developed a metastrategy that tries to leverage the advan-
tages of both fundamental strategies while avoiding their weaknesses. Both, the pro-
portional and the all-or-nothing strategy prefer certain workloads over others. The
first strategy leads to high multiplication performance over a wide range of workloads,
but handles sorting workload spikes rather poorly. The second strategy copes with
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Table II. Comparison between Different Self-Expression Strategies Over 200 Seconds

self-expression strategy dropped sort blocks matrix multiplications maximum temperature
proportional 126 12747 50.2◦C
all-or-nothing 0 7467 48.9◦C
meta 0 11606 49.7◦C
thermally-aware meta 309 5646 47.5◦C

Fig. 6. Experimental evaluation of the meta strategy. The figure is structured as follows: (a) workload, in
blocks/s; (b) number of sorting threads; (c) input FIFO fill level, in percent; (d) the rate at which blocks are
sorted, in blocks/s; (e) the rate at which matrices are multiplied, in multiplications/s.

workload spikes without constraint violations at the price of an overall decreased
number of matrix multiplications. The definition of the meta strategy follows straight
from an examination of the experimental results. The key insight is that the propor-
tional strategy will meet the performance constraint as long as the input FIFOs fill
rate is at most Rmax. For higher fill rates, the more FIFO space conservative strategy
all-or-nothing will minimize constraint violations.

Self-expression strategy meta:

(rule #1)proportional: (∀k − p ≤ j ≤ k : L′
s( j) ≤ Rs( j))

(rule #2)all or nothing: (else).

The purpose of the parameter p in the meta strategy is to reduce oscillations between
the two single strategies in the face of a noisy workload. We found a value of 20 to work
well in our experiments.

Figure 6 shows the experimental evaluation of the meta strategy. The switch from
the proportional to the all-or-nothing strategy happens at the beginning of the first
workload spike surpassing Rmax which is also indicated by the abrupt changes in the
number of sorting threads. After the workload smoothes, the meta strategy switches
back to the proportional mode.
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4.2. Self-Expression under Conflicting Constraints

Often, computing system have to deal with conflicting objectives or constraints. In
case of our heterogeneous multicore, a typical conflict exists between performance and
temperature management. To exemplify a situation with conflicting constraints, we
introduce thermal constraints to our case study. We extend the private self-awareness
engine to continuously monitor the chip temperature using the Xilinx system moni-
tor. When the temperature exceeds a threshold θlow the self-expression strategy stops
hardware threads of applications that do not have any performance constraints, that
is, the matrix multiplication in our case study. When the temperature rises above the
threshold θhigh, all remaining hardware threads are stopped for a quick temperature
reduction. In case that no thermal constraints are violated, the system applies the
meta strategy for self-adaptation.

In order to decrease the chip temperature the application might have to disable hard-
ware threads which, potentially, leads to a violation of the performance constraint. As
a consequence, our strategy favors thermal constraints over performance constraints.

While thermal management of FPGA-based systems will become increasingly im-
portant in the foreseeable future due to shrinking device structures and increasing
densities [Borkar 2005], our sorting and matrix multiplication applications on today’s
FPGA technology, however, do not generate significant heat. In order to emulate the
thermal situation of a future FPGA multicore we have integrated dedicated logic into
the hardware threads that creates heat whenever the thread is active. This dedicated
heat-generating logic comprises a number of ring oscillators, each implemented in
a single LUT [Happe et al. 2012]. For the sorting hardware thread, we have inte-
grated 150 ring oscillators and for the matrix multiplication hardware threads 50 ring
oscillators.

Figure 7 displays the experimental results for the thermally aware strategy. The
thermal thresholds were set to [θlow, θhigh] = [46.5◦C, 47◦C], indicated by the gray band
in Figure 7(f). Since the thermal thresholds are quite tight, the system often violates
the performance constraint of the sorting application and drops 309 data blocks in
200 seconds. Furthermore, compared to the results achieved by the meta strategy
without thermal constraints the matrix multiplication performance decreases from 75
to about 25 multiplied matrices per second once the chip temperature exceeds θlow,
Figure 6(e) and Figure 7(e).

4.3. Comparison of Self-Expression Strategies

Table II compares for all self-expression strategies the performance constraint viola-
tions in number of dropped sort blocks, the matrix multiplication performance, and
the maximum measured temperature. Among the thermally-unaware strategies, the
meta strategy clearly excels by respecting the performance constraint while processing
almost as many matrix multiplications as the proportional strategy. The thermally
aware meta strategy can respect additional thermal constraints at the price of more
performance constraint violations and a lower number of matrix multiplications.

Figure 8 depicts the temperature development over time for all presented self-
expression strategies. Only the thermally-aware strategy is able to quickly react to
temperature peaks that exceed the specified bounds and, therefore, successfully man-
ages the chip temperature. All the other strategies violate the thermal constraints for
longer time periods; the proportional strategy even by up to 3.2◦C; see Figure 8(a).

5. DISCUSSION AND CONCLUSION

In this article we have discussed how the need to handle increasingly complex, diverse
and contradictory requirements along with the decreased reliability of components
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Fig. 7. Measurement results for the thermal-aware meta strategy: The figure is structured as follows:
(a) workload, in blocks/s; (b) number of sorting threads; (c) input FIFO fill level, in percent; (d) the rate at
which blocks are sorted, in blocks/s; (e) the rate at which matrices are multiplied, in multiplications/s; and
(f) the chip temperature over time; in ◦C. The thermal constraints are highlighted by a gray horizontal bar.

Fig. 8. Temperature development over time for all experiments: The thermal constraints are highlighted
by a gray horizontal bar.
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have set the ground for research in computing systems exhibiting self-* properties.
Over the last decade, several models for self-* systems have been proposed and have
also been applied in heterogeneous multicore systems. Our work builds on the refer-
ence architectural framework for self-aware computing systems proposed by Becker
et al. [2012] which we have instantiated for an FPGA-based heterogeneous multicore
system. Our multicore is based on the ReconOS architecture and programming model
which provides a unified abstraction for hard- and software threads and enables a dy-
namic use and migration of functionality between hard- and software, adding a further
degree of freedom for self-adaptation over pure CPU-based systems.

As a case study, we have instantiated the self-awareness, self-expression, and
monitor/controller components of the reference architectural framework for a hetero-
geneous multicore system that executes two applications, block sorting and matrix
multiplication, that compete for computing resources. We have examined the system
under constraints in performance and temperature using a varying, noisy workload.
We have shown how rule-based adaptations strategies can be used to operate the sys-
tem with one or several, possibly conflicting, constraints. Finally, we have shown that
none of the presented strategies is dominant in the sense that it delivers the best per-
formance for all points of operation, but that the awareness of the system of the current
operational state can be exploited in a metastrategy that selects a good self-expression
strategy for the current operation point.

The reference architectural model has proven very useful in separating concerns and
structuring both the engineering process as well as the component architecture of the
runtime system. While adaptive computing systems with limited complexity and basic
adaptation strategies could arguably also be implemented using an ad-hoc approach,
ad-hoc designs become infeasible for complex systems that comprise many sensors,
actuators and more sophisticated algorithmic techniques in their self-awareness and
self-expression components.

There are a number of interesting aspects of this research that we would like to
expand on in future work. This includes a comprehensive comparison to classical control
systems as well as a more detailed investigation of the trade-offs between decision-
making granularity and the computational overhead of the self-awareness engine.
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