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Abstract—A critical source of information in automated trad-
ing is provided by market data feeds from financial exchanges.
Two identical feeds, known as the A and B feeds, are used
in reducing message loss. This paper presents a reconfigurable
acceleration approach to A/B arbitration, operating at the net-
work level, and supporting any messaging protocol. The key
challenges are: providing efficient, low latency operations; sup-
porting any market data protocol; and meeting the requirements
of downstream applications. To facilitate a range of downstream
applications, one windowing mode prioritising low latency, and
three dynamically configurable windowing methods prioritising
high reliability are provided. We implement a new low latency,
high throughput architecture and compare the performance of
the NASDAQ TotalView-ITCH, OPRA and ARCA market data
feed protocols using a Xilinx Virtex-6 FPGA. The most resource
intensive protocol, TotalView-ITCH, is also implemented in a
Xilinx Virtex-5 FPGA within a network interface card. We
offer latencies 10 times lower than an FPGA-based commercial
design and 4.1 times lower than the hardware-accelerated IBM
PowerEN processor, with throughputs more than double the
required 10Gbps line rate.

I. INTRODUCTION

Market data feeds are used by financial exchanges to
provide updates about changes in the market. Messages are
multicast to members and describe market events such as avail-
able and completed trades. Members, i.e., financial institutions,
utilise these feeds in a number of applications to determine the
current state of the market and the institution’s risk, searching
for time-critical arbitrage opportunities, and as triggers for
trades within algorithmic trading platforms.

The latter two applications require time-sensitive decisions
to be made based on the input data, often by analysing patterns
within the data. This decision making is a critical element
for electronic trading, so it is vital messages are received and
presented in the correct order. Failure to do so will result in
the loss of profit-generating opportunities, provide competitors
with an advantage, and create a false image of the current state
of the market, increasing risk.

Much work has been done demonstrating the benefit
of hardware over software when performing this task. The
general-purpose architectures of CPU systems separate data
acquisition and data processing, leading to latency penalties
when processing external data. This disparity provides an
opportunity for hardware acceleration of time sensitive pro-
cessing before the resultant data is passed to the CPU.

In this work we outline a low-latency hardware archi-
tecture able to perform market data feed arbitration for any

given messaging protocol. Dynamically configurable window-
ing methods are provided so downstream applications can alter
the arbitrator to respond to their realtime requirements. The
critical path and performance of the arbitrator changes with
the market protocol used and so provides an ideal platform
for the exploration of high performance, low latency designs.
The contributions of our work are:

- The first hardware accelerated, low latency A/B line
arbitrator to run two packet windowing modes si-
multaneously. It supports three dynamic windowing
methods, any market data protocol, independent mem-
ory allocation per input, and configurable data-path
widths.

- Implementation of A/B line arbitration using the NAS-
DAQ TotalView-ITCH [1], OPRA [2] and ARCA [3]
market data feed protocols in a Xilinx Virtex-6 FPGA.
TotalView-ITCH is also implemented on a Xilinx
Virtex-5 FPGA within a network interface card.

- Evaluation and performance measurements for the
TotalView-ITCH, OPRA and ARCA protocols.

In our previous work [4] we looked at fitting multiple
basic A/B line arbitrators into a single FPGA, but with only
a single arbitration mode we limited the range of downstream
applications we could support. This is addressed in this work
with the use of three high reliability modes, one of which
can be output simultaneously with a new low latency focused
windowing method.

II. BACKGROUND AND MOTIVATION

Financial institutions subscribe to both the A and B feeds,
traditionally arbitrating between the two feeds in software to
provide a single message stream for processing by financial
applications. The pipelined and parallel nature of this task is
ideally suited to low latency hardware acceleration. However,
A/B arbitration is rarely addressed, and its importance will
only grow in the future as line rates increase and financial
exchanges continue to process an ever growing number of
messages. Since exchanges send multiple messages per packet
using multicast UDP, any error during transmission will result
in the loss of all packet messages. More packets processed
every second means more messages bundled together into each
packet, increasing its informational value and the chance that
it will contain a bit error and be lost.

Mechanisms are in place to retransmit lost packets, but in
the time taken to request and receive it, any time-sensitive
opportunities will be lost. A/B line arbitration is the only



method that can compensate for missing packets within an
acceptable time frame. Allowing each application to set this
time frame themselves is a key factor in its successful operation
and our proposed design.

Morris [5] uses a Celoxica board to process financial
messages, achieving a 3.5M messages per second throughput
and hardware latency of 4µs. Their trading platform is one
of the few including line arbitration, but no details of its
performance are given. It uses a single, simple windowing
system similar to the high reliability count mode in this work
and only supports the OPRA FAST format. The windowing
thresholds are not discussed and cannot be changed.

Most stand-alone A/B arbitrators are commercial and their
implementation details are usually not presented. They tend to
operate within a network interface card (NIC) and communi-
cate with the host via PCI Express.

One such arbitrator from Solarflare [6] uses an Altera
Stratix V FPGA. It supports either a low latency mode or a
maximum reliability mode; the latter being similar to the high
reliability time & count mode in this work. Multiple message
protocols are supported, but no processing latency figures
are available. Another platform from Enyx [7], also using
the Altera Stratix V, does not give any details regarding the
windowing method used or possible configuration options. It
is non-deterministic, with packet processing latencies ranging
from 1050 − 3080ns based on 1500 byte packets. Some
protocols, like TotalView-ITCH 4.1, specify 9000 byte packets
must be supported, so it is unclear how this latency will scale
with larger packets.

Recently, a number of FPGA based feed processors have
been proposed. The majority do not mention A/B line arbitra-
tion, such as the OPRA FAST feed decoder from Leber [8],
and the NASDAQ data feed handler by Pottathuparambil [9].
Other works describe, but do not implement, arbitration, like
the high-frequency trading IP library from Lockwood [10].
This is a strange omission since line arbitration is an integral
part of message feed processing as it increases the amount of
available information and actively prevents message loss.

Platforms incorporating some aspects of feed processing
and trading within an FPGA are limited in the range of
functions they provide, making it difficult to customise desired
features. The flexibility to support applications with different
data requirements and different time scales is not present in
past works. Single trading platforms are therefore unlikely to
be deployed within financial organisations unless the design
features exactly meet the needs of the organisation, including
the market data feed protocol used.

III. ACCELERATING A/B LINE ARBITRATION

Messages from financial exchanges are transmitted via
identical A and B data streams. Due to network infrastructure
differences, or errors during transmission, messages may fail
to arrive, or may be reordered. By subscribing to both streams,
members reduce the likelihood of message loss, but must now
merge and order the two streams. This is facilitated by unique
identifiers within each message, typically taking the form of
an incrementing sequence number.

Fig. 1. The layout of our A/B line arbitration design.

Uncertainty regarding the presence and order of messages
on the A and B streams give rise to four possibilities. A
message may: (1) arrive on both streams; (2) be missing from
one stream; (3) be missing from both streams; or (4) arrive out-
of-order. For the first and second cases we should pass through
the earliest message we encounter, and have no expectation of
seeing it again. However, the third and fourth cases illustrate
the need for an expectation regarding future messages. We
require a centralised system to monitor the streams and share
state information

It is important to distinguish between market data messages
and packets. Exchanges send UDP packets containing one or
more messages. This can be viewed as a continuous block
of messages, all correctly ordered by sequence number, with
no missing messages. When a packet is missing we are in fact
dealing with a block of missing messages. This means packets,
rather than messages, are the smallest unit of data we process
and store.

Figure 1 gives our design layout, showing the high re-
liability and low latency modes. The windowing module
supports three high reliability modes of operation, for which
the windowing thresholds can be set at runtime. An operator
or monitoring function can adjust these thresholds to meet
application or data feed requirements.

A. High Reliability Modes

When we encounter a packet with a sequence number
larger than the next expected sequence number, it has arrived
out of order. The missing packet, or packets, may be late, or
never arrive. A high reliability mode stores these early packets
and waits for the missing packets, stalling the output.

We decide how long to wait for missing packets using a
windowing system, based on either: the amount of time we
have stalled the output, the number of messages delayed, or a
hybrid of both time and message count. Within this window
we store new packets while waiting for the missing packets.
Whatever system used, we must ensure not to delay a valid,
expected packet as this is the most likely case.

Count-based windowing is used by [5], time & count by
[6], while [7] does not detail its windowing approach. This
is the first work to: support all three methods, provide low



Fig. 2. High reliability time example. Fig. 3. High reliability count example. Fig. 4. High reliability time & count example.

latency, application-specific parametrisation, and output a high
reliability and low latency stream simultaneously.

High reliability - time: A time-based windowing approach is
good when we want to set a hard limit on possible delays and
define the maximum processing time of packets.

When we delay a packet, P , we assign it a timeout value,
T , the maximum number of clock cycles we will delay it. T
is decremented each clock cycle, and when it reaches zero we
discard any missing packets and output P . An example with
a single input is given in Figure 2, where packet P2 is late,
but arrives before P3’s timeout reaches zero and is able to be
output. P7, however, is too late, so the delayed packets P8 and
P9 are output, and P7 is discarded.

Assigning the maximum timeout value to a packet then
decrementing it is a more beneficial than incrementing from
zero. The timeout check is then simply a zero equality check,
and the number of remaining cycles may be used to predict
this condition and pre-compute future data values, such as the
expected number of buffered messages in the next cycle.

High reliability - count: Time-based windowing sets a
packet timeout regardless of how many messages it contains.
Counting delayed messages—not packets—more accurately
represents processing delay, as the number of messages per
packet varies during the day. This time-independent approach
better matches the pace of incoming data.

We output a delayed packet when either: the missing packet
or packets arrive, or the number of stored messages exceeds
the maximum-count threshold. Two examples of this are shown
in Figure 3’s single input example. Packet P3 arrives before
we exceed maximum-count = 2 buffered messages, so P3 and
the stored packets P4 and P5 are output. Packet P7 does not
arrive, so when we receive P10 and there are now more than
maximum-count = 2 messages buffered, we discard P7 and
output the stored packets in order.

One issue with count-based windowing occurs at the end
of the day. With no more input packets to process, we cannot
output stored packets. This windowing is used in [5], but
residual packets are not addressed. It is solved in this work
either by use of the hybrid time & count method’s time limit,
or by dynamically altering the maximum-count threshold.

High reliability - time & count: Combining the time and
count based high modes provides the most robust solution
for processing out-of-order packets. We can utilise the count
threshold’s time-independent ability to follow the incoming
packet rate as it fluctuates during the day, whilst still allowing
an upper limit on delay times.

In Figure 4’s single input example, both the time and count
windowing thresholds are used to determine if a stored packet
should be output. Packet P4 takes too long to arrive, therefore

exceeding P5’s timeout and resulting in P4 being discarded.
Later, P8 is also late, but whilst waiting for P9’s timeout, the
number of buffered messages exceeds maximum-count = 2,
and P8 is discarded.

B. Low Latency Mode

The singular arbitration mode in our base design [4] lacked
the ability to reduce arbitration to its simplest, fastest form:
outputting a stream of unique, ordered packets. We present it
in this work as the low latency mode.

We treat an input packet as valid based solely on whether
its sequence number is larger than or equal to the next
expected sequence number. We do not wait for missing packets
and hence, do not require resources for packet storage, and
minimise transmission latencies.

The Ethernet, IP and UDP packet headers pose a problem
when trying to minimise the arbitration latency. The packet’s
sequence number is only visible after we process these headers,
which may take a number of cycles. We solve this by assuming
a packet is valid and immediately output it. When we encounter
the sequence number and it is not valid—i.e., less than the
next expected sequence number—we register an output error,
causing the packet to be discarded.

Similarly, when packets arrive on both input streams simul-
taneously, we must make the choice of which packet we should
output without any information on either packet’s contents.
There is no method that can guarantee a priori which stream
to select, so we instead select the last stream on which we
encountered a valid packet.

With these simple operations we reduce arbitration to a
single cycle. The single arbitration mode in [4] took 7 cycles
meaning, with our new arbitrator design, applications can
receive an arbitrated stream of packets 7 times faster if they
are able to accommodate missing packets. Also, as it does not
require many resources, we can output the low latency mode
simultaneously with our high reliability mode.

C. Network-level Operation

When processing at the network-level, rather than within a
computing node, we must take an active role in routing non-
market data packets. Even within a dedicated market data feed
network, routers and NICs will transmit information requests to
other nodes. We must reserve FPGA resources to route these
non-market feed packets. Network identification packets are
typically only hundreds of bits, requiring little storage space,
and are processed at the lowest possible priority to minimise
interference with market packets.

Past works [5], [6] and [7] focus on processing market data
feeds on FPGAs situated within computing nodes rather than at



the network-level. Data is then passed to the CPU or GPU via
low latency DMA transfers. This scales poorly if further nodes
are needed as each will need an FPGA for data feed processing.
Our packet-based, network-level arbitrator consolidates the
node-independent arbitration operations. Only the low latency
DMA transfers need be implemented within nodes to create
a newly scalable system with the same functionality as past
works.

D. Customisation and Extensibility

As our arbitrator deals with the initial stages of storing,
processing and identifying market feed packets and messages,
it is a simple matter to extend our system to provide additional
functionality within the FPGA. We support:

- Runtime configurable windowing thresholds.

- Any physical connection for input and output ports.

- The size and number of both market and non-market
packets stored can be configured at compile time.

- Any market data feed protocol can be adopted, not
just those of TotalView-ITCH, OPRA and ARCA.

IV. IMPLEMENTATION

We verify our proposed design and low latency archi-
tecture by implementing an A/B line arbitrator for each of
the TotalView-ITCH, OPRA and ARCA market data feed
protocols. For each protocol we require knowledge of the
maximum packet size, the sequence number width and the
byte position of the sequence number in the packet. This is
determined by their specifications, and is given in Table I.

To reduce latency we make use of a wide 128-bit data-path,
double the 64-bit width commonly used—as 64-bit multiplied
by the 156.25MHz reference frequency = 10Gbps. This can
negatively affect the routing delay, but with our low latency
architecture we achieve latencies an order of magnitude lower
than [7] while maintaining at least 20Gbps throughput, twice
that of the 10Gbps Ethernet line rate.

TABLE I. PACKET PROTOCOL SPECIFICATIONS.

Protocol Max Packet Size Sequence Number
Width Position

ITCH 9000 bytes 64 bits 53
OPRA 1000 bytes 31 bits 47
ARCA 1400 bytes 32 bits 46

We verify and test our design in two ways. First, we
implement an arbitrator for each of our chosen protocols within
a Xilinx Virtex-6 LX365T FPGA on an Alpha Data ADM-
XRC-6T1 card. As our processing rate is greater than the
10Gbit Ethernet connections used by each protocol, we transfer
data via PCI Express. We configure each arbitrator for their
respective protocols according to the values from Table I.

Second, we implement our design on a Xilinx Virtex-
5 LX330T FPGA within an iD ID-XV5-PE20G network
interface card. This card receives a duplicated data feed over
two 10Gbit Ethernet connections. The high reliability and low

Fig. 5. The layout of our arbitrator module within the FPGA.

latency outputs are transmitted to the host via PCI Express,
with the layout given in Figure 5. We also allow for additional
user logic within the FPGA. The TotalView-ITCH protocol is
used to test our real world design as it is the most resource and
processing intensive, and messages from 9 September 2012 are
used to test the system.

OPRA and ARCA operate on top of UDP, while TotalView-
ITCH uses a UDP variant called moldUDP64 [11]. Our design
stores 8 packets, each with sufficient space for the Ethernet (14
bytes), IP (20 bytes) and UDP (8 bytes) headers, as well as
the packet payloads from Table I.

V. RESULTS

Sequence number comparisons are a source of our critical
path, so reducing the width of sequence numbers will lower our
routing delay and latency. Our Virtex-6 implementation found
TotalView-ITCH, with its 64-bit sequence numbers achieved
a single cycle latency of 6ns, whereas the OPRA and ARCA
both achieved 5.25ns with sequence number widths half that
of TotalView-ITCH. This suggests that artificially truncating
the sequence numbers of packets can benefit arbitration, at the
cost of additional logic to deal with packets that straddle the
new sequence number boundary.

TotalView-ITCH’s 6ns latency results in a 166MHz FPGA
design with 21.3Gbps throughput, while OPRA and ARCA’s
5.25ns latency means a 190MHz design and 24.3Gbps
throughput. With financial markets making greater use of
higher throughput connections, our design will be well placed
to capitalised on this increased throughput capacity. Indeed,
the TotalView-ITCH message feed is already available via both
10Gbps and 40Gbps connections.

TotalView-ITCH’s requirement for 9000 byte packets is
multiple times that of OPRA (1000 bytes) or ARCA (1400
bytes). Figures 6 and 7 show its resource usage does not
increase in proportion to this requirement, mainly due to
buffering host communications. Buffering plays a larger role
in our network interface card design as we implement two
bi-directional 10Gbit Ethernet connections. Its operation is
therefore an important test of real world performance.

From analysing the messages from our real world imple-
mentation, within which we process TotalView-ITCH mes-
sages from two redundant 10Gbps Ethernet links, we find
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we process about 322 million messages throughout the day.
This would require 29 bits for message sequence numbers,
demonstrating that we can safely truncate TotalView-ITCH
messages without affecting performance.

The real world implementation also allows us to verify
the latency of our two arbitration modes. By inspecting the
packets on the host after they have been arbitrated we can
easily read out the number of cycles it took for each packet
to be processed. For the high reliability mode we find it takes
7 cycles to process expected packets, i.e., packets not needing
to be buffered. For the low latency mode we find packets are
processed in 1 cycle.

We now measure our new arbitrator design against our
basic design from previous work [4]. The new design now
supports three high reliability windowing methods and simul-
taneously outputs a low latency mode with a single clock cycle
latency. In high reliability mode, our new design achieves
a 42ns latency for the resource intensive TotalView-ITCH
protocol, and 36.75ns for OPRA and ARCA. The previous
design achieved only a 56ns latency for all packet protocols.
In low latency mode, our new design supports latencies of 6ns
for TotalView-ITCH and 5.25ns for OPRA and ARCA. This
mode is not available in previous work.

Finally, we compare a software arbitrator using the cutting-
edge IBM PowerEN processor [12], with out-of-order packets
stored in L2 cache and using a time-based windowing mech-
anism similar to the high reliability time mode in this work.
Arbitration is performed using only the OPRA protocol and
takes 150ns compared to 36.75ns in our design. Thus, our
design achieves a 4.1 times lower latency.

VI. CONCLUSION

In this paper we outline an A/B line arbitrator for market
data feeds that helps to mitigate the impact of missing packets
on time-critical financial applications. Our scheme provides a
high-reliability and low-latency mode simultaneously, supports
three windowing methods, and is customisable for other pro-
tocols, and varying packet sizes and numbers.

We outline an architecture, and provide implementations
for the TotalView-ITCH, OPRA and ARCA protocols on a
Xilinx Virtex-6 FPGA. For testing with real market data, we
also create a TotalView-ITCH implementation on a network
card equipped with a Virtex-5 device. Compared to our past
work [4] where the design had a latency of 56ns regardless of
the protocol, we now achieve 42ns for TotalView-ITCH and
36.75ns for OPRA and ARCA using the same target device.
The new low-latency mode reduces arbitration to a single
cycles and supports latencies of only 6ns and 5.25ns respec-
tively. We offer latencies 10 times lower than an FPGA-based
commercial design and 4.1 times lower than the hardware-
accelerated IBM PowerEN processor, with throughputs more
than double that of the specified 10Gbps line rate.
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