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Abstract—Heterogeneous multi-core FPGAs contain different
types of cores, which can improve efficiency when use with an
effective online task scheduler. However, it is not easy to find
the right cores for tasks when there are multiple objectives or
dozens of cores. Inappropriate scheduling may cause hot spots
which decrease the reliability of the chip. Given that, our research
builds a simulating platform to evaluate all kinds of scheduling
algorithms on a variety of architectures. On this platform, we
provide an online scheduler which uses multi-objective evolu-
tionary algorithm (EA). Comparing EA and current algorithms
such as Predictive Dynamic Thermal Management (PDTM) and
Adaptive Temperature Threshold Dynamic Thermal Management
(ATDTM), we find some drawbacks. First, current algorithms
are overly dependent on manually set constant parameters.
Second, those algorithms neglect optimization for heterogeneous
architecture. Third, they use single-objective methods, or use
linear weighting method to convert a multi-objective optimization
into a single-objective optimization. Unlike other algorithms, EA
is adaptive and does not require resetting parameters when work-
loads switch from one to another. EAs also improve performance
when used on heterogeneous architecture. A efficient Pareto Front
can be obtained with EAs for the purpose of multiple objectives.

I. INTRODUCTION

A chip is considered to be heterogeneous if cores on this
chip have different microarchitectures, in terms of function
units, size of register, or size of L1 cache. The advantage of
heterogeneous multi-core architecture is obvious. A research
of heterogeneous architecture from National University of
Singapore achieves improvement in both performance and
energy consumption compared with homogeneous counterparts
[1]. However this result is based on an assumption: we can
find the right core for the task. This assumption is invalid
when there are dozens of or hundreds of cores - there are
too many alternatives which make it impossible to enumerate
within limited time.

Meanwhile, the high power density makes FPGAs easily
burnt. Temperature control of chips becomes a very important
objective besides the pursuit of higher performance. Task
migration is an effective method to achieve this objective
[2]. Recent works such as [3], [4], [5], [6] have achieved
this objective by scheduling. However, most of the schedulers
rely on many manually set parameters which actually should

fluctuate according to run-time situations. Also these algo-
rithms are either designed for one objective or converted the
multi-objectives problem to a single objective one, as they are
based on greedy or greedy-like algorithms. However, to tackle
temperature control problem, more objectives arise besides
minimizing the maximum temperature. For example, smaller
gap between different parts on the chip is expected as this
helps increase reliability.

It will be more complicated to find out the right core if
more objectives are concerned, such as performance, power
consumptions, temperature, etc. Scheduling problems on a
heterogeneous multi-core FPGA can be formulated as multi-
objective optimization problems (MOPs)[7]. Evolutionary Al-
gorithms (EAs) have been widely used to solve MOPs. There
are plenty of algorithms using evolutionary approaches to solve
MOPs such as NSGA II [8], SPEA II[9] and PESA [10].

Our research intends to build a heterogeneous multi-core
chip simulator to evaluate different scheduling algorithms on
different kinds of architecture. The simulator should be able to
generate all the run-time data, such as temperature and power
consumption of every core, and react to outside control, such as
migrating tasks among cores and adjusting voltage/frequency
of a specified core. We combine simulators - Hotspot[11],
McPat[12] and Gem5[13] - to achieve our goal. Then we put
forward a evolutionary multi-objective scheduling approach.
By comparing our EA with existing algorithms in some
particular cases, we show that a scheduling algorithm will
gain improvement if it has the following features: firstly it is
optimized for heterogeneous systems, secondly its parameters
are self-adaptive and lastly it is multi-objective.

II. RELATED WORK

There exists a variety of task scheduling strategies to
achieve a trade off between performance and temperature.
Most of strategies contain three steps: trigger, predictor, se-
lector. The trigger may be on-chip cycle counter or thermal
sensors. When the manually set threshold is exceeded, the
future situation of every potential alternatives will be predicted.
After that, one solution will be picked out from the potential
alternatives according to their objectives and the forecast by
the selector.



In 2009 Eisenhardt et al. [3] put forward a row-rotation
algorithm which migrates tasks from current row of cores to
the cores in the next row periodically. The experiment is based
on a series of simulators.

Another classic algorithm Predictive Dynamic Thermal
Management (PDTM) evaluated by Yeo et al. [4] tries to
control temperature on real homogeneous 4-core and 8-core
systems. In this algorithm, when the current temperature of a
core triggers a manually set threshold, a future coolest core will
be selected as the migration target according to an algorithmic
predictor.

There are some improved versions of PDTM, such as
temperature-aware scheduler based on applications’ thermal
behaviour groups[5] and the algorithm from Ayoub et al. [14]
in 2011. The latest upgrade is developed by Salami et al. [6]
in 2014. It optimizes PDTM with a self-adjusting migration
threshold, called ATDTM. In ATDTM, a counter will record
the times of migrations. When the counter excessed a manually
set threshold, the threshold of temperature will increase or
decrease by certain amount.

The drawbacks of the existing algorithms lie in several
aspects:

a) Non-adaptive: All these algorithms rely on some
manually set parameters. However, these parameters vary when
facing different architectures. It is hard to reach the expected
trade off between temperature and performance. Also for
different types of workloads or different architectures, most
of those parameters have to be reset. It will cause problem if
we do not reset them when the workloads hugely change, or
the architectures change run-time(like reconfiguration).

b) Single-objective: They can only can have few objec-
tives. Since most of the algorithms rely on a greedy or greedy-
like algorithms in the selection part, it is hard to integrate them
into a final parameter for greedy algorithm. Current works
use the linear weighting method to convert the multi-objective
optimization into a single-objective one. But if there is more
objectives, the method will have problem in the process of
conversion. However, in a real situation, we may have a variety
of objectives required for a chip such as performance, power
consumption, and temperature. Optimising these objectives
surely will be beneficial.

c) Homogeneous: They are not suitable for hetero-
geneous systems. First, heterogeneous system enlarges the
number of alternatives, which brings problems. It is impossible
to enumerate when facing hundreds of different types of cores
because there will be too many alternatives but limited time.
Second, a wrong migration in heterogeneous system usually
cost larger losses than that on a homogeneous system, while
current algorithms cannot avoid repeating the same mistake.

III. RESEARCH FRAMEWORK

Our research has two purposes. First we intend to build
a heterogeneous multi-core chip simulator to evaluate differ-
ent scheduling algorithms on different kinds of architecture.
Second, we want to show that a algorithm, like our multi-
objective evolutionary scheduling algorithm should be used
in the scheduling problem for a heterogeneous multi-core
platforms.

Fig. 1: Simulating Process

The research flow can be like this: in every simulative
cycle, the chip simulator generates run-time data for the
scheduler; then the scheduler reckons the best scheduling
for the future cycles and returns this result to the simulator.
After that, the simulator carries out migration according to
the scheduling and simulating process for the next period, and
generates new run-time data again. This process begins to loop
till all tasks are finished. The process is described in Figure 1.

According to the process, the chip simulator in our research
must achieve:

1) Simulatively executing some tasks on a heteroge-
neous multi-core chip.

2) Generating run-time data (power, performance and
temperature) of every core on the chip.

3) Responding to an outside control, including simulat-
ing migrations and changing frequency and voltage
of the core.

A. Chip Simulator

The chip simulator is constituted by three existing simula-
tors: Gem 5 [13], MCPAT [12] and Hotspot [11].

1) Gem 5: Gem 5 is an architecture simulator, which can
simulate tasks run on a chip. By editing the configure files, this
simulator simulates every kind of architecture. Another input
of Gem 5 is the binary code. The output of this simulator is the
run-time statistical data, such as the number of register access,
cache miss rate.

2) MCPAT: MCPAT is an integrated power, area, and
timing modelling framework [12]. It can calculate the run-
time power trace of every unit on the chip based on run-
time statistical trace generated by Gem 5 and the hardware
configuration.

3) Hotspot: Hotspot by HP was utilized to convert the
power measurements to temperature. The input files for
Hotspot include a floorplan describing hardware configure, and
a file of power trace.

We use Gem 5 to run different benchmarks which generates
run-time performance details, such as execution time and times
of register read/write operation. MCPAT is used to generate
power trace according to the data from Gem 5. Also the
area of every unit on the chip will be calculated by MCPAT
according to the hardware configuration. Hotspot can figure
out the temperature for every part of the chip based on the
power trace and the area of every unit on the chip generated
by MCPAT.

However, when Gem 5 begins to simulate running tasks,
it cannot response to an outside control, like migrations, or
output the intermediate state when it is still running. That



Fig. 2: Chip Simulator

Fig. 3: The Pipeline of cores

means we can only get the statistical data until all tasks are
finished. Hence we cannot combine these three simulators
directly. First, in order to collect the trace data instead of
the final state, we can save checkpoints in Gem 5 at every
simulative cycle, then stop Gem 5 to generate a ”final” state
and rerun Gem 5 from that checkpoint again. These ”final”
states constitute the trace file for MCPAT. Second, if we ignore
the impact of L3 cache and cache coherence, we can assume
that the performance of one core will not be influenced by
other cores. An optional method simulating migrations is first
to use Gem 5 to generate all traces for every task running
on every type of cores first. Then the chip simulator begins to
simulate a running chip. If a migration occurs, the MCPAT will
select the right trace file to read from files which is already
generated by Gem 5. The process is indicated in Fig. 2.

B. Chip Architecture

Then we need to specify which chip architectures are going
to simulate. In our experiment, we have two architectures-
Arch. I and II.. The first one is the architecture of OpenSPARC
T1[15], while Arch. II is an 8-core T1-like architecture with
2 types of core. All cores on the chips are in-order Harvard
architectures. The difference between cores only lie in the
number of read/write ports to cache, the size of data/instruction
register and the number of function units such as ALU and
FPU. Details for the two chips are demonstrated in the Table
I. There may be multiple pipelines on one chip. The amount
of pipelines equals to the number of ALU ,while FPU always
share pipelines with ALU. Fig. 3 shows the micro-architecture
of the pipelines on a core. The floorplan of Arch. I and II are
descripted in Fig. 3.

C. Workloads

We use the workloads in a benchmark set called
PARSEC[16]. It includes 12 workloads such as Blackscholes,

(a) Floorplan of Arch. I (b) Floorplan of Arch. II

Fig. 4: Floorplan of the Arch. I&II

Program Total Instructions (Billions) INT FLOPS Reads&Writes
Blackscholes 2.7(small) 25% 42% 33%

Bodytrack 14.0(large) 27% 30% 33%
Canneal 7.2(small) 53% 6% 41%

Freqmine 33.5(large) 52% 0% 48%
Streamcluster 22.1(large) 4% 53% 43%

TABLE II: Character of Workload Set

Bodytrack and Ferret. In our experiment we only use Blacksc-
holes, Bodytrack, Freqmine, Streamcluster and Canneal. The
characteristics of these workloads are described in Table II.

The Blackscholes calculates the prices for a portfolio of
European options analytically with the Black-Scholes partial
differential equation (PDE) [17]. It contains ALU, FPU and
Load and Store operations which have similar proportions.
The bodytrack tracks a 3D pose of a marker-less human body
with multiple cameras through an image sequence [18]. It also
comprises similar proportions of different types of operations,
but needs longer execution time. Canneal uses cache-aware
simulated annealing to minimize the routing cost of a chip
design [19]. It is constituted by nearly half ALU operations
and half memory operations. Freqmine employs an array-
based version of the FP-growth method for Frequent Itemset
Mining [20]. This workload is similar to that of Canneal
but longer execution time is required. Stream-cluster finds
a predetermined number of medians so that each point is
assigned to the nearest centre [21]. This workload has little
ALU operations but half FPU and half memory operations.

D. Assumptions

As our research mainly focuses on schedule algorithm, we
do not concern how to gather run-time data and do prediction.
In this case we can assume:

1) All the algorithms can gather run-time data and
predict future situation perfectly.

2) The migration from one core to another lasts for a
constant cycle’s time.

3) No delay for scheduler. We do not consider the time
for the scheduling algorithm itself.

IV. EVOLUTIONARY SCHEDULER

We provide a adaptive evolutionary multi-objective
scheduler optimizing for heterogeneous architecture in our



Architecture Cores Icache Dcache num of num of ALU FPU L2 Cache
size port size port Int Reg FP Reg num delay num delay size way penalty

Arch I I-A 16KB 1R/1W 8KB 1R/1W 32 16 1
1

1/4
16 256KB 12 22Arch II II-A 16KB 1R/1W 8KB 1R/1W 32 16 1 1

II-B 32KB 2R/2W 16KB 2R/2W 64 32 2 1

TABLE I: Detail of Micro Architecture of Arch. I&II

research. Our problem definition makes use of the following
notation:
•Number of tasks: n
•Number of cores: m
•Number of objectives: o
•Size of Population: s
•A set of tasks: E = {ε1, ε2, ..., εn}
•A set of cores: C = {c1, c2, ..., cm}
•A set of notional waiting core: Cn = {cm+1, ..., cm+n},
to which a task may be assigned to indicate that it is in a
waiting state (i.e. the task is not currently being executed).
•A set of time intervals: T = 0, 1, ..., tmax, tmax = |T |+ 1
•A set of coming time of tasks: Tc = {tc1, tc2, ..., tcn}
•A set of leaving time of tasks: Tl = {tl1, tl2, ..., tln}
•A vector : −→σ = (u1, u2, ..., um+n), ui ∈ (1, n) ∪ {−1},
which stands for a schedule of tasks to cores. ui ∈ (1, n)
means task ui is running on core i(including notional cores),
otherwise it means nothing is on core i. This vector allows 2
operations: add a new task or delete a finished task.
•A set of possible choice of schedule(the population for EA):
Σ = {−→σ1,

−→σ2, ...,
−→σs}

•A set of evaluating functions: O = {F1(−→σk), ..., Fo(
−→σk)}

•A set of normalized fitness value: Onormalized = {f1, ..., fo}
•The temperature at time ti of core j: θti,j
•The performance at time ti of core j: pti,j
•The predicted temperature at time ti of core j for a schedule−→σk: θti,j(

−→σk)
•The predicted performance at time ti of core j for a schedule−→σ k: pti,j(

−→σ k)

A. EA process

At time t, the EA can be described as pseudo-code:

EA-SCHEDULOR()

1 for ∀tcj ∈ Tc
2 do if t = tcj
3 then for ∀σi ∈ Σt
4 do σi.add(tcj)
5 for ∀tlj ∈ Tl
6 do if t = tlj
7 then for ∀σi ∈ Σt
8 do σi.delete(tlj)
9 Evaluate(Σt)

10 for i < Iterations

11 do Σ
′

t ← GetChildren(Σt)

12 Evaluate(Σ
′

t)

13 Σt ← Select(Σ
′

t ∪ Σt)
14 Σt+1 ← Σt
15 σt+1 ← FinalSelect(Σt+1)
16 returnσt+1

1) Evaluate(): We may set multiple objectives according to
actual demand. The objectives are set by adding evaluate func-
tions. For example, in order to control the temperature on the
chip while maximizing the performance, we set 4 objectives-
maximizing the overall performance of all cores guarantees
the performance for the whole chip, maximizing the minimum
performance of tasks can avoid any tasks not executed for too
much cycles, minimizing the average temperature of chip and
minimizing the temperature gap between any cores for the
next period can fulfil our temperature goals. The evaluating
functions for the objectives mentioned above are(at ti):

• Maximum the overall performance of chip for next
period:

F1(−→σk) = max−→σk∈Σ
(

m∑
j=1

pti+1,j(
−→σk))

• Maximize the minimum performance of any tasks:

F2(−→σk) = max−→σk∈Σ
( min
16j6m

pti+1,j(
−→σk))

• Minimum the temperature gap between every core for
next period:

F3(−→σk) = min−→σk∈Σ
( max
16j1,j26m

(θti+1,j1(−→σk)−θti+1,j2(−→σk)))

• Minimum the average temperature of chip for next
period:

F4(−→σk) = min−→σk∈Σ
((

m∑
j=1

θti+1,j(
−→σk))/m)

In order to make comparison between different objectives,
we need to normalize all fitness values. One example is using
the linear method as:

fn(−→σk) =
maxσi∈Σ Fn(σi)− Fn(−→σk)

maxσi∈Σ Fn(σi)−minσj∈Σ Fn(σj)
, n 6 o

2) Get Children(): A function generates children from
parents. In the process of GetChildren() we randomly select
two vectors from parents and do crossover and variation. The
higher sum of fitness values is, the larger possibility that the
individual is chosen as parent is. Both two vectors will be split
into 2 parts. We combine the first part from one parent and the
second part from the other parent as crossover, and randomly
exchange some components in the new vector as variation, then
check whether this new child meets our requirement. One child
is acceptable if it satisfies following criteria:

1) No number in child vector appears twice(except -1).
2) Every number appeared in parents should be appeared

in child.
3) It is not the same as parents.



4) It is not the same as its ancestors. We record the
scheduling for the last 5 simulating cycles as ”ances-
tor”. This can avoid migrating tasks into and out of
a core repeatedly.

5) Child is not on the blacklist. We add every ”bad”
scheduling to the blacklist. A scheduling will be in
the blacklist if a new scheduling for the same cores
is still carried out in the following cycle after that.
All record in the blacklist will be removed after 5
simulating cycles. This will avoid wrong migrations
based on to the history knowledge.

If a child is not acceptable, we discard it and do selection,
crossover and variation again. This process will loop until we
find enough children.

3) Select(): A function selecting next generations from
both children and parents. We mainly use NSGA-II to select
the non-dominated set according to Pareto sorting.

Since a trade off among different objectives is expected,
we need to limit those extreme solution in the non-dominated
set. By calculating the variance of fitness values, we can
delete those of which variance exceeded the threshold before
the Pareto sorting. When V ar(f1, ..., fi), i 6 o exceeds the
threshold, this alternative will not be considered.

Then we calculate non-dominated sorting with a toleration
ε. We redefined non-dominated relation ≺ to:

a ≺ b ⇐⇒ ∃i, fi(a) < (fi(b)− ε) ∪ ∀j, fj(a) 6 (fj(b)− ε)

This makes us get a larger non-dominated set with toleration
which brings more choices for us.

The process of Selecting can be described as:

SELECT(Union)

1 for σ ∈ Union
2 do if V ar(sigma) > V arThreshold
3 do Union← (Union− σ)
4 Fronts← NondominatedSort(Union)
5 Σ← ∅
6 FrontL ← ∅
7 for Fronti ∈ Fronts
8 do CrowdingDistanceAssignment(Fronti)
9 if Size(Σ) + Size(Fronti) > s

10 do FrontL ← i
11 else Σ←Merge(Σ, F ronti)
12 if (Size(Σ) < s)
13 do FrontL = SortByRankAndDistance(FrontL)
14 for P1 to Ps−SizeFrontL

15 do Σ← Pi

CrowdingDistanceAssignment calculates the average dis-
tance between individuals of each front on the front itself.
SortByRankAndDistance functions sort individuals first by
rank and then distance within the front.

4) Final Select(): A function selecting the ’best’ scheduling
from the next generation. We use greedy for the rank-sum.
For every alternative we calculate the rank ri of every fitness
values fi compared to other alternative, then we use greedy
algorithms to minimize R:

Fig. 5: Flow Chart of EA Process

R = α1(r1) + ...+ αo(ro),

o∑
i=1

αi = 1

In which the αi are the parameters to control the balance
between different objectives.

Besides, in order to avoid that some tasks are not executed
in too many cycles, we add a parameter hunger for every
tasks. If a task is on a notional core (which means this task
is not executed), we increase hunger of this task. If a task is
on a real core which means this task is running, we decrease
hunger, and hunger > 0. Once the hunger of a task exceeds
the threshold, only those alternatives which run this task on
real cores will be considered.

The flow chart for the EA process is described in Fig. 5.

V. EXPERIMENT RESULTS AND ANALYSIS

By comparing our EA and current algorithms such as
PDTM and ATDTM, from the experiment we can learn that the
EA will benefit because of adaptive parameters, optimization
for heterogeneous and multiple objectives. The frequency of
the chip is 1000MHz, and the simulating period is (100M
machine cycle)100ms, and all the ”cycle” mentioned in the
experiment is the simulating cycle. We use centigrade as



temperature metric, and instruction per cycle(IPC) as the run-
time performance metric.

A. Adaptive vs. Constant

Most current works rely on some manually set parameters
to achieve balance between different objectives. The parame-
ters will be constant once it is set. However, those parameters
are not supposed to be constant. In one case, if the workloads
changes, usually those parameters should fluctuate. A case
study of temperature threshold in [6] shows that temperature
threshold should be run-time adjustive. We compare situations
of PDTM, ATDTM and EA with light workloads and situations
with heavy workloads on the heterogeneous multi-core chip.
PDTM is a non-adaptive algorithm, while ATDTM and EA
are run-time adaptive. We use all the five tasks as the heavy
workloads, and five empty-loop tasks as light workloads. Fig.
6 shows the temperature and IPC of PDTM and EA when
running light workloads. The temperature threshold is set at
60◦, which is the best for the light workloads. Both algorithms
works well during the whole process. The small difference
is that IPC of EA is a little bit lower than PDTM, while
temperature do not raise so fast as that of PDTM.

(a) EA (b) PDTM

Fig. 6: Maximum Temperature and IPC for light workloads

However, the result above is relying on we have a right
temperature threshold. But for different workloads, we may
have different thresholds. Fig. 7 shows the temperature and IPC
of three different algorithms when running heavy workloads
when keeping all the parameters the same.

As we use the same threshold 60◦ for PDTM, which is
too low for the heavy workloads, the algorithm fails since
most of the cores exceed the threshold. In Fig. 7b we can see
that, since the maximum temperature exceeds the threshold
around cycle 40, the IPC drops from 0.7 to around 0.2 as too
frequent and useless migrations have been carried out. In EA’s
case, the migrations will be carried out once EA thinks it has
found out a better alternative, thus there is no strong relation
established between temperature and IPC. The statistical data
for this experiment is shown in TABLE III. From the table, we
can easily find that the IPC for PDTM with heavy workloads
is irregular.

There is more than workloads will cause this problem.
Another case, if the chip is run-time reconfigurable, for PDTM
the parameters have to be reset. Here comes to a conclusion
that adaptive parameters, instead of manually set constants,

can keep the algorithms working when running fluctuate
workloads.

(a) EA (b) PDTM

Fig. 7: Maximum Temperature and IPC for heavy workloads

Algorithms light workloads heavy workloads
Aver. Temp IPC Aver. Temp IPC

PDTM 50.7◦ 0.75 67.3◦ 0.29
EA 48.9◦ 0.72 61.9◦ 0.61

TABLE III: Statistical Data for Different workloads

B. Heterogeneous vs. Homogeneous

For a heterogeneous system, migrating tasks to a wrong
core may cause huge lose which should have been avoided.
However currently there is not any temperature management
algorithms for heterogeneous systems. Existing researches are
mainly based on homogeneous systems. These algorithms may
have problems when used on a heterogeneous system. In EA,
we avoid wrong migrations by setting those alternatives as an
unacceptable child.

We compare EA and ATDTM on the homogeneous archi-
tecture Arch. I and the heterogeneous architecture Arch. II.
The workload set is the same, which contains all 5 tasks. By
adjusting parameter in the process FinalSelect() of EA, we
make EA have the same average maximum temperature around
70◦ as ATDTM does.

The TABLE IV shows the total executed instructions per
running core. Because EA need some cycles to converge, the
performance for EA is not good at the beginning of execution.
On the homogeneous chip, EA and ATDTM is very close,
with only 0.2% difference on cycle 100(10 seconds). But for a
heterogeneous chip, EA have about 7% performance lift when
some simple techniques are used. We can draw a conclusion
that it is worthy to optimize the scheduling algorithms aiming
to heterogeneous architecture.

Arch. Algorithm executed inst.(billion)
cycle 20 cycle 40 cycle 60 cycle 80 cycle 100

Homo- EA 11.49 23.28 36.98 49.73 62.77
ATDTM 11.52 23.35 37.23 50.16 62.67

Speed-up 97.9% 99.7% 99.07% 99.2% 100.2%

Heter- EA 11.65 24.08 39.98 53.51 67.42
ATDTM 11.55 23.47 37.35 50.29 62.84

Speed-up 100.8% 102.6% 107.0% 106.4% 107.3%

TABLE IV: Statistical Data for Different Architectures



C. Multi-objective vs. Single-objective

Temperature management is a multi-objective problem, at
least it contained objectives of temperature and performance.
However, for a multi-core system it usually has more ob-
jectives, such as average temperature, maximum temperature
and temperature gap between every core. All objective are
important to ensure the reliability of the chip. But current
algorithms usually is not multi-objective. They usually use
linear weighting method to convert the problem of multi-
objective optimization into a single-objective one. There are
some drawbacks for this method: first, it requires manually
set weights for every objective, which is difficult because
it requires consistent normalization despite run-time features
such as changing workloads and preferences. Second, it works
worse when there are more objectives. We convert ATDTM
into a multi-objective version by using linear weighting method
that is the same as FinalSelect() in EA. Then we compare
ATDTM with EA under multiple objectives. The objectives in
the experiments are:

• Obj. 1: Maximize IPC.

• Obj. 2: Minimize maximum temperature of the chip.

• Obj. 3: Minimize temperature gap between different
cores in the chip.

By adjusting the weights in ATDTM, we keep the average IPC
of EA and ATDTM the same at 0.61, and set the same weight
for both Obj. 2 and Obj.3. The result for Obj. 2 and Obj. 3 is
described below.

1) Maximum Temperature: Fig. 8 shows the maximum
temperature of the chip under ATDTM and EA. Although EA
is not obviously more advanced than ATDTM in the beginning
several cycles, the maximum temperature of EA is always
lower than that of ATDTM after approximately 40 cycles. That
is because EA needs some cycles to converge, and during that
process, the performance of EA usually is low. On the average,
the Maximum temperature of EA is sightly lower than that in
ATDTM, which is 2◦(EA is 58.54◦ while ATDTM is 60.03◦).

Fig. 8: Maximum Temperature for Different Algorithms

2) Temperature Gap: Fig. 8 shows the maximum and
minimum temperature of the chip under ATDTM and EA. Both
two algorithm begin migrating at around 5 cycle, but EA will
decrease the temperature gap sharply after around 40 cycles.
Although the temperature gap of ATDTM is also under control,
but on average, the temperature gap of EA is around 9.52◦

while that for ATDTM is 12.74◦. That is because although

ATDTM take temperature gap as one of the objectives, the
importance of that temperature gap can be lost during the
process of converting the multi-objective optimization to single
objective one. As a comparison, although EA also have the
same process of conversion in the process of FinalSelect(),
but those unsatisfactory alternative already have been discarded
during the evolutionary process. Another reason is that al-
though the threshold of ATDTM is adaptive, but it requite
some cycles for ATDTM to find the suitable threshold. When
the features of the workloads fluctuate, the performance of
ATDTM will soon decrease.

(a) ATDTM (b) EA

Fig. 9: Max. and Min. Temperature for Different Algorithms

3) Pareto Front: By adjusting the weight we can get the
Pareto front of Obj. 2 and Obj. 3. The TABLE V shows the
results of 5 set of experiments.

Weight(Obj.2: Obj.3) 1:0 2:1 1:1 1:2 0:1

EA Aver. Max. Temp. 57.77 58.21 58.54 59.53 63.34
Aver. Temp. Gap 17.07 12.03 9.52 7.3 4.5

ATDTM Aver. Max. Temp. 58.25 59.38 60.03 60.11 63.48
Aver. Temp. Gap 18.11 14.32 12.74 10.54 4.9

TABLE V: Statistical Data for Different Weights

Fig. 10: The Pareto Front for Obj. 2 & Obj. 3

The Fig. 10 is the Pareto front, we can find that at weights
1:0 and 0:1(which reduce the problem into 2 objectives), The
results of ATDTM and EA are very close to each other,
while ATDTM behave poorest near weights 1:1. That is
because actually ATDTM does not work well under multi-
objective situation. Although we use linear weighting method
to convert the problem into a single-objective one, performance
of ATDTM still decreases when objectives are added. Here we
come to the conclusion that current algorithms cannot work
well when multiple objectives are required.



VI. CONCLUSION AND FUTURE WORKS

In our research we build a platform to simulate run-time
scheduling problems. Our chip simulator can generate run-time
data includes temperature, performance and power consump-
tions. By providing an online multi-objective evolutionary
scheduler, it shows that current algorithms such as PDTM
and ATDTM have weaknesses because they require manually
set constant parameters, do not account for heterogeneous
architecture and are single-objective methods. Our scheduler
does not have any parameter related to workloads, so without
changing any parameters, EAs can still work well while the
performance of PDTM drops seriously (IPC drops from 0.7 to
0.2) because of the unsuitable parameters. Using techniques
such as child blacklisting in the EA, in the experiment we
find that the EA can work better( 7% improvement on IPC)
than ATDTM on a heterogeneous architecture. Also our EA
uses a multi-objective method, rather than converting the multi-
objective problem into a single-objective one. The experiment
shows that the EA can gain a better Pareto front than ATDTM
does.

In our future works we mainly want to provide a sched-
uler suitable for any workloads, architectures, many-core and
reconfigurable system. That can be divided into three sections:

•Convert multi-objective EA into a dynamic one. Schedul-
ing problems on heterogeneous multi-core FPGAs can also
be formulated as dynamic multi-objective optimization prob-
lems (DMOPs). A few studies have addressed EA for
DMOPs, such as dynamic orthogonal multi-objective EA[22]
and competitive-cooperative coevolutionary algorithms for
DMOPs[23]. We can use some existing EAs to solve DMOPs.

•Optimize our scheduler for the reconfigurable system.
Reconfigurable FPGA allows chip to change architecture
run-time, which will bring even lager challenge to current
scheduling algorithms. However, EA can achieve this easily
by formulating reconfigure problem as a dynamic problem.

•Do experiment on many-core system. By setting suitable
size of population and times of iteration we can reduce the
calculated amount compared with current greedy or greedy-
like algorithms.
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