
The Handbook of Engineering Self-Aware and
Self-Expressive Systems

Tao Chen1, Funmilade Faniyi1, Rami Bahsoon1, Peter R. Lewis2,
Xin Yao1, Leandro L. Minku1, and Lukas Esterle3

1University of Birmigham, UK
2Aston University, Birmigham, UK

3Alpen-Adria Universität Klagenfurt, Austria

5 September 2014

Acknowledgement

This work was partially supported by the European Union Seventh Framework
Programme under grant agreement 257906 (EPiCS).

> Logo-Variante 01| Wort- und Bildmarke

Farbige Umsetzung

Umsetzung in Graustufen

Umsetzung in Schwarz

1

Contents

Chapter 1 Patterns for Self-aware Architecture Style 4
1.1 Definition of Self-awareness . 6

1.1.1 Private and Public Self-awareness 6
1.1.2 Levels of Self-awareness 7

1.2 Definition of Self-expression . 8
1.3 Basic Pattern . 9
1.4 Basic Information Sharing Pattern 10
1.5 Coordinated Decision-making Pattern 12
1.6 Temporal Knowledge Sharing Pattern 14
1.7 Temporal Knowledge Aware Pattern 15
1.8 Goal Sharing Pattern . 17
1.9 Temporal Goal Aware Pattern . 20
1.10 Meta-self-awareness and Self-aware Patterns 22

Chapter 2 Architectural Primitives for Self-aware Systems 24
2.1 Architectural Primitives and Candidate Techniques 25

2.1.1 Capability . 26
2.1.2 Behaviour . 26
2.1.3 Interaction . 26
2.1.4 Topology . 26

2.2 The Dependency . 30
Chapter 3 Pattern Driven Methodology for Engineering Self-
aware and Self-expressive Systems 31

3.1 The Methodology Overview . 31
3.1.1 Step 1 - Collect Requirements and Constraints 32
3.1.2 Step 2 - Propose Candidate Architecture 33
3.1.3 Step 3 - Select the Best Pattern(s) 33
3.1.4 Step 4 - Fit the Selected Pattern(s) 35
3.1.5 Step 5 - Determine the Important Primitives and the Pos-

sible Alternatives for Non-functional Requirements 35
3.1.6 Step 6 - Create Scenarios 36
3.1.7 Step 7 - Score the Alternative of Primitives Against each

Non-functional Attribute using Analytical or Simulation
Models . 36

3.1.8 Step 8 - Find the Best Alternatives for the Final Archi-
tecture View . 38

2

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

3.2 Qualitative and Quantitative Evaluation 38
3.2.1 Cloud Autoscaling Case Study 38
3.2.2 Smart Camera Networks Case Study 65

Chapter 1

Patterns for Self-aware
Architecture Style

During previous Task 2.1, we have developed the notions of self-expression and
different levels of computational self-awareness, inspired by corresponding psy-
chological levels. In the context of architecture, we refer to the self-expression
and different levels of computational self-awareness as capability of the systems
to obtain and react upon certain knowledge. In this report, we study the cate-
gorisation of different capabilities from the architecture perspective; this could
create the possibility to ensure that, when designing self-aware systems, only
relevant capabilities are included, and their inclusion justified by identified ben-
efits. There is no need for a system to become unnecessarily complex, learning
and maintaining capabilities which do nothing to advance the outcomes for that
system, generating only overhead. We have codified the knowledge about how
to architecture self-aware applications in the form of architecture patterns, each
contains different capabilities. In this task, an architecture pattern refers to an
architectural problem-solution pair using the capabilities in a given context. We
have elicited some patterns, where each pattern is decentralised by design. That
is, structurally our self-aware patterns resemble a peer-to-peer network of inter-
connecting self-aware nodes, varying only in the number of the capabilities and
the type of interconnection between them.

Until recently, architecture patterns for self-adaptive systems have received
little attention [19]. Many existing patterns target specific application domains
[15], limiting their reuse outside the domains where they were originally con-
ceived. Weyns et al. [19] argued that UML notations are limited in their ability
to characterise self-adaptive architecture patterns, hence they proposed a sim-
ple, generic notation for describing patterns for Monitor-Analyse-Plan-Execute
(MAPE) architecture style. Our patterns are distinct in focus from Weyns’ in
the sense that while we model self-aware capability and knowledge concerns in
the architecture, their attention was about MAPE component interaction.

We adopt a pattern notation, similar to the one in [19] for describing our

4

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

self-aware patterns. Firstly, Weyns’s notation [19] is simple and easy to com-
prehend. Secondly, we believe describing our self-aware patterns using existing
notation in the self-adaptive community makes our work accessible to other re-
searchers and paves the way for others to build on our work. Existing work
on architecture patterns focus on modelling the components and connectors
of architecture; in such context, components are specialisations of modules in
the architecture and therefore have attributes and operations, but are also as-
sociated with the provide and required interfaces; and connectors could be the
assembly that connects the required interface of one component to the provided
interface of the second, or they could be the delegation that links the ports of a
component to its internal parts. In our self-aware patterns, instead of modelling
components, we model the capabilities of self-awareness and self-expression (e.g.,
stimulus awareness) in the architecture. In this way, our patterns preserve the
flexibility for the concrete architectural implementation; since whether two or
more capabilities are combined and realised in one component; or one capability
is implemented in separate components could be based on the context. On the
other hand, the connectors in our patterns are based on the standard definition
but they are associated with capability rather than component. Although the
capabilities of patterns are designed in a flexible manner, it is important that
the interactions amongst these capabilities should not be violated when realising
the pattern. For instance, one should not realise a direct interaction between a
sensor and an actuator if it is not presented in a pattern. The pattern notation
is depicted in figure 1.1.

Two types of connectors are used to express the logical and physical inter-
actions. The logical connector is used to express intra-capability interaction,
which is applied to capabilities of the same type across different nodes. This
connector is not required to have physical interaction directly. For instance,
Self-expression might be logically required to reach consensus amongst different
nodes, but such interaction is physically realised through Sensors and Actuators.
Physical connector is used for inter-capability interaction, which is applied to
the linkage between capabilities of different types. This kind of interaction does
require to physically send/receive data or control flow. In particular, physical
interactions between different levels of awareness are expressed by red arrows.

There are three types of multiplicity operators (mul_op). The multiplicity
operator asterisk, *, expresses that the number of capability of the same type
in the interaction is restricted to at least one; 1 indicates that one and only one
capability of the same type is permitted; 0 indicates that zero, one or many of
the type specified is permitted in the interaction. It is worth noting that when
the operator is 0, it means that the associated interaction can be removed but
does not represent that the corresponding capability can be eliminated. In case
a capability is interact with itself, e.g., a * on both sides of the intra-capability
arrow of a capability means that it can interact with the same capability im-
plemented in other nodes. To better clarify the operators, suppose that there is
a physical interaction between stimulus awareness and external sensors where
the stimulus awareness is associated with 1 whereas the external sensors is as-
sociated *. This means that within the interaction, the stimulus awareness can

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Physical connector

self-aware

capability

Mul_Op Mul_Op

Logical connector

Mul_Op: *, 1, or 0

Capability of a self-aware node are:
I.S. – internal sensor, I.A. – internal actuator

E.S. – external sensor, E.A. – external actuator

S.E. – self-expression, In. A. – interaction awareness

T.A. – time-awareness, G.A. – goal-awareness

M.S.A – meta-self-awareness

S.A – stimulus-awareness

Physical connector (between

different level of awareness)

Figure 1.1: Notation for Describing Self-aware Architecture Pattern

only have one whereas the number of external sensors presented in the interac-
tion needs to be one or many. Other multiplicity arrangements can be similarly
interpreted. We document our patterns using standard pattern template [6] as
follows.

• Problem/Motivation: A scenario where the pattern is applicable

• Solution: A representation of the said pattern in a graphical form

• Consequences: A narration of the outcome of applying the pattern

• Example: Instance of the pattern in real applications or systems

Next, we present the definition of different self-awareness and self-expression
capabilities.

1.1 Definition of Self-awareness

1.1.1 Private and Public Self-awareness
The sources of the relevant knowledge (i.e. internal or external sensors) for a
node, underlie the notion of private and private self-awareness.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

1. Private self-awareness: This concerns with a node possessing knowl-
edge of and/or based on phenomena that are internal to itself.

2. Public self-awareness: This concerns with a node possessing knowledge
of phenomena external to itself. Such knowledge grounds meaning (e.g. in
the form of models) to the node’s own perspective on phenomena external
to itself, i.e. it is subjective to the node. This subjectivity is what underlies
the notion of self.

1.1.2 Levels of Self-awareness
Described below are the levels of self-awareness, along with their relevance to
either public or private self-awareness or both.

1. Stimulus-aware
A node is stimulus-aware if it has knowledge of stimuli. The node is not
able to distinguish between the sources of stimuli. It does not have knowl-
edge of past/future stimuli. It enables the ability in a node to respond
to events. It is a prerequisite for all other levels of self-awareness. Since
stimuli may originate both internally and externally, stimulus-awareness
can either be private, public or both.

2. Interaction-aware
A node is interaction-aware if it has knowledge that stimuli and its own
actions form part of interactions with other nodes and the environment.
It has knowledge via feedback loops that its actions can provoke, gener-
ate or cause specific reactions from the social or physical environment.
It enables a node to distinguish between other nodes and environments.
Simple interaction-awareness may just enable a node to reason about in-
dividual interactions. More advanced interaction-awareness may involve
the node possessing knowledge of social structures such as communities
or network topology. Interaction-awareness is typically based on exter-
nal phenomena, whereby it is therefore a form of public self-awareness,
however one can also envisage a system which learns about the effects of
internal interactions with itself, which would constitute a form of private
self-awareness.

3. Time-aware
A node is time-aware if it has knowledge of historical and/or likely future
phenomena. Implementing time-awareness may involve the node possess-
ing an explicit memory, capabilities of time series modelling and/or an-
ticipation. Since time-awareness can apply to both internal and external
phenomena, it can either be private, public or both.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

4. Goal-aware
A node is goal-aware if it has knowledge of current goals, objectives, pref-
erences and constraints. It is important to note that there is a difference
between a goal existing implicitly in the design of a node, and the node
having knowledge of that goal in such a way that it can reason about it.
The former does not describe goal-awareness; the latter does. Example
implementations of such knowledge in a node include state based goals
(i.e. knowing what is a goal state and what is not) and utility based
goals (i.e. having a utility or objective function). Goal-awareness permits
acknowledgement of and adaptation to changes in goals. When coupled
with interaction-awareness or time-awareness, goal-awareness permits the
ability to reason about goals in relation to other nodes, or about likely
future goals, respectively. Since goals may exist privately to the node,
or collectively as a shared or externally imposed goal, goal-awareness can
either be private, public or both.

5. Meta-self-aware
A node is meta-self-aware if it has knowledge of its own level(s) of aware-
ness and the degree of complexity with which the level(s) are exercised.
Such awareness permits a node to reason about the benefits and costs of
maintaining a certain level of awareness (and degree of complexity with
which it exercises this level). It further allows the node to adapt the way
in which the level(s) of self-awareness are realised (e.g. by changing al-
gorithms realising the level(s), thus changing the degree of complexity of
realisation of the level(s)). As an example, this awareness may involve a
node being able to dynamically select a particular technique out of a set
of possibilities for realising one or more levels, in order to meet or manage
trade-off between its goals or objectives. Since meta-self-awareness is con-
cerned only with knowledge of internal processes, it is a form of private
self-awareness.

1.2 Definition of Self-expression
The following ideas underpin what we mean by self-expression within a com-
puting node.

• A node exhibits self-expression if it is able to assert its behaviour upon
either itself or other nodes.

• This behaviour is based upon the node’s state, context, goals, values, ob-
jectives and constraints.

Next, we present the eight self-aware patterns using the template described
above. For our purposes, the state of the node comprises the self-aware capabil-
ity and knowledge captured in its self-awareness processes. Thus, self-expression
can be thought of as behaviour based on self-awareness.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

1.3 Basic Pattern
Problem/Motivation. In some cases, a system may need to trigger some
actions in order to cope with emergent events and stimuli. Such capacity could
greatly help to manage system at runtime. As a result, there is an increasing
need for system to react upon stimuli, based on either static or dynamic rules.

Stimulus awareness

*

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

1 1

*

Figure 1.2: Basic Pattern

Solution. The simplest pattern to enable self-aware node is what we call Basic
Pattern, as shown in figure 1.2. This pattern contains only stimulus awareness,
which receiving data flow from sensors and actuators. Proper actions of self-
expression could be triggered based on the type of stimulus detected. A concrete
example has been shown in figure 1.3 where each node only aware of its own
stimuli.
Consequences. A major limitation of this pattern is no information is shared
amongst nodes, therefore the node is not aware of the environment and the other
node. This could become a major problem in some cases (e.g., the smart camera
case study) where there are intensive interaction and/or interference amongst
nodes.
Examples. Consider the case of server farm or private cloud where the numbers
of deployed applications/services are limited. The basic pattern could be realised
in such context by defining if-condition-then-action rules, in which case the
conditions could be various stimuli (e.g., QoS is low and utilisation is low); the

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

step 1 step 1

step 2

step 3 step 3

step 1 step 1

step 2

step 3 step 3

Figure 1.3: Concrete Instance of the Basic Pattern

action could be changing software configuration and/or resource provisioning.

1.4 Basic Information Sharing Pattern
Problem/Motivation. Sometimes one computing node may not be sufficient
to cope with the complexity of an application or to meet the demands of users as
they scale. To manage application complexity, functionalities could be divided
among several self-aware nodes, where each node is specialised in a few func-
tionalities, collaborating to provide the application’s service. More self-aware
nodes may also be introduced to meet the scalability requirement of the system.
In each case, at the basic level, there is a need to provide a means for the nodes
to interact with one another to carry out their respective roles.
Solution. The simplest pattern for interacting self-aware nodes is the basic in-
formation sharing pattern. In this pattern, a self-aware node contains only the
interaction-awareness capability other than the stimulus-awareness. Interaction-
awareness can be connected to one or more self-aware nodes as shown in fig-
ure 1.4. Each self-aware node may have one or more sensors (internal/external)
and actuators (internal/external). The underlying characteristic of this pattern
is that peers are linked only at the level of interaction-awareness. It is important
to note that nodes can not only interact with neighbours but also with their
environment. For example, in the financial modelling application, interaction is
all about communication between nodes and the market rather than amongst
nodes themselves.

An example of the basic pattern where two nodes are connected via their
interaction-awareness capabilities is shown in figure 1.5. Although only two
nodes are shown in figure 1.5, the number of connected nodes is not limited
to two. The number of nodes is limited by the scalability of the interaction
mechanism. For instance, a broadcast mechanism may limit the number of

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Stimulus awareness

*

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

*

1

1

1

1

*

*

**
Interaction awareness1

1

1

1

0
0

Figure 1.4: Basic Information Sharing Pattern

interconnected nodes when compared to a gossip protocol. In practice, a node
may be connected to either all or a subset of nodes in the systems depending
on its role in the system.

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

I.S. I.S.

I.A. I.A.

E.S.

E.A.S.E.

E.S.

E.A.S.E.

S. A. S. A.

In. A. In. A.

step 1

step 1

step 4 step 4

step 1

step 2

step 3

step 1

step 1

step 4 step 4

step 1

step 2

step 3

Figure 1.5: Concrete Instance of the Basic Information Sharing Pattern

Consequences. Self-aware nodes could use the interconnection between them
to negotiate the protocol to use for communicating in a network. As observed

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

in the smart camera case study, this pattern can be used to facilitate sharing
information among nodes about neighbourhood relation in a network of smart
camera.

Crucially, in this pattern each self-aware node maintains its autonomy about
how to make adaptation decisions via its self-expression capability. This means
that each node is responsible for its interpretation and reaction to the informa-
tion shared via interaction-awareness. Therefore, this pattern is not suitable for
cooperative problem-solving scenarios, where nodes need to reach an agreement
among themselves about the best course of action for the problem. This limita-
tion is addressed in the coordinated decision-making pattern (see next section).
The basic information sharing pattern assumes the system’s goal is preconfig-
ured at design time, consequently, constraining the system’s adaptation.
Examples. Federated datacenters and clouds, owned by distinct entities, are
good candidate applications of the basic information sharing pattern. The own-
ers of such clouds or datacenters may choose only to share status information
about availability of resources or current load and not cooperate beyond this
level. Thus, each cloud provider maintains autonomy over its resources while
collaborating with other cloud providers in a limited way to facilitate outsourc-
ing of resources, if required. Participants in a grid computing set-up utilise
similar communication model and rely on incentive-based mechanisms to facil-
itate resource sharing [20].

1.5 Coordinated Decision-making Pattern
Problem/Motivation. Decisions made by individual self-aware nodes in a
group may be suboptimal due to their limited view of the system and its oper-
ating environment. As noted in the basic information sharing pattern, individual
self-aware nodes do not cooperate when making decisions. In applications re-
quiring near-optimal and consistent global decision making in a cooperative set-
ting, a more advanced architectural pattern may be required. In particular, such
a pattern should make it possible for nodes to synchronise their self-expressive
actions.
Solution. The coordinated decision-making pattern provides a means of coor-
dinating actions of multiple, interconnected self-aware nodes. Figure 1.6 shows
this pattern. It differs from the basic pattern in that self-expressive nodes are
linked to one another, such that they are able to agree on what action to take. It
is clear to see that the coordinated decision-making pattern is a related pattern
to the basic information sharing pattern as they only differ on the self-expression
capability. However, they are designed to aim for different problems and forces,
therefore such separation of concepts paves a better way in pattern selection.
Consequences. Unlike the basic pattern, given the * to 0 multiplicity on the
self-expression capability in figure 1.6, it is not mandatory for nodes to link their
self-expression capabilities to each other. This makes it possible for nodes to
form clusters, where nodes in a cluster cooperate to solve problems in one part
of a system, while nodes in other clusters cooperate to solve problems in other

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Stimulus awareness

*

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

*

1

1

1

1

*

*

**

* 0

1

1

Interaction awareness 1

1

0

0

Figure 1.6: Coordinated Decision-making Pattern

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

In. A. In. A.

step 1

step 1

step 4 step 4

step 1

step 2

step 3

step 1

step 1

step 4 step 4

step 1

step 2

step 3

Figure 1.7: Concrete Instance of Coordinated Decision-making Pattern

parts. Figure 1.7 shows an example where two self-aware nodes instantiate this
pattern. As argued in the case of the basic pattern, using two nodes to illustrate
the pattern as shown in Figure 1.7 does not limit the number of nodes that can
realise the pattern in a real system.

The downside of this pattern is that although nodes are able to form clusters

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

and cooperate on what action to take, they are unable to decide the timing of
such actions, i.e. when to act. This notion of time insensitivity is addressed
in the Temporal Knowledge Sharing Pattern (see next section). The tempo-
ral knowledge sharing pattern incorporates time-awareness capabilities into the
coordinated decision making pattern.
Examples. Large-scale cloud federations where providers agree to implement
unified resource allocation policies, irrespective of how such policies are enforced
at individual cloud levels, are a candidate application of this pattern. In such
federated clouds, policy changes are negotiated via interaction-awareness capa-
bilities, upon agreement the self-expression capability of each cloud enforce the
agreed policy within its (local) cloud.

1.6 Temporal Knowledge Sharing Pattern
Problem/Motivation. As stated in the previous section, coordinated decision-
making pattern does not provide a means of coordinating the timing of actions
agreed upon by cooperating nodes. This limitation may not be tolerated in
applications where timing of actions has an impact on the integrity of the ap-
plication. Also historic knowledge may be required to forecast future actions,
in order to improve the accuracy of adaptive actions.

Interaction

awareness

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

*

*

*

*

*

*

1 1

1

1

1

1

0

0

Time awareness

1

1

1

1

Stimulus awareness

**

0

0

0
0

0

0

Figure 1.8: Temporal Knowledge Sharing Pattern

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Solution. The temporal knowledge sharing pattern solves this problem by
incorporating time-awareness capabilities into the coordinated decision-making
pattern. As shown in figure 1.8, each self-aware node has a time-aware capability
which is, optionally (as denoted by its multiplicity), linked to other self-aware
nodes to represent timing information. An example where two nodes are con-
nected using this pattern is shown in figure 1.9. This timing information can be
exploited by the self-expression capability to manage the timing of adaptation
actions across multiple nodes.

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Interaction awareness

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

In. A.

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

In. A.

T. A. T. A.

step 1
step 1

step 5 step 5

step 1

step 2

step 3

step 4

step 1

step 1

step 5 step 5

step 1

step 2

step 3

step 4

Figure 1.9: Concrete Instance of Temporal Knowledge Sharing Pattern

Consequences. The knowledge of timing information provides a rich basis to
enrich the power of the adaptation action that is possible. However, there are
a lot of design considerations left to the application designer who instantiates
the style. For example, how often should timing information be recorded? In
storage constrained systems, how long should acquired knowledge be stored for
before forgetting (removing) them? Should the forgetting process be total, i.e.
delete all knowledge acquired within a period at once, or selective? Depending
on the concerns of the application at hand, these questions will have different
answers.
Examples. Clusters in cloud datacenters, where the servers in the cluster
cooperate to execute tasks assigned to the cluster head, are able to exploit this
pattern. For example, a parallel scientific application assigned to the cluster,
requiring coordination across different time-steps of the application could utilise
the pattern to ensure actions taken in each time-step are coordinated to avoid
compromising the integrity of the result.

1.7 Temporal Knowledge Aware Pattern
Problem/Motivation. The knowledge of timing enables the capability of
proactive adaptation and potentially, better adaptation quality. Within the

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

previously mentioned pattern, Temporal Knowledge Sharing pattern is the only
one that applies time awareness capability. However, a drawback of such pat-
tern is that the interaction awareness capability might not be a unnecessarity,
therefore it could affect the self-aware system as it is suffering unnecessary over-
head.

Stimulus awareness

*

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

1 1

*

* 0

1

Time awareness

1

0

0 * 0

Figure 1.10: Temporal Knowledge Aware Pattern

Solution. As shown in figure 1.10, the temporal knowledge aware pattern solves
this problem by incorporating only time awareness working in conjunction with
stimulus awareness. Again, the time awareness capabilities of different node
is logically linked together (optionally). This pattern allows the knowledge of
timing to assist the self-expression capability and overhead the extra overhead
produced by unneeded level of awareness. A concrete example has been shown
in figure 1.11.
Consequences. There are scenarios where the software designer is uncertain
about whether the lack of environmental information and information could af-
fect the modelling of timing knowledge. This is highly depend on the concrete
time-series prediction technique in the time awareness capability. An inappro-
priate use of certain time-series prediction technique could result in low accuracy,
which eventually affect the quality of adaptation. As a result, the decision of
which time-series prediction technique to be used is critical and the designers
are recommended to consult experts of time-series modelling when applying this
pattern.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

T. A. T. A.

step 1 step 1

step 3

step 4 step 4

step 1 step 1

step 3

step 4 step 4

step 2 step 2

Figure 1.11: Concrete Instance of Temporal Knowledge Aware Pattern

It should be noted that up till now, all the patterns discussed do not cater
to changing goals. That is, they assume the goal of the self-adaptive system is
known at design-time and statically encoded in the system, without opportunity
to modify it at run-time. The pattern discussed in the next section - Goal
Sharing Pattern - will address the challenge of modifying or changing goal at
run-time.
Examples. Cloud is an environment where resource is sharing via Virtual
Machine (VM) on each node. In this context, by leveraging the historical usage
of resources, time-series prediction would be able to predict the demand of VMs
on a node for the nearly future, which assists proactive provisioning of resource
and potentially, prevents SLA violation and/or resource exhaustion on a node.

1.8 Goal Sharing Pattern
Problem/Motivation. User preferences are mostly dynamic, i.e. users want
different things at different times. As an example, a user who is pleased with
operating a computing system using a touch screen at one time may prefer a
voice interaction mood at another time. These changes in user preferences may
range from simple changes, such as mood of user-interaction, to more advanced
ones. Furthermore, a computing system may itself decide to change its goal,
depending on the amount of resources available to it. In the smart camera case
[12], a camera running low on battery may choose to bid for only the most
valued objects within its field of view instead of aiming to track all objects in
its vicinity. A specialised pattern that allows explicit representation of run-time
goals and facilitate changes to these goals, as the system evolves, is needed .
Solution. Figure 1.12 shows the goal sharing pattern that address the concern
of representing run-time goal. A goal-awareness capability represents knowl-
edge about run-time goals, which can be changed as the system evolves. The

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Interaction

awareness

Design time goals

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

*

*

*

*

*

*

1 1

1

1

1

1

0

0

Goal awareness

1

1

1

1

Stimulus awareness

**

0

0

0
0

0

0

Run time goals

Figure 1.12: Goal Sharing Pattern

goal-awareness capability in a self-aware node can, optionally, share its state
information with goal-awareness capabilities in other self-aware nodes.

As with previous patterns, goal information sharing is not necessarily glob-
ally shared with all nodes. Hence, a subset of nodes in a system could share
their goal state, while their goal information is disjoint from other nodes. It is
important to note that sharing goal information is not equivalent to unifying
goal state across nodes. It is possible for nodes to share goal information, while
each pursues its distinct goal. The reverse scenario, where goal information are
unified across nodes, is also possible.
Consequences. As can be observed from figure 1.12, a time-awareness capa-
bility is not included in this pattern. This implies that time-awareness is not a
necessary perquisite for goal-awareness. While each node is able to change its
goal at run-time, it does not represent temporal information to realise the capa-
bilities of the temporal knowledge sharing pattern. For the sake of completeness,
we include a different pattern that addresses this limitation (see figure 1.13).
The pattern in figure 1.13 makes the inclusion of temporal knowledge explicit,
making it suitable for application domains where changing goals and forecasting
are required.

In both patterns, self-expression capability makes use of the goal-awareness
capability to make strategic decisions in line with the system’s current goal.
Figure 1.14 shows an instance of the pattern (without time-awareness), while

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Stimulus awareness

Interaction

awareness

Time awareness

Run time goals

Design time goals

Self-expressionSelf-expression

Self-awareness
Internal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

* 0

* 0

**

1

1

1

1

1

1
11

* *

**
* 0

Goal awareness

0
0

0
0

00

0

0

0

0
1

1

1

1

Figure 1.13: Goal Sharing Pattern (with time-awareness capability)

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Design time goals

Interaction awareness

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Design time goals

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

In. A.

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

In. A.

G. A. G. A.
Run time goals

Run time goals

step 1

step 1

step 5 step 5

step 1

step 2

step 3

step 4

step 1

step 1

step 5 step 5

step 1

step 2

step 3

step 4

Figure 1.14: Concrete Instance of Goal Sharing Pattern (without time-awareness
capability)

figure 1.15 an instance (with time-awareness).
Examples. Service-based applications operating in dynamic, open cloud envi-
ronment are possible candidates of this pattern. Here, applications are composed
from cloud services which are selected based on QoS and cost considerations.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Self-expression

Self-awareness

Internal
sensors

External
sensors

External
actuators

Internal
actuators

Design and run

time goals

Self-expression
External
actuators

Internal
actuators

I.S.

I.A.

E.S.

E.A.S.E. I.A. E.A.S.E.

S.A.

In.A.

T.A.

Self-awarenessInternal
sensors

External
sensors

Design and run

time goals

I.S. E.S.

S.A.

In.A.

T.A.

G.A. G.A.

step 1

step 1

step 1

step 6 step 6

step 5

step 1

step 1

step 1

step 6 step 6

step 5

step 2

step 3

step 4

step 2

step 3

step 4

Figure 1.15: Concrete Instance of Goal Sharing Pattern (with time-awareness
capability)

A service that is highly performant at one time may degrade in quality at later
times due to overloading of the service. Each application has service level agree-
ment (SLAs), to which it must adhere. Application goals encoded in SLAs may
themselves change as users demand different levels of service from time to time.

Using the goal-sharing pattern with time-awareness capability (see figure 1.13)
in this scenario has the benefit of making each application capable of repre-
senting temporal knowledge about service performance and forecasting which
service(s) are likely to be more dependable and long-lasting. Also, the goal-
awareness capability makes it possible to represent SLA terms of users and
adapt such goals as they change. Lastly, by sharing temporal knowledge, ap-
plications can cascade knowledge of service performance among themselves. It
should be noted that this introduces opportunities to falsely badmouth or inflate
performance of services. Considerations for filtering out good knowledge are left
to the computational models used to implement time- and goal-awareness.

1.9 Temporal Goal Aware Pattern
Problem/Motivation. The knowledges of goals and time might not necessar-
ily to be shared amongst nodes, especially in cases where the optimisation of
local goals could lead to acceptable global optimun. As a result, the presence
of interaction awareness capability could cause extra overhead on the system.
Solution. As shown in figure 1.16, the temporal goal aware pattern solves
this problem by removing the interaction awareness capability. In this pattern,
there is no notion of ’sharing’ as the nodes are not aware of any interactions
and therefore not aware of the presence of the other nodes. It is worth noting
that the absence of interaction awareness does not mean there is no interaction
- nodes and the environment could still interact with each other, but the nodes

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Time awareness

Design time goals

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

*

*

* *

*

1 1

1 1

0

0

Goal awareness

1

1

Stimulus awareness

**

0

0

0
0

0

0

Run time goals

Figure 1.16: Temporal Goal Aware Pattern

are not aware of it. A concrete example has been shown in figure 1.17.

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Design time goals

Interaction awareness

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Design time goals

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

T. A.

I.S.

I.A.

E.S.

E.A.S.E.

S. A.

T. A.

G. A. G. A.
Run time goals

Run time goals

step 1

step 1

step 5 step 5

step 2

step 3

step 4

step 1

step 1

step 5 step 5

step 2

step 3

step 4

Figure 1.17: Concrete Instance of Temporal Goal Aware Pattern

Consequences. The removal of interaction awareness implies that the nodes
could be in inconsistent state. The designer should carefully verify that such
situation would not result in violations of system requirements. In addition, the

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

self-expression capability could not use any information from other nodes when
making decisions.
Examples. Orchestrate fully decentralised harmonic synchronisation amongst
different mobile devices requires each node to aware of stimulus, time and goal
but not necessarly interaction. In such case, each node receives phase and
frequency updates from the other nodes or the environment, and reacts upon
based on its own time and goal information. This is a typical example where
there are occurrences of interaction, but no occurrences of interaction awareness;
because the nodes only aware of the incoming phase and frequency updates but
it has no knowledge of where they come from; the sources could be other nodes,
the environment or even some unexpected noise.

1.10 Meta-self-awareness and Self-aware Patterns
Meta-self-awareness is useful for managing the trade-off between various levels
of self-awareness and for modifying goals at run-time. Since reasoning at the
meta level is considered an advanced form of awareness, which may be beneficial
or necessary in some contexts and not beneficial in others. This section specially
treats the relation between meta-self-awareness and the patterns discussed in
previous sections.

We reiterate that one of the distinct benefits of the self-aware style is to
reduce the complexity of modelling adaptive behaviour when compared to non-
self-aware approaches. For the sake of illustration, consider the problem of
modelling and tuning an online learning algorithm, e.g. neural network, for
deciding actions of an application in different scenarios. It is known that this
task is time-consuming and requires expertise mathematical skills, which may
not be readily available [10]. Additionally, in some use cases, small changes in
the application scenarios may render the solution proffered by the algorithm
invalid or incorrect - another cycle of algorithm tuning may be needed to cater
to these changes. An alternative approach is to provide families of algorithms for
different contexts and dynamically select the appropriate algorithm at run-time
using online learning capabilities of the meta-self-aware capability.

While the first approach offers faster adaptation, if application scenarios are
relatively stable, the second approach is able to better cope with complexity
in highly perturbed environments, where one algorithm is insufficient to cover
the scope of adaptive behaviour. Accordingly, we recommend that every pat-
tern can optionally incorporate the meta-self-aware capability depending on the
complexity to be managed and expertise of the application designer. Figure 1.18
shows the goal-sharing pattern with time-awareness capability where a meta-
self-aware pattern is present to manage trade-off between goal-, interaction-, and
time-awareness capabilities. Presumably, the presence of meta-self-awareness
capability could help to switch between different pattern at runtime, which
could be a very interesting direction for future work.

There are also other examples of meta-self-awareness capability in EPiCS.
For instance, in the smart camera demonstrator [12], the meta-self-awareness

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Self-expression

Self-awareness

Internal
sensors

External
sensors

External
actuators

Internal
actuators

Design and run

time goals

Self-expression
External
actuators

Internal
actuators

I.S.

I.A.

E.S.

E.A.S.E. I.A. E.A.S.E.

S.A.

In.A.

T.A.

Self-awarenessInternal
sensors

External
sensors

Design and run

time goals

I.S. E.S.

S.A.

In.A.

T.A.

G.A. G.A.
M.S.AM.S.A

step 1 step 1

step 1

step 8 step 8

step 2

step 6

step 3

step 4

step 5

step 7

step 1

step 1

step 1

step 8 step 8

step 2

step 6

step 3

step 4

step 5

step 7

Figure 1.18: Concrete Instance of Goal Sharing Pattern (including meta-self-
awareness capability)

is used to switch between different behavioural strategies in the interaction
awareness and self-expression capabilities; In the hyper music demonstrator,
the meta-self-awareness can help to control the degree of stimulus awareness
based on confidence measure.

Questions & Answers of the Patterns
• Q: Can the nodes be heterogeneous (i.e., different nodes implementing
different patterns)?
A: Yes, different pattern can be chosen to realise different node if it is
required.

• Q: Can we realise different capabilities using the same technique?
A: Yes, the notions of capability itself is flexible.

• Q: Can we have logical connections between different capabilities (e.g.,
goal and time awareness)?
A: Yes, logical connections is not restricted as physical ones.

Chapter 2

Architectural Primitives for
Self-aware Systems

These architectural patterns provide proven solution to recurring design prob-
lems that arise in a context of self-aware and self-expressive system. However,
the pattern itself is an abstract form of the architecture. Often, the abstract
patterns can be used as the first step for architecting and engineering self-aware
systems by mapping them with an existing/candidate architecture instance,
which is application specific. We have organised a workshop that allows the
partners to present their results in using the patterns. After the workshop, we
have observed that the partners could use the same pattern in many different
ways depending on the problem context and their concrete architecture instance
(e.g., whether to use meta-self-awareness; whether to use a particular technique
to realise a capability; whether to realise two capabilities in the same compo-
nent); however, the concrete applications of patterns in different contexts still
share many underlying concepts. These shared concepts lead to the notion of
architectural primitive, which refers to the common concepts that can be
constructively used to form a concrete architecture instance of a pattern. The
architecture instances of a pattern differs in terms of the candidate techniques
and/or attributes (i.e., a particular form of an architectural primitive) that used
to realised each architectural primitive. These differences amongst architecture
instances of a pattern are referred to as pattern variability; similarly, the
alternative architecture instances of a pattern are the variants of this pattern.

Architectural primitives and pattern variability are long-studied problems
[14]. However, unlike traditional work that aim for generic system architec-
tures, we are specifically interested in how these concepts can be used in self-
aware systems. In particular, we aim to link these well-studied concepts to the
self-awareness principles [5], which are all about different levels of knowledge
awareness. In this report, we have documented the architectural primitives in
four categories (i.e., Capability, Behaviour, Interaction and Topology), each of
which cover an aspect of a self-aware system. We anticipate that a benefit from

24

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

this will be a reduction in the chances to introduce faults, and easier fault detec-
tion, when using the proposed patterns during design. We show the potential
dependency between these primitives. These architecture primitives and can-
didate techniques and/or attributes have been used in EPiCS to form different
variants of a pattern.

2.1 Architectural Primitives and Candidate Tech-
niques

To better understand the orthogonal aspects of self-aware systems, we have
used four categories. This is motivated by our investigation about the critical
aspects that could affect the functional and/or non-functional requirements of
a self-aware system. These categories are shown as below:

• Capability: The capability of the system to obtain certain knowledge
or to react based upon the knowledge. e.g., the levels of awareness and
expression.

• Behaviour: The process of a capability regarding how input data is con-
sumed and output data is produced.

• Interaction: The relationship between the capabilities or of a capability
itself as expressed by the multiplicity operators.

• Topology: The deployment about how capabilities are distributed to the
components in the architecture instance.

We have structured the architectural primitives to express: (i) the charac-
teristic of a components or connector; and (ii) the function of a components or
connector. The architectural primitives with respect to the four categories are
shown as below, the terms in the bracket are the attributes of an architectural
primitive:

• Capability: stimulus-awareness, interaction-awareness, time-awareness,
goal-awareness, self-expression, meta-self-awareness.

• Behaviour: send (synchronous or asynchronous), handle (sequential or
parallel), state (proactive or reactive), transit.

• Interaction: link (one-to-many, many-to-many, one-to-one or none).

• Topology: structure (combine, separate or compact), existence (exist or
non-exist).

The use of these primitives is application specific and depends on whether
they would affect the functional and/or non-functional requirement of the self-
aware systems.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

2.1.1 Capability
The capable primitives consists of the 4 level of knowledge in self-awareness
principles, which can be realised in one or more components in an architecture
instance. The self-expression and meta-self-awareness capabilities are also be-
long to this category. These primitives belong to capability can be realized by
using different candidate techniques.

2.1.2 Behaviour
In the behavioural primitives, send is used to describe the output process of
a sender. In particular, it has two attributes: synchronous and asynchronous.
Synchronous refer to the scenarios where after the sender sends a request, it
needs to wait for a reply from the receiver before transit to the next actions. On
the other hand, asynchronous refer to the case that the sender does not require
such blocked communication. Handle is used to express how the receiver process
inputs. Sequential handler refer to the cases where incoming data are processed
by specific sequence using a queue. On the other hand, parallel handler simply
process all incoming data in parallel upon its arrival. Both send and handle
primitives can be realised using different candidate techniques. State primitive
is used to express the behaviour of a capability, it depends on the candidate
techniques that realise such capability. In particular, In the reactive state, the
capability responds when a change has already happened, while in the proactive
state, the capability predicts and reasons about when the change is going to
occur, it then act upon [9]. It is also possible that a capability is realised
using both proactive and reactive attributes. Transit is a specific behaviour of
meta-self-awareness capability; it aims to reason about and switch on/off one or
more other capabilities. Similarity, it can be realised using different candidate
techniques. The main differences between the candidate techniques of meta-self-
awareness and those of transit is that the former one focus on how to improve
and optimise other capabilities; whereas the later on focus on the question of
whether we should keep or shutdown certain capabilities? However, we have
not seen any application of techniques belong to transit primitive in EPiCS.

2.1.3 Interaction
Interactive primitive, link, is used to describe the physical and logical relation-
ship between the capabilities as expressed by the multiplicity operators. It has
four attributes: one-to-many, many-to-many, one-to-one or none. The use of
this primitive is constrained by the selected pattern.

2.1.4 Topology
Finally, topological primitives are design for expressing how the capabilities are
mapped to the components of an architectural instance. Structure primitive has
three attributes: separate or compact. Combine is used to describe the cases

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

where a capability is realised in conjunction with other capabilities within a sin-
gle component; conversely, the separate refers to a single capability is realised
using separate components; compact refers to a capability is realised using ex-
actly one component. In particular, it is possible to have both separate and
compact for a capability. Existence primitive is simply used to show whether a
capability is needed, as certain pattern allows optional capabilities.

A detailed summary of the architectural primitives and a list of possible
candidate techniques surveyed from the EPiCS projects has been shown in Table
2.1. Please note that the list of candidate techniques here is not exhaustive,
therefore more exampled candidate techniques can be added when appropriate.
We omitted some primitives (e.g., the link) here as they do not associated with
any concrete techniques.

Table 2.1: Architectural primitives and their candidate technique

Architectural
Primitives

 Candidate Techniques/Options

Technique Demonstrator Approach Details Nature

stimulus-awareness Simple Update Financial Application
[2]

1. Read from either human inputs or files Stimulus: market data (price,
interest rate, trade), parallelism,
precision, IO bandwidth

Auction
Invitation/Bidding

Smart Camera [5] 1. Perform background subtraction
(private)

2. Bound boxes candidates (public)

3. Perform valuation of bids based on
tracking results (private)

Stimulus: images, auctions, bids,
handover, and object tracking
results.

Background
Substitution

Bounding Boxes
Generation

Threshold-based
Algorithm

Dynamic Protocol Stack
[7]

1. Simple mapping: map most-used
functional block to HW

2. Smart mapping: considers processing
time per block

Stimulus: Workload, core
utilization, performance, Network
condition, link quality, signal-to-
noise ratio, bandwidth

Conditions-Actions
Rule

HW/SW Platform [6] 1. Trigger performance management /
thermal management

Stimulus: performance counter,
local temperature, input data,
thermal diode

Simple Update
Function

Rhythmic Music
Application [3]

1. Trigger phase and frequency updates
upon input from other nodes.

Stimulus: Sound input from other
nodes

interaction-
awareness

Market-based
Mechanism

Smart Camera [5] 1. Create model of objects to be tracked
(public)

2. Hand-over process using broadcast

3. React to auctions, bids and handover
(public)

4. Define neighbourhood based on
auctions (private)

Interaction: Participation in auction
& vision graph, Model of objects

Object modelling
and matching

Threshold-based
Algorithm

Dynamic Protocol Stack
[7]

1. Packet processing engine (stack builder)

2. Source node proposes a set of protocol
stacks

3. Meet application / node goals, network
conditions

4. Destination node selects one and
informs source

5. Both nodes can suggest run-time
adaptations

Interaction: Source and destination
nodes negotiate protocol stack.

time-awareness Ant Inspired
Artificial
Pheromones

Smart Camera [5] 1. Calculate pheromones in vision graph
(private)

Time: Evaporation of pheromones

Partial
Autocorrelation

Dynamic Protocol Stack
[7]

1. Perform proactive reconfiguration of
HW/SW mapping

2. Create fitness function for HW/SW
mapping

Time: Historical traffic patterns

2-Layer Resistor-
Capacitor (RC)
Network

HW/SW Platform [6] 1. Learn thermal model of chip Time: Historical temperature data of
the chip

Randomized Hill
Climbing

Median Filter with
Moving Average

Rhythmic Music
Application [3]

1. Filter the errors in frequency Time: Historical frequency errors.

Hawkes Point
Process Estimation

Financial Application
[2]

1. Perform point process

2. Correlate time series

Time: Historical financial trends

HAC estimation
and verification

goal-awareness Error/Confidence
Measure

Rhythmic Music
Application [3]

1. Learn the tempo change and how it
affects the goals.

Goal: minimizing error of
producing music

self-expression Hand-over
Mechanism

Smart Camera [5] 1. Send out auction invitations and bids
(public)

Expression: Pan-tilt-zoom
(internal), decision to participate in

2. Automate load balancing
auction (internal), communication
channel – send bids/initiate auctions
(external)

Static Mapping Dynamic Protocol Stack
[7]

1. Update the protocol stack mapping

2. Minimize CPU utilization

Expression: Send normal packets,
send messages for negotiation,
setup protocol stacks, migrate
functional blocks between HW/SW

Brute Force
Optimization

HW/SW Platform [6] 1. Find the optimal thermal mappings Expression: Start/stop/migrate
threads, generate heat on the chip

Simple Update HW/SW Platform [6] 1. A confident node will make sound at a
steady tempo.

2. An insecure node will constantly try to
adapt its tempo to the other nodes.

Expression: Send tones and make
sound.

Gaussian Process Financial Application
[2]

1. Optimize decision values and decisions
for financial trading.

2. Improve design fitness by exploring /
tuning several design parameters

Expression: Design configurations,
trend prediction decisionsSupport Vector

Machine

Reinforcement
Learning

meta-self-awareness Hand-over
Mechanism

Smart Camera [5] 1. Perform hand-over process using vision
graph information (private/public)

2. Bandit solvers introduce very simple
meta-self-awareness (private)

Meta-self-awareness: choose the
cameras for the auction, start
auction, hand-over, update vision
graph

Bandit Solver

Quality- driven and
Threshold-based
Algorithm

HW/SW Platform [6] 1. Select best strategy to meet goals in
current situation

Meta-self-awareness: Switch
between different scheduling
strategies for thermal management

Rhythmic Music
Application [3]

1. Change scaling of frequency updates
based on confidence, i.e. managing the
degree of stimulus awareness

Meta-self-awareness: Change the
degree of adapting frequency, which
is directly controlled by confidence
measure

send synchronous
function call

Dynamic Protocol Stack
[7]

Applied to every capability except self-
expression

HW/SW Platform [6]
Applied to every capability except self-
expression

Rhythmic Music
Application [3]

Applied to every capability except self-
expression

Financial Application
[2]

Applied to every capability except time-
awareness

synchronous
multicast

HW/SW Platform [6] Applied to self-expression capability

asynchronous
function call

Financial Application
[2]

Applied to time-awareness capability

asynchronous
multicast

Dynamic Protocol Stack
[7]

Applied to self-expression capability

HW/SW Platform [6] Applied to self-expression capability

Smart Camera [5] Applied to every capability

asynchronous
broadcast

HW/SW Platform [6] Applied to self-expression capability

asynchronous
stigmergy

Rhythmic Music
Application [3]

Applied to self-expression capability

handle First-Come-First-
Serve (sequential)

Dynamic Protocol Stack
[7]

Applied to every capability except self-
awareness to handle data from external
sensors

HW/SW Platform [6] Applied to every capability except self-
awareness to handle data from external
sensors

multi-threading
(parallel)

Smart Camera [5] Applied to every capability

Rhythmic Music
Application [3]

Applied to every capability

Financial Application
[2]

Applied to every capability

Dynamic Protocol Stack
[7]

Applied to self-awareness to handle data
from external sensors

HW/SW Platform [6] Applied to self-awareness to handle data
from external sensors

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

It is worth noting that it is possible to select more than one candidate
techniques for a primitives, each work on a particular aspect of a capability.
In addition, we do not provide candidate techniques for sensor and actuator as
they are highly application specific and in some cases, they are uncontrollable.

2.2 The Dependency
It can be clearly seen that dependency exist amongst some of the aforemen-
tioned architectural primitives, that is, certain primitives can not be used if
another primitive or attribute has not be considered. The dependency has been
illustrated in Figure 2.1. Note that the arrow here means ’or’ relationship, e.g.,
state primitive can be considered if any capability primitive exists.

structure

existence

linksend handlestate

transit

stimulus-
awareness

interaction-
awareness

time-
awareness

goal-
awareness

self-
expression

meta-self-
awareness

Figure 2.1: Dependency amongst primitives

Chapter 3

Pattern Driven Methodology
for Engineering Self-aware
and Self-expressive Systems

Engineering self-aware and self-expressive systems is a widely important and
complex activity. This is because the process involves many decision makings on
the possible alternatives (e.g., what technique/attribute should one apply in or-
der to realise certain level of awareness?) even in the early stage of development.
In addition, it is difficult to throughly reason about the consequences of different
design alternatives to the functional and non-functional requirements of the sys-
tems. Research for engineering methodology has been widely conducted on the
area of conventional software architecture [14, 17, 16, 4], however a systematic
approach to the design and engineering of self-aware and self-expressive systems
is still in its infancy. In this report, we present a pattern driven methodol-
ogy to this engineering problem by leveraging on previously proposed patterns
and architectural primitives. The methodology contains detailed guidance to
make decisions with respect to the possible design alternatives. We evaluate
the approach in two aspects: (i) a qualitative evaluation using two case studies:
the smart camera networking problem within EPiCS [11, 12] and the elastic
cloud autoscaling problem [7, 8], which is an example outside EPiCS; and (ii) a
quantitative assessment by comparing the resulted self-aware and self-expressive
system to a conventional and non-self-aware system.

3.1 The Methodology Overview
To facilitate a systematic way of building self-aware and self-expressive systems,
we proposed a pattern driven methodology leverage on the 8 proposed patterns
and the defined architectural primitives. This methodology is a variation of
ATAM [17] extended by applying patterns and quality-values analysis in relation

31

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Proposed candidate
architecture

Select the best pattern(s)

Fit the candidate architecture
with the selected pattern(s)

Determine important
architectural primitives

and alternatives

Create scenarios

Find the combination that
results in the highest score

Score
the alternatives against

each non-functional attribute

Functional and
non-functional
requirements

Non-functional
requirements

Collect requirements and
environment constraints

Figure 3.1: Overview of the pattern driven methodology

to the self-awareness principles. In particular, the aim of such methodology is
two-folds: (i) select the right pattern(s); and (ii) select the right variation of the
chosen pattern(s). As shown in Figure 3.1, we can see that the initial four steps,
responsible for selecting the right pattern, are tightly related to the functional
and possibly the non-functional requirements of systems. After the selection of
pattern, there is an intermediate stage (step 5) aims to determine the important
design decisions for selecting variant with respect to the selected pattern. The
last three steps, on the other hand, are used to select the right variation of the
chosen pattern; and they are associated with the non-functional aspects of the
systems. We argue that the separate consideration of requirements for selection
of pattern and pattern variation promote a concise and precise design of self-
aware and self-expressive systems. In the following, we will see each of the steps
in details.

3.1.1 Step 1 - Collect Requirements and Constraints
The first step in this method involves collecting requirements and constraints
from the stakeholders and environment for engineering self-aware and self-expressive
systems. Similar to the step in ATAM [17], the purpose of this step is to gain
depth knowledges about the problem context; to operationalise both functional

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

and non-functional requirements, to facilitate communication between stake-
holders, and to develop a common vision of the important activities the system
should support.

The requirements could be either functional or non-functional, for instance,
the system should be able to record historical data for analysing its behaviour is
clearly a functional requirement. On the other hand, the adaptation delay in
the system should be no more than 1 minute is an example of non-functional
requirement. Constraints are also another important factor to be considered,
in particular, they could come from the stakeholders, e.g., the hourly cost of
infrastructure for running the system should not be more than 10 dollars; or
from the environment, e.g., the topology of nodes in the context is dynamic as
nodes can join/leave on demand.

3.1.2 Step 2 - Propose Candidate Architecture
Our methodology assumes that there is an existing candidate architecture of
the system. This is because our self-aware patterns are generic and do not
rely on any assumptions about the application domain. Therefore, in order to
apply the pattern in practise, it is essential to obtain certain knowledge about
the architecture related to the context of given application domain. Often,
this knowledge is represented as a collection of components and connectors,
which we call them existing candidate architecture. By doing so, we could
obtain two major benefits: (i) it could provide a clear view about what is
really needed by the domain from an architecture perspective, and thus assist
the engineer to reason about and select the right pattern; (ii) it is possible
to refine the existing candidate architecture when mapping the components
and connectors to the capabilities of chosen pattern(s). We believe this is a
rational assumption as once the important requirements and constraints have
been determined, the engineer should be able to propose a candidate architecture
based on the obtained information. In addition, design almost never starts
from a clean slate: legacy systems, interoperability, and the successes/failures
of previous projects all constrain the space of architectures.

The candidate architecture must be described in terms of architectural com-
ponents/elements. In particular, the architecture should express the mod-
ule/component view [?] of the system, which is usually used to reason about
work assignments and information hiding. In this work, we do not assume
any standard notations (e.g., UML) therefore the engineer could use either the
standard ones or invited his/her own notations.

3.1.3 Step 3 - Select the Best Pattern(s)
This is the first critical step in our methodology, which is about selecting the
suitable pattern(s) based on the functional and non-functional requirements as
well as the constraints. By doing so, the pattern could help the engineer to think
of the domain specific architecture problem in a self-aware computing sense.
The patterns differ mainly in terms of the self-awareness and self-expression

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

capabilities, which play an integral role in satisfying the functional requirements,
therefore the selection of pattern is equivalent to the selection of the right set
of self-awareness and self-expression capabilities.

To promote a systematic approach for pattern selection, we design certain
questions for each self-awareness and self-expression capability and ask the soft-
ware engineer to consider these questions. The suitable pattern(s) could be
determined based on these answers. Specifically, one should answer the follow-
ing questions:

• What does the capability mean in your problem context?

• What are the functional requirements that affected by this capability?

• What are the non-functional requirements that affected by this capability?

• What are the constraints that could affect this capability?

• Whether this capability is necessary or beneficial?

These questions could lead to the conclusion about whether a capability
should be included in the design. It is also possible to answer the questions
in more than one different sets depends on how many patterns would be used.
for example, if the case requires two pattern, then there could be two sets of
answers for each self-aware capability; one set for each pattern. Finally, Table
3.1 could be used to select the suitable pattern(s).

Table 3.1: The patterns with respect to the principle of self-awareness. (y
means the capability is included in the pattern; o denotes that this capability
is optional)

Basic
Pat-
tern

Basic
Information
Sharing
Pattern

Coordinated
Decision
Making
Pattern

Temporal
Knowledges
Sharing
Pattern

Temporal
Knowledges

Aware
Pattern

Goal
Sharing
Pattern

Goal
Sharing
Pattern
(with
time)

Temporal
Goal
Aware
Pattern

Stimulus-
awareness

y y y y y y y y

Time-
awareness

y y y y

Interaction-
awareness

y y y y y

Goal-
awareness

y y y

Meta-self-
awareness

o o o o o o o o

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

3.1.4 Step 4 - Fit the Selected Pattern(s)
Once the best pattern(s) has been determined, we can now fit the compo-
nents/elements from the candidate architecture to the capabilities described
in the pattern(s). It is worth noting that, our architectural patterns preserve
the flexibility for the concrete architecture; since whether two or more capabil-
ities are combined and fit in one component; or one capability is fit in separate
components could be based on the requirements and constraints. It is also an
opportunity to refine/improve the candidate architecture udring the mappings.

3.1.5 Step 5 - Determine the Important Primitives and
the Possible Alternatives for Non-functional Require-
ments

The next step is to determine the important architectural primitives and the
relevant alternatives (certain form of techniques) for the given problem context.
Particularly, we should consider the non-functional requirements here and link
them to these architectural primitives, their attributes and the relevant tech-
niques. Those primitives, their attributes and techniques that could influence
the non-functional requirements would be extensively modelled and examined
for selecting the right ones during next steps. In addition, this is also an oppor-
tunity to eliminate the primitives and techniques, which could be easily selected
or are trivial to be considered. For example, if performance requirement is much
more important than the others and the environment conditions are dynamic,
then the behaviour primitives (e.g., the primitives send and handle) could be
eliminated as it is almost certain that only multicast and parallel interactions
are feasible here.

Previously, we have reported on a list of techniques and attributes for each
architectural primitives. But not all of them are feasible depends on the prob-
lem context. The most important task is to determine the alternatives out
of the candidate techniques and attributes. Here, the software engineer could
also eliminate the techniques/primitives that could only affect functional re-
quirements or that are useless due to some constraints of the environment. For
instance, a supervised learning algorithm would not be useful in the case where
only unlabelled data is available. In addition, more appropriate techniques that
have not been reported could be added in to the consideration. The common
practise of identifying alternative is to consider each technique as independent
alternative. However, it is possible to create ensemble of techniques and at-
tributes, therefore we consider such ensemble and any of this combination as
independent alternative.

From this step forward, our methodology would start focusing on the non-
functional requirements because they are more difficult to be satisfied due to
their compliances are often related to runtime uncertainty. In addition, the non-
functional attributes are usually highly sensitive to the variants of patterns. The
problem become even more complex when the non-functional requirements are
conflict, e.g., accuracy vs overhead.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Up to this step, it is possible to go back to Step 2 if one feels that the chosen
pattern(s) is inappropriate. This iterative process can continue till the final
suitable pattern(s) is determined.

3.1.6 Step 6 - Create Scenarios
At this stage, we create the important scenarios that could influence each non-
functional attribute and likely to occur at runtime. There is no restriction on
the number or granularity of scenario per non-functional attribute, for instance,
one could have a faulty scenario for a system running in stable state in order
to examine the influence to availability attribute; in addition, he/she could also
create a scenario under the unstable state (e.g., when new nodes join in or
existing nodes leave). It is worth noting that the defined scenarios do not need
to be exhaustive as using these scenarios do not imply the developed system
is only able to cope with theses scenarios. Selecting pattern variants based on
these scenarios could provide confidence about how the self-aware system would
perform under the likely scenarios.

It is worth noting that there are cases where it is very difficult if not impossi-
ble to design scenarios, especially when these scenarios can not be foreseen and
can only be dealt with in real time. In these case, the selection of pattern vari-
ants (step 6-8) can be skipped as it is impossible to assess and compare alterna-
tives. Instead, the proper variants can be determined based on the knowledge of
domain experts, e.g., previous publications, experiments, implementations etc.

3.1.7 Step 7 - Score the Alternative of Primitives Against
each Non-functional Attribute using Analytical or
Simulation Models

In this step, we need to determine the score for each alternative of a primitive
against each non-functional attribute under the considered scenarios. The pur-
pose of this step is to assess each alternative with respect to the non-functional
attributes. We assume that there is no or limited dependency between the ar-
chitectural primitives in terms of how they affect the non-functional attributes,
therefore we assess each primitive in isolation. In particular, we aim to gain
relative score for every alternative in the context of each architectural primi-
tive. Scoring an alternative can be achieved by using either analytical model or
simulation where the former one refers to the empirical analysis of a particu-
lar alternative against a non-functional attribute, for examples the complexity
analysis. The later one uses the quantitative results form some simulations on
that said alternative under the considered scenarios. In addition, in cases where
the techniques of a primitive is difficult to be assessed in neither ways, then
the software engineer could score the alternative using empirical knowledges
[4] by assigning weights based on experience. It is worth noting that in cases
where the non-functional attributes can only be assessed using multiple primi-
tives, then when scoring the alternatives of a primitive, it is important to ensure
that the uses of alternative for other primitives are equivalent. For example,

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

when scoring the alternatives of stimulus-awareness in terms of system’s over-
all expression quality, then the chosen alternative for self-expression should be
consistent. Precisely, the scoring process has three phases:

Firstly, weight the relative importance of different non-functional attributes
after negotiation amongst the stakeholders. In particular, this can be achieved
using the pair-wise comparison in AHP [18]. This alternative can be used to
measured how much importance of attributes Qa is over the attribute Qb based
on some scale.

Secondly, score each alternative against each non-functional attribute under
every defined scenarios. Having this done, we then have a matrix of n times m
for the hth primitive under a given non-functional attribute k, as shown below:

Ph =

A1

...

An

SC 1, ...,SCm
Sk
11 ... Sk

1m

...

Sk
n1 ... Sk

nm

(3.1)

where n is the total number alternatives of the h-th primitive Ph and m denotes
the total number of considered scenarios for non-functional attribute k. SCm

denote the m-th scenario; An mean the nth alternative and Sk
nm denote the

score of the n-th alternative under the m-th scenario. In cases where more than
one scenario for a non-functional attribute, the score of a alternative would the
aggregative result of the scores under all scenarios. Therefore, we calculate the
total score of an alternative for the h-th primitive under non-functional attribute
k by aggregating its score of all scenarios. The matrix can be reduced to a vector
as shown below:

Ph =

A1

...

An

Sk
1

...

Sk
n

 s.t . Sk
n =

m∑
x=1

Sk
nx (3.2)

where Sk
n is the aggregative score for the nth alternative of the hth primitive

under non-functional attribute k.
Thirdly, we normalise the raw score for the alternatives in each architectural

primitive against a non-functional attribute k. To achieve this, we use the
following formula:

theAaof primitivePh =

{
NSk

ah if maxQk

1−NSk
ah if minQk

s.t . NSk
ah =

Sk
a∑p

x=1 S
k
x

(3.3)
where is NSk

ah the normalised score for the a-th alternative of the h-th primitive;
p denotes the total number of alternatives for the h-th primitive. By doing so,
we can normalise the score scaling from 0 to 1. In case where the attribute is
to be minimised, the final normalised score would be calculated as 1−NSk

ah .

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

3.1.8 Step 8 - Find the Best Alternatives for the Final
Architecture View

Once all the scores of alternatives have been obtained, the final task to do is to
find out the best combination that produces the highest total score. Specifically,
we need to maximizing the formula below:

argmax

x∑
k=1

(wk ×
y∑

h=1

NSk
sh) (3.4)

where NSk
sh is the score of the s-th selected alternatives for the h-th primitive; wk

is the weight for the k-th non-functional attribute. x and y are the total number
of non-functional attributes and architectural primitives respectively. It is worth
noting that the solution needs to refers to the dependency of primitives, e.g., one
can not select a technique for meta-self-awareness if it has been decided not to
use this capability. Equation 3.4 can be solved by any optimisation algorithms,
and finally our methodology provides a pattern based architecture with the best
selected alternatives for all architectural primitives.

3.2 Qualitative and Quantitative Evaluation
We evaluate the methodology qualitatively using two scenarios: a cloud au-
toscaling case study and a smart camera networks case study. We also quanti-
tatively assess the resulted system by comparing against a non-self-aware system
for both case studies.

3.2.1 Cloud Autoscaling Case Study
Introduction and Background

In cloud computing paradigm, the cloud-based services are deployed as Soft-
ware as-a-Service (SaaS) and are typically supported by the software stack in
the Platform as-a-Service (PaaS) layer [2]. They are also supported with Vir-
tual Machines (VM) and hardware within the Infrastructure as-a-Service (IaaS)
layer [1]. Under changing environmental conditions (e.g., workload, size of in-
coming job etc.), it is important to manage and control the Quality of Service
(QoS) of cloud-based services. By QoS, we refer to the non-functional attributes
(e.g., throughput) experienced by the end-users who use these services.In partic-
ular, the QoS can be managed by various control knobs, which include software
(e.g., threads) and hardware resources (e.g., CPU) in a shared infrastructure.
Hohowever, inappropriate use of software and hardware resources could result
in large rental cost to the service. In this report, we refer to these control knobs
and environmental conditions in the cloud as primitives.

With the context in mind, the term elasticity [13] in cloud refers to the
ability to adaptively scale control knobs to match the demand of cloud-based
services at runtime. Given the uncertainty and dynamics of QoS, there is an

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

increasing demand on cloud where the realisation of elasticity can be managed
without human intervention. In particular, for all cloud-based services, the
cloud should dynamically and continuously select an elastic strategy, which
is the combinatorial decision of configurations for various control knobs; this
process is called autoscaling.

Autoscaling is an important mechanism to realise elasticity in the cloud. We
argue that the autoscaling should be cost and QoS optimised; more precisely,
upon each provisioning and de-provisioning process, our aim is to design an
autoscaling mechanism that adaptively optimise QoS attributes and cost (i.e.,
cost of software and hardware resources) for all cloud-based applications and
services at runtime by autoscaling to the best combinatorial values of control
knobs. Due to the on-demand and dynamic nature of cloud, human intervention
and traditional analytical approaches are limited to achieve this goal. Therefore,
we intend to build a self-aware and self-expressive system to perform efficient
and intelligent autoscaling. To this end, this system should dynamically model
QoS, which could use the primitives as inputs and predict the likely QoS value as
an output. These models can better express QoS sensitivity. By sensitivity, we
are interested in which (e.g., are throughput and CPU correlated?), when (i.e.,
at which point in time they are correlated?) and how (i.e., the magnitude of
primitives in correlation) the primitives correlate with QoS. In particular, the
system mustconsider dynamics and uncertainty caused by workload and QoS
interference (both service-level and VM-level). By QoS interference, we refer
to scenarios where a service suffers wide disparity in its QoS depends on the
fluctuated primitives of co-located services on the same VM and co-hosted VMs
on the same Physical Machine (PM). This is a typical consequence of resources
contention. In addition, the system shall also take objective-dependency into
account as the objectives of a cloud-based service could be either conflicted or
harmonic with the objectives form the same service (intra-service dependency)
or the other co-located services (inter-service dependency).

Terminology

We advocate a fine-grained approach to the modelling and analysis of QoS. To
achieve this, we decompose the notion of primitives into two major categories:
these are Environmental Primitives (EP) and Control Primitives (CP).
We posit that CP can be either software or hardware, which could be managed
by cloud providers to support QoS provisioning. In particular, software control
primitives are software tactics and configurations; such as the number of threads
in thread pool and its life time, the number of connections in database connec-
tion pool, security and load balancing policies etc. Whereas, hardware control
primitives are computational resources provisioning, such as CPU, memory and
bandwidth. Software and hardware control primitives rely on the PaaS and IaaS
layers respectively. In particular, it is a non- trivial task to consider software
control primitives when QoS modelling in the cloud as they tend to influence
QoSs significantly. On the other hand, we look at environmental primitives in
the context of highly dynamic scenarios, which reflect the cloud setting. The en-

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

vironmental primitives can significantly influence the QoS. The providers often
can not predict and fully control their behaviour. Examples include unbounded
workload and unpredictable bound received data etc. If the provider would be
able to predict and control the presence of these scenarios, these can be then
considered as control primitives.

We assume that cloud-based applications are composed of one or more ser-
vices, each with its QoS requirements and can experience different environmen-
tal changes (e.g., changes in workload). These services are deployed on a cloud
software stack, which can be setup using various configurations and tactics.
In addition, they are hosted on the cloud infrastructure, where resources are
shared via VMs. As a result, the control knobs and environmental conditions
could significantly influences their QoSs. In distributed environment like cloud,
each tier in a multi-tiers application, composed of concrete services {S1, S2, . . .
S i} may have multiple replicas deployed on different VMs. The replica of a tier
running on a VM is assumed to have the replicas of its services running on the
same VM. In this work, we refer to the replicas of concrete services as service-
instances: the j-th service-instance of the i-th concrete service is denoted by
S ij. Unlike existing work, which focus on realising elasticity at the application
and VM level, we aim to adaptively optimise the QoS attributes and rental cost
of utilising control knobs for each individual service-instance, considering the
QoS interferences caused by the co-located service-instances on a VM and the
co-hosted VMs on a PM.

In addition, we do not consider global resources contention caused by short-
age in cloud capacity; our architecture works for cases where software and hard-
ware resources tend to be available, which is normal in a cloud environment.
Henceforth, we assume that the maximum demand of software and hardware
resources for all cloud service-instances (e.g., according to their budget) should
be satisfied by the capability of the cloud provider. Under such assumption, we
eliminate extreme cases where the capacity of cloud provider reaches its limits
causing likely global resources contention. This is because the increasing de-
mand of each service-instance would eventually be satisfied by scale up/out as
long as the cost does not exceed the budget. We believe this is a reasonable
assumption as in realistic scenarios, proper admission control can be applied to
restrict the number of cloud-based service-instances. Moreover, in case where
the cloud provider actually encounters capacity shortage, the unsatisfied ser-
vices can be switched to an alternative provider via a cloud selection mecha-
nism, which presumably hold our assumption. However, the design of admission
control and selection mechanism is outside the scope of this work.

Objective and Models

We formulate an “online” QoS model, which captures both dynamic sensitivity
and interference with respect to the selectedprimitives over time. The model at
given sampling interval t is formally expressed as:

QoS ij
k (t) = f(SP ij

k (t), δ) (3.5)

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

where QoS ij
k (t) is the average value of k-th QoS of Sij at interval t. f is the

QoS function, which dynamically changes at runtime. δ refers to any other
inputs that are required by the algorithm to train f apart from the primitives.
Examples of other inputs may include historical QoS values and tuning variables.
To handle QoS interferences, we denote the input SP ij

k (t) of Eq. 3.5 as the
selectedprimitives matrix of QoS ij

k (t) at interval t. This matrix contains the
selectedprimitive inputs of QoS ij

k (t) and it is updated online.
In the context of cloud, utilizing control primitives may be subject to certain

monetary cost to the service owners, therefore the total costs model for Sij can
be represented as:

Cost ij =

n∑
a=1

g(CP ij
a (t), Pa) (3.6)

where g is the fixed and unified cost function for each type of control primitives,
and n is the total number of control primitive type that used by service-instance
Sij to supports its QoS attributes. CP ij

a (t) is the amount of the a-thcontrol
primitiveprovision for Sij at interval t. Pa denotes the corresponding price per
unit of the a-th control primitive. In this work, we assume that the price of each
control primitivetype is fixed for all service providers and their service-instances.
It is worth noting that the hardware control primitives (e.g., CPU and memory)
can be only provisioned for each VM whereas the cost model is per-service based,
thus the price of a hardware control primitiveshould be equally proportioned to
each of the service-instances deployed on the provisioned VM.

To achieve globally-optimal QoS and cost in elastic cloud via autoscaling, we
aim at adaptively and dynamically determine and scale to the control primitive
configurations, which supports the best of all QoS attributes (Eq. 3.5) with
minimal costs (Eq. 3.6) for all service-instances in the cloud. In this work, we
apply a linear weighted-sum aggregation to express the global result for QoS
attributes and costs of different service-instances in the cloud. Formally, at
any given interval t, we aim to optimise the global objective by maximising the
function in Eq. 3.7.

n∑
i=1

m∑
j=1

w′
ij · (

l∑
a

wa ·QoS ij
a (t)−

r∑
b

wb ·QoS ij
b (t)− w(l+r+1) · Cost ij) (3.7)

where nand mare the total number of services and their instances in the cloud;
w’ij is the weight for each service-instance. Because the global objective is to
maximise Eq. 3.7, we need to carefully place the maximised QoS (e.g., through-
put) and the minimised ones (e.g., response time); thus land rare the total
number of the maximised and minimised QoS for Sij respectively; wa, wb and
w(l+r+1)are refer to the corresponding weight of the QoS and cost for Sij. In ad-
dition, the optimisation of Eq.3.7 should be subject to the constraint of budget
and SLA

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

In the following, we qualitatively evaluate the proposed methodology by
showing how it can be applied to engineer self-aware and self-expressive system
in the cloud case study. We also show the experiments that compare the resulted
system with a non-self-aware system. To simplify the explanation, we only
consider the throughput and cost of cloud-based services as the objectives that
need to be maintained.

Step 1 - Collect Requirements and Constraints

After negotiated with the stakeholders and analysed the environment, the re-
quirements and constraints are presented as the following Table:

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.2: The functional, non-functional requirements and constraints for the
cloud case study.

Functional Requirements Explanation
The system must record historical data for analysing
the behaviours of cloud-based services.

The data could be logs or real time measurement col-
lected by the sensors.

The system must able to control both software and
hardware control primitives.

Both types of control knobs could influence QoS sig-
nificantly.

The system must be aware of the changes in workload
and deployment. This is the cause of dynamic and uncertainty in cloud

The system should be able to aware of QoS interfer-
ence. This could influence the autoscaling decisions.

The system should support both vertical and horizon-
tal scaling. Both actions could help to improve QoS.

The system must cope with the conflicted objectives. This could influence the autoscaling decisions.
The system must aware of the functional dependency
between cloud-based services across nodes. This could influence the autoscaling decisions.

The system should be able to cope with any given QoS
attributes and cost objective of cloud-based services.
The system should be able to cope with any runtime
changes of QoS and cost objectives made by the service
providers.

This is something could occur in the cloud.

Non-functional Requirements
Accuracy: the accuracy of QoS modelling should be no
less than 75% to the actual QoS value.

This could influence the effectiveness of autoscaling de-
cisions.

Adaptation Quality: the QoS of the cloud-based ser-
vices that being managed should not be worse than
20% of the threshold in SLA for more than 5 mins.

This is only applicable in case where the budget is al-
lowed.

Overhead: the overhead for making autoscaling deci-
sion should be less than 200 seconds.

This could influence the effectiveness of autoscaling de-
cisions.

Reliability: to what extent the designer believe that
the alternative would work at runtime when there is
an emergent scenario occurs?

This can assess the confidence of simulation under un-
known events at runtime (e.g., different workload)

Constraints

VM can be added or removed Due to the dynamic cloud

Service can be added or removed Due to the dynamic cloud

Workload for each cloud-based service is fluctuated. Due to the dynamic cloud
The cost of the cloud-based services that being man-
aged should not exceed its defined budget.

Should not let the cloud consumer pay more than they
would like, even with the cost of worse QoS.

QoS interference occurs once there are contentions, in
which case the QoS could be negatively affected.

Could caused by workload or improper configuration
of control primitives.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Step 2 - Propose Candidate Architecture

Based on the aforementioned requirements and constraint, we scratch the an
initial version of architectural view, as illustrated in the Figure below:

Sensor Actuator

Autoscaler

Instance1

Instance2 Instancek

QoS Function
Trainer

Plan Scheduler

VM VM VM

...

......

1

2

3

4

5.2

8.1

8.2

6

10

11

5.1
(PM) (PM)

(PM)

Executor

Primitives
Selector

Data
Collector

7

9

Figure 3.2: The proposed architecture

As we can see that the architecture is deployed as distributed instances,
each of which running on a separate VM (e.g., Dom0 on Xen [3]) on every PM
(node) in the cloud. The workflow of the proposed architecture has been shown
in Figure 3.2. More precisely, the sensor on each PM collects the data (e.g.,
QoS values, CP usages and EP values) from the underlying VMs and service-
instances; and possibly from other PMs due to functional dependency (step
1). In addition, the sensor could sense deployment changes and QoS sensitivity
changes from other PMs. Next in step 2, the sensor passes raw information it
received to the Data Collector for normalising the data. At step 3, the Primitives
Selector receives both current and historical data after normalisation, which
would be used to determine the inputs of models. The QoS Function Trainer
would be used to train the function (step 4-5.1). Once QoS models have been
generated, the propagation goes to step 5.2. In particular, the adaptation can
be triggered if one or more of the following symptoms is detected:

• Symptoms 1: Proactively detect if the QoS of a service- instance is likely

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

to violate SLA constraint for k intervals by using the QoS models.

• Symptoms 2: Reactively detect if the QoS of a service- instance has vio-
lated its SLA constraint for k intervals and/or if the utilisation of a CP
has violated the constraint for k intervals.

• Symptoms 3: occurrence of QoS sensitivity changes and deployment changes.

All symptoms are handled by the Plan Scheduler component, which would
be responsible for deciding whether to trigger the Autoscaling decision making
process or the area of effect caused by the violations (step 6). The Autoscaler
component is designed to dynamically search the best adaptation strategies
toward the optimal result, using the QoS and cost models (step 7). In particular,
the Autoscaler of each node is triggered independently and asynchronously.
There are cases where the optimisation for a better autoscaling decision need to
communicate (for obtaining external QoS models) with other nodes because of
the functional dependency between services. In addition, it is critical to ensure
the same objective is not optimised simultaneously on more than one nodes.
These processes are expressed as step 8.1 and 8.2.

Once the elastic strategy is determined, the process proceeds to the Execu-
tor via step 9. In particular, The Executor is responsible for determining which
concrete actions (e.g., scale up/down, in/out and/or VM migration and replica-
tion etc) need to be taken in order to fulfil the elastic strategy. In this work, we
consider both vertical and horizontal scaling and apply a simple solution to de-
termine the actions, this is: we always try vertical scaling (i.e., scale up/down)
first before horizontal scaling (i.e., scale out/in). This is because horizontal scal-
ing is usually more expensive than vertical scaling. As for the VM migration/
replication decision, we always choose the one that result in smaller overhead
based on a predefined VM profiling pattern. Finally, the actions are taken by
the Actuator via step 10 and 11.

Step 3 - Select the Best Pattern(s)

We now select the pattern using the questions presented previously for each
self-awareness and self-expression capability:

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.3: Questions and answers for deciding whether to include stimulus-
awareness.

Stimulus-awareness
What does the capability
mean in your problem con-
text.

The ability to aware of newly-measured data (data for environmental primitives and
control primitives), violations of QoS and utilisation thresholds, QoS sensitivity
changes and deployment changes.

What are the functional
requirements that affected
by this capability?

1. The system must be aware of the changes in workload and deployment.

2. The system should be able to aware of QoS interference.

3. The system must aware of the functional dependency between cloud-based
services.

What are the non-
functional requirements
that affected by this
capability?

1. Accuracy
2. Overhead
3. Adaptation Quality

What are the constraints
that could affect this ca-
pability?

1. VM can be added or removed.

2. Service can be added or removed.

3. Workload for each cloud-based service is fluctuated.

4. QoS interference occurs once there are contentions, in which case the QoS could
be negatively affected.

Whether this capability is
necessary or beneficial? Yes

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.4: Questions and answers for deciding whether to include time-
awareness.

Time-awareness
What does the capability
mean in your problem con-
text.

The ability to aware of historical behaviours of cloud-based services, the continuous
consequences of autoscaling decisions and the emergent events that occurred in the
past.

What are the functional
requirements that affected
by this capability?

1. The system must record historical data for analysing the behaviours of cloud-
based services.

What are the non-
functional requirements
that affected by this
capability?

1. Accuracy
2. Adaptation Quality
3. Overhead

What are the constraints
that could affect this ca-
pability?
Whether this capability is
necessary or beneficial? Yes

Table 3.5: Questions and answers for deciding whether to include interaction-
awareness.

Interaction-awareness
What does the capability
mean in your problem con-
text.

The ability to aware of the state (e.g., QoS models) of other nodes because of
functional dependency; and also the possible internal interactions of local services.

What are the functional
requirements that affected
by this capability?

1. The system must aware of the functional dependency between cloud-based
services across nodes.

What are the non-
functional requirements
that affected by this
capability?

1. Accuracy
2. Adaptation Quality
3. Overhead

What are the constraints
that could affect this ca-
pability?
Whether this capability is
necessary or beneficial? Yes

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.6: Questions and answers for deciding whether to include goal-
awareness.

Goal-awareness
What does the capability
mean in your problem con-
text.

The ability to aware of the QoS and cost objectives of cloud-based services. In
addition, it should also aware of the changes.

What are the functional
requirements that affected
by this capability?

1. The system must aware of the functional dependency between cloud-based
services.

2. The system should be able to cope with any given QoS attributes and cost
objective of cloud-based services.

3. The system should be able to cope with any runtime changes of QoS and cost
objectives made by the service providers.

What are the non-
functional requirements
that affected by this
capability?

1. Adaptation Quality
2. Overhead

What are the constraints
that could affect this ca-
pability?

1. The cost of the cloud-based services that being managed should not exceed its
defined budget.

Whether this capability is
necessary or beneficial? Yes

Table 3.7: Questions and answers for deciding whether to include self-expression.

Self-expression
What does the capability
mean in your problem con-
text.

The ability to change the configurations, tactics and resource provisioning of a
node.

What are the functional
requirements that affected
by this capability?

1. The system must able to control both software and hardware control primitives.

2. The system should support both vertical and horizontal scaling.

What are the non-
functional requirements
that affected by this
capability?

1. Adaptation Quality
2. Overhead

What are the constraints
that could affect this ca-
pability?

1. VM can be added or removed.

2. Service can be added or removed.
Whether this capability is
necessary or beneficial? Yes

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.8: Questions and answers for deciding whether to include met-self-
awareness.

Meta-self-awareness
What does the capability
mean in your problem con-
text.

The ability to improve the goal-awareness by either dynamically finding the best
technique or using ensemble methods.

What are the functional
requirements that affected
by this capability?

1. The system must be aware of the changes in workload and deployment.

2. The system should be able to aware of QoS interference.

3. The system must aware of the functional dependency between cloud-based
services.

What are the non-
functional requirements
that affected by this
capability?

1. Accuracy
2. Reliability
3. Adaptation Quality
4. Overhead

What are the constraints
that could affect this ca-
pability?
Whether this capability is
necessary or beneficial? Yes

According to the above analysis and the aforementioned Table 3.1, the se-
lected pattern for this cloud case study is the Goal Sharing with time-awareness
capability Pattern.

Step 4 - Fit the Selected Pattern(s)

We now fit the proposed architecture to the selected pattern, as shown in the
Figure 3.3 below.

Step 5 - Determine the Important Primitives and the Possible Alter-
natives for Non-functional Requirements

It is worth noting that certain primitives are eliminated form consideration as
they are trivial in this problem context, these are: transit, link andstructure.
Transitis eliminated because all the capabilities are associated with at least one
functional requirements, therefore we do not need to consider the possibility of
switch on/off certain capabilities at runtime in this case. As for link, we consider
that the topology of components is constrained by the environment and func-
tional requirements, thus it does not significantly influence the non-functional
requirements. Similarity, the structure primitive is eliminated because how the
capabilities are distributed into components is not significantly associated with
the non-functional requirements in our case.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Meta-self-
awareness

Autoscaler

QoS FunctionTrainerPrimitive Selector
Plan Scheduler

Primitive Selector
Plan Scheduler

QoS FunctionTrainer
Plan Scheduler

QoS FunctionTrainer

Figure 3.3: Fit the proposed architecture to Goal Sharing with time-awareness
capability Pattern

In addition, we eliminated some techniques as they are fundamentally not
applicable in our case due to the constraints and non-functional requirements.
Precisely, the Table below list the rest architectural primitives and the possible
alternatives for this case study:

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.9: The chosen architectural primitives and their alternatives for the
cloud case study.

Architectural
Primitives Alternatives

stimulus-awareness

Symmetric Uncertainty Measurement, Queuing Network, Queuing Network +Sim-
ple Update Function, Sensitivity and Region-based Partitioning+Symmetric Un-
certainty Measurement, Symmetric Uncertainty Measurement+ Conditions-Actions
Rule, Symmetric Uncertainty Measurement+ Conditions-Actions Rule+ Sensitivity
and Region-based Partitioning

interaction-awareness Threshold-based Algorithm, Symmetric Uncertainty Measurement, Sensitivity and
Region-based Partitioning+Symmetric Uncertainty Measurement

time-awareness Linear ARMAX, Neural Network, Regression Tree, Linear ARMAX+Neural Net-
work+ Regression Tree (need meta-self-awareness)

goal-awareness

Linear ARMAX, Neural Network, Regression Tree, Sensitivity and Region-based
Partitioning+Linear ARMAX, Sensitivity and Region-based Partitioning+Neural
Network, Sensitivity and Region-based Partitioning+Regression Tree, Sensitivity
and Region-based Partitioning+Linear ARMAX+Neural Network+ Regression Tree
(need meta-self-awareness)

self-expression Random Optimisation, Static Mapping, Brute Force Optimization,

meta-self-awareness Bucket of Models, Ensemble Method

send synchronous function call+asynchronous multicast, asynchronous function
call+asynchronous multicast

handle First-Come-First-Serve (FCFS), multi-threading, First-Come-First-Serve
(FCFS)+multi-threading

state proactive Goal-awareness, reactive Goal-awareness, proactive+reactive Goal-
awareness

existence exist, non-exist

Step 6 - Create Scenarios

We now defined some scenarios for each non-functional attribute. In particular,
the accuracy analysis uses 3 scenarios represents the most common facts in the
cloud:

• The cloud-based services are under different level of burst workload.

• QoS interference occurs due to contention.

• There are VM migration/replication taken place due to actuations.

For adaptation quality analysis, we use 3 scenarios to assess how the self-
aware and self-expressive system behaves.

• There are some amount of conflicted and harmonic objectives of different
cloud-based services.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

• There are some amount of conflicted and harmonic objectives of different
cloud-based services.

• The cloud-based services are under different level of burst workload.

For overhead analysis, we assume 2 scenarios, representing the anticipated
way in which the system could suffer from overhead.

• More than one cloud-based services located on each VM.

• More than one VMs hosted on each node.

For the reliability analysis, we only use one scenario. In particular, this
attribute is measured by empirical method [4] instead of simulation models as
it involved unknown workload.

• The cloud-based services are under unknown workload and/or events

Step 7 - Score the Alternative of Primitives Against each Non-functional
Attribute using Analytical or Simulation Models

According to the steps mentioned previously, we first weight the relative im-
portance of different non-functional attributes after negotiation amongst the
stackholders. The results are shown as below:

Table 3.10: The weights of different non-functional attributes for the cloud case
study.

Attribute Weight

Accuracy 0.1

Adaptation Quality 0.75

Overhead 0.05

Reliability at runtime 0.1

Secondly, we score each alternative of all primitives against each non-functional
attribute under every defined scenarios. In particular, we run simulation for each
alternative under the aforementioned scenarios. The results are shown as be-
low (the score of 0 means they have no or limited impact to the non-functional
attribute):

Table 3.11: The scores of different alternatives for accuracy.

Accuracy (%)

Alternative Scenario
1

Scenario
2

Scenario
3

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

stimulus-
awareness Symmetric Uncertainty Measurement 84.1 84.5 85.7

Threshold-based Algorithm 54.3 39.5 55.4

Simple Update Function 56.4 40.7 56.2

Sensitivity and Region-based Partitioning+Symmetric Un-
certainty Measurement 84.1 84.5 85.7

Symmetric Uncertainty Measurement+ Conditions-Actions
Rule 84.1 84.5 85.7

Symmetric Uncertainty Measurement+ Conditions-Actions
Rule+ Sensitivity and Region-based Partitioning 84.1 84.5 85.7

interaction-
awareness Conditions-Actions Rule 0 0 0

Symmetric Uncertainty Measurement 84.1 84.5 85.7

Sensitivity and Region-based Partitioning+Symmetric Un-
certainty Measurement 84.1 84.5 85.7

time-
awareness Linear ARMAX 83.3 82.1 80.2

Neural Network 85.4 85 86.1

Regression Tree 75.4 70.2 73.3

Linear ARMAX+Neural Network+ Regression Tree (need
meta-self-awareness) 84.1 84.5 85.7

goal-
awareness Linear ARMAX 83.3 82.1 80.2

Neural Network 85.4 85 86.1

Regression Tree 75.4 70.2 73.3

Sensitivity and Region-based Partitioning+Linear ARMAX 83.3 82.1 80.2

Sensitivity and Region-based Partitioning+Neural Network 85.4 85 86.1

Sensitivity and Region-based Partitioning+Regression Tree 75.4 70.2 73.3

Sensitivity and Region-based Partitioning+Linear AR-
MAX+Neural Network+ Regression Tree (need meta-self-
awareness)

84.1 84.5 85.7

self-
expression Random Optimization 0 0 0

Static Mapping 0 0 0

Brute Force Optimization 0 0 0

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

meta-self-
awareness Bucket of Models 84.1 84.5 85.7

Ensemble Method 78.6 81.1 80.5

send synchronous function call+asynchronous multicast 0 0 0

asynchronous function call+asynchronous multicast 0 0 0

handle First-Come-First-Serve (FCFS) 0 0 0

multi-threading 0 0 0

First-Come-First-Serve (FCFS)+multi-threading 0 0 0

state proactive Goal-awareness 0 0 0

reactive Goal-awareness 0 0 0

proactive+reactive Goal-awareness 0 0 0

existence exist 84.1 84.5 85.7

non-exist 80.3 76.1 79.2

Table 3.12: The scores of different alternatives for adaptation quality.

Adaptation Quality (calculated by Eq 7.)

Alternative Scenario
1

Scenario
2

Scenario
3

stimulus-
awareness Symmetric Uncertainty Measurement 5.7 4.2 4.7

Threshold-based Algorithm 4.8 4.1 4.5

Simple Update Function 5.2 4.7 3.9

Sensitivity and Region-based Partitioning+Symmetric Un-
certainty Measurement 5.8 4.4 4.8

Symmetric Uncertainty Measurement+ Conditions-Actions
Rule 5.8 4.5 4.7

Symmetric Uncertainty Measurement+ Conditions-Actions
Rule+ Sensitivity and Region-based Partitioning 6.2 5.6 4.9

interaction-
awareness Conditions-Actions Rule 4.3 4 3.5

Symmetric Uncertainty Measurement 5.7 4.2 4.7

Sensitivity and Region-based Partitioning+Symmetric Un-
certainty Measurement 5.9 5.2 4.9

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

time-
awareness Linear ARMAX 4.3 4.5 3.9

Neural Network 6 5.1 5.2

Regression Tree 4 4.4 4.5

Linear ARMAX+Neural Network+ Regression Tree (need
meta-self-awareness) 5.8 4.8 5.1

goal-
awareness Linear ARMAX 4.3 4.5 3.9

Neural Network 6.1 5.2 5

Regression Tree 4 4.4 4.5

Sensitivity and Region-based Partitioning+Linear ARMAX 4.4 4.8 4.1

Sensitivity and Region-based Partitioning+Neural Network 5.9 5.3 5.2

Sensitivity and Region-based Partitioning+Regression Tree 4.5 4.8 4.6

Sensitivity and Region-based Partitioning+Linear AR-
MAX+Neural Network+ Regression Tree (need meta-self-
awareness)

5.8 4.8 5.1

self-
expression Random Optimization 4.8 4.9 4.8

Static Mapping 4.7 4.6 4.9

Brute Force Optimization 5 5.2 5.1

meta-self-
awareness Bucket of Models 5.5 5.4 5.3

Ensemble Method 5.9 5.1 4.9

send synchronous function call+asynchronous multicast 0 0 0

asynchronous function call+asynchronous multicast 0 0 0

handle First-Come-First-Serve (FCFS) 0 0 0

multi-threading 0 0 0

First-Come-First-Serve (FCFS)+multi-threading 0 0 0

state proactive Goal-awareness 4.6 4.5 4.1

reactive Goal-awareness 4.8 4.9 3.9

proactive+reactive Goal-awareness 5 5.1 5

existence exist 5.8 5.3 5.1

non-exist 4.1 4.5 4.1

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.13: The scores of different alternatives for overhead.

Overhead (s) (instead of measure the overhead of the whole system, we measure the overhead
of each alternative)

Alternative Scenario
1 Scenario 2

stimulus-
awareness Symmetric Uncertainty Measurement 1.2 1.3

Threshold-based Algorithm 0.7 0.6

Simple Update Function 0.7 0.6

Sensitivity and Region-based Partitioning+Symmetric Un-
certainty Measurement 1.7 1.5

Symmetric Uncertainty Measurement+ Conditions-Actions
Rule 1.2 1.3

Symmetric Uncertainty Measurement+ Conditions-Actions
Rule+ Sensitivity and Region-based Partitioning 1.7 1.5

interaction-
awareness Conditions-Actions Rule 0.8 0.8

Symmetric Uncertainty Measurement 1.2 1.3

Sensitivity and Region-based Partitioning+Symmetric Un-
certainty Measurement 1.7 1.4

time-
awareness Linear ARMAX 1.2 1.2

Neural Network 35.4 27.9

Regression Tree 5.1 3.6

Linear ARMAX+Neural Network+ Regression Tree (need
meta-self-awareness) 41.2 33.3

goal-
awareness Linear ARMAX 1.2 1.2

Neural Network 35.4 27.9

Regression Tree 5.1 3.6

Sensitivity and Region-based Partitioning+Linear ARMAX 2.7 2.3

Sensitivity and Region-based Partitioning+Neural Network 36.9 29

Sensitivity and Region-based Partitioning+Regression Tree 6.6 4.7

Sensitivity and Region-based Partitioning+Linear AR-
MAX+Neural Network+ Regression Tree (need meta-self-
awareness)

42.7 34.4

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

self-
expression Random Optimization 55.4 49.3

Static Mapping 135.3 118.2

Brute Force Optimization 154.3 144.2

meta-self-
awareness Bucket of Models 5.5 5

Ensemble Method 7.8 6.3

send synchronous function call+asynchronous multicast 37.3 35.3

asynchronous function call+asynchronous multicast 11.4 13.2

handle First-Come-First-Serve (FCFS) 35.5 37

multi-threading 12.3 10

First-Come-First-Serve (FCFS)+multi-threading 18.8 23.7

state proactive Goal-awareness 0 0

reactive Goal-awareness 0 0

proactive+reactive Goal-awareness 0 0

existence exist 41.2 33.3

non-exist 35.4 27.9

Table 3.14: The scores of different alternatives for reliability.

Reliability (relative weights)

Alternative Scenario 1

stimulus-
awareness Symmetric Uncertainty Measurement 5

Threshold-based Algorithm 1

Simple Update Function 1

Sensitivity and Region-based Partitioning+Symmetric Uncertainty Mea-
surement 5

Symmetric Uncertainty Measurement+ Conditions-Actions Rule 7

Symmetric Uncertainty Measurement+ Conditions-Actions Rule+ Sen-
sitivity and Region-based Partitioning 7

interaction-
awareness Conditions-Actions Rule 1

Symmetric Uncertainty Measurement 7

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Sensitivity and Region-based Partitioning+Symmetric Uncertainty Mea-
surement 7

time-
awareness Linear ARMAX 1

Neural Network 1

Regression Tree 1

Linear ARMAX+Neural Network+ Regression Tree (need meta-self-
awareness) 7

goal-
awareness Linear ARMAX 1

Neural Network 1

Regression Tree 1

Sensitivity and Region-based Partitioning+Linear ARMAX 1

Sensitivity and Region-based Partitioning+Neural Network 1

Sensitivity and Region-based Partitioning+Regression Tree 1

Sensitivity and Region-based Partitioning+Linear ARMAX+Neural
Network+ Regression Tree (need meta-self-awareness) 7

self-
expression Random Optimization 5

Static Mapping 1

Brute Force Optimization 5

meta-self-
awareness Bucket of Models 1

Ensemble Method 1

send synchronous function call+asynchronous multicast 1

asynchronous function call+asynchronous multicast 1

handle First-Come-First-Serve (FCFS) 1

multi-threading 1

First-Come-First-Serve (FCFS)+multi-threading 1

state proactive Goal-awareness 1

reactive Goal-awareness 1

proactive+reactive Goal-awareness 1

existence exist 1

non-exist 1

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Once we obtain all the scores and calculate the total score for all scenarios,
we then normalised the scores using Eq. 3.3, the results are shown in Table
3.15.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.15: The normalised scores of different alternatives for all non-functional
attributes.

Alternative Accuracy Adaptation
Quality Overhead Reliability

stimulus-
awareness Symmetric Uncertainty Measurement 0.192 0.165 0.821 0.19

Threshold-based Algorithm 0.112 0.151 0.907 0.04

Simple Update Function 0.116 0.156 0.907 0.04
Sensitivity and Region-based Partition-
ing+Symmetric Uncertainty Measurement 0.192 0.169 0.771 0.19

Symmetric Uncertainty Measurement+
Conditions-Actions Rule 0.192 0.169 0.821 0.27

Symmetric Uncertainty Measurement+
Conditions-Actions Rule+ Sensitivity and
Region-based Partitioning

0.2 0.189 0.771 0.27

interaction-
awareness Conditions-Actions Rule 0 0.278 0.777 0.07

Symmetric Uncertainty Measurement 0.5 0.344 0.653 0.47
Sensitivity and Region-based Partition-
ing+Symmetric Uncertainty Measurement 0.5 0.377 0.569 0.47

time-
awareness Linear ARMAX 0.252 0.22 0.984 0.1

Neural Network 0.263 0.283 0.575 0.1

Regression Tree 0.224 0.224 0.942 0.1
Linear ARMAX+Neural Network+ Regression
Tree (need meta-self-awareness) 0.261 0.273 0.5 0.7

goal-
awareness Linear ARMAX 0.145 0.125 0.99 0.08

Neural Network 0.151 0.161 0.729 0.08

Regression Tree 0.129 0.127 0.963 0.08
Sensitivity and Region-based Partition-
ing+Linear ARMAX 0.145 0.131 0.979 0.08

Sensitivity and Region-based Partition-
ing+Neural Network 0.151 0.162 0.718 0.08

Sensitivity and Region-based Partition-
ing+Regression Tree 0.129 0.137 0.952 0.08

Sensitivity and Region-based Partition-
ing+Linear ARMAX+Neural Network+
Regression Tree (need meta-self-awareness)

0.15 0.155 0.670 0.54

self-
expression Random Optimization 0 0.33 0.841 0.45

Static Mapping 0 0.323 0.614 0.09

Brute Force Optimization 0 0.348 0.545 0.45
meta-self-
awareness Bucket of Models 0.514 0.509 0.573 0.5

Ensemble Method 0.486 0.491 0.427 0.5

send synchronous function call+asynchronous multi-
cast 0 0 0.253 0.5

asynchronous function call+asynchronous mul-
ticast 0 0 0.747 0.5

handle First-Come-First-Serve (FCFS) 0 0 0.472 0.33

multi-threading 0 0 0.838 0.33
First-Come-First-Serve (FCFS)+multi-
threading

0 0 0.690 0.33

state proactive Goal-awareness 0 0.315 0 0.33

reactive Goal-awareness 0 0.324 0 0.33

proactive+reactive Goal-awareness 0 0.360 0 0.33

existence exist 0.519 0.541 0.46 0.5

non-exist 0.481 0.459 0.54 0.5

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Step 8 - Find the Best Alternatives for the Final Architecture View

Finally, we search for the alternative that resulting the highest value using Eq.
3.4. The final output of the selected alternatives is list as in Table 3.16.

Table 3.16: The normalised scores of selected alternatives for all non-functional
attributes.

Selected Alternative AccuracyAdaptation
Quality Overhead Reliability

stimulus-
awareness

Symmetric Uncertainty Measurement+
Conditions-Actions Rule+ Sensitivity and Region-
based Partitioning

0.2 0.189 0.771 0.27

interaction-
awareness

Sensitivity and Region-based Partition-
ing+Symmetric Uncertainty Measurement 0.5 0.377 0.569 0.47

time-
awareness

Linear ARMAX+Neural Network+ Regression
Tree (need meta-self-awareness) 0.261 0.273 0.5 0.7

goal-
awareness

Sensitivity and Region-based Partitioning+Linear
ARMAX+Neural Network+ Regression Tree (need
meta-self-awareness)

0.15 0.155 0.670 0.54

self-
expression Random Optimization 0 0.33 0.841 0.45

meta-self-
awareness Bucket of Models 0.514 0.509 0.573 0.5

send asynchronous function call+asynchronous multi-
cast 0 0 0.747 0.5

handle multi-threading 0 0 0.838 0.33

state proactive+reactive Goal-awareness 0 0.360 0 0.33

existence exist 0.519 0.541 0.46 0.5

This selection gives us the highest score of 15.437 according to Eq 4. Once
we combine the results with those primitives, which were eliminated at the
beginning of this step, the detailed variation of our architectural instance based
on the Goal Sharing Pattern with time-awareness is shown in the Table 3.17.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.17: The selected alternatives for the cloud case study.

stimulus-
awareness

interaction-
awareness

time-
awareness

goal-
awareness

self-
expression

meta-self-
awareness

sensor actuator

Selected
alternative(s)

Symmetric
Uncer-
tainty
Measure-
ment+
Conditio-
ns-
Actions
Rule+
Sensitiv-
ity and
Region-
based
Partition-
ing

Sensitivity
and
Region-
based
Partit-
ioning+S-
ymmetric
Uncer-
tainty
Measure-
ment

Linear
AR-
MAX+N
-eural
Net-
work+
Regres-
sion
Tree

Sensitivity
and
Region-
based
Partition-
ing+Linear
AR-
MAX+N
-eural
Net-
work+
Regres-
sion
Tree

Random
Opti-
mization

Bucket of
Models

send synchr-
onous N/A N/A N/A N/A N/A N/A N/A N/A

asynch-
ronous

function
call

function
call

function
call

function
call

function
call

function
call

function
call multicast

handle sequential N/A N/A N/A N/A N/A N/A N/A N/A

parallel multi-
threading

multi-
threading

multi-
threading

multi-
threading

multi-
threading

multi-
threading

multi-
threading

multi-
threading

state reactive reactive reactive
proactive

and
reactive

proactive proactive

transit N/A

link
one-to-
one

many-to-
many,
one-to-
one

one-to-
one

one-to-
one

one-to-
many

one-to-
many

structure combine+
separate

combine+
separate combine combine+

separate
compact combine compact compact

existence exist

Quantitative Experiments

In this section, we conduct quantitative evaluation by experimenting our self-
aware and self-expressive system against a non self-aware system, which adapts
simple rule-based policies. We primary assess the adaptation quality for cloud-
based services under the management of these two systems. The observed adap-

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

tation quality is measured by score, which is the average result calculated by
Eq. 3.7 for the interval after a previous elasticity decision point and before the
next one. Each of these intervals is referred to as effect point.

To evaluate global benefit of the elastic strategies produced by our archi-
tecture and the overhead for reaching these strategies, we have conducted an
experimental evaluation. In particular, we have implemented the architecture
prototype using Java JDK1.6, and we assessed the elastic scaling of 8 hypo-
thetical cloud-based service-instances under the control of our prototype. In
the experiment setup, each service-instance was deployed on software stack in-
cluding Apache, Tomcat and MySQL. We simulate a synthetical workload to
each service-instance. The workload has been designed in a way that the inten-
sity was sufficient for causing QoS interference on the co-located services and
co-hosted VMs. The testbed is a private cloud, where PMs are connected by
Gigabit Ethernet and a switch. Xen [3] is used as the underlying hypervisor.
The initial deployment and the considered CP/EP of our experiments are shown
on Table 3.18. The scale of each CP and their corresponding prices are specified
in Table 3.19.

For simplicity, we assume that the service-instances and their QoS/cost are
equivalently important and thus all weights in the global objective function (Eq.
3.7) are set to 1. In addition, we consider both vertical and horizontal scaling;
and apply a simple solution to determine the actions, this is: we always try
vertical scaling (i.e., scale up/down) first before horizontal scaling (i.e., scale
out/in). This is because horizontal scaling is usually more expensive than ver-
tical scaling.

Table 3.18: Initial deployments and the examined objectives/primitives

PM VM Service-
instance Objectives Software CP Hardware CP EP

PM1 VM S11
Throughput and

cost
The max
threads CPU and Memory workload

S21
Throughput and

cost
The max
threads workload

VM S31
Throughput and

cost
The max
threads CPU and Memory workload

S41
Throughput and

cost
The max
threads workload

PM2 VM S12
Throughput and

cost
The max
threads CPU and Memory workload

S51
Throughput and

cost
The max
threads workload

PM3 VM S32
Throughput and

cost
The max
threads CPU and Memory workload

S61
Throughput and

cost
The max
threads workload

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.19: Scaling options and price of control primitives

CP Optional Values Unit Price

Max Threads 5,10,15,20,25,30,35,40,45,50 Thread count $0.8 for each 5 unit per hr

CPU 1, 2,3, 4,5,6, 7, 8 Compute
Unit $2.5 for each 1 unit per hr

Memory 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,
1.5,1.6,1.7,1.8,1.9,2 GB $1.5 for each 0.1 unit per

hr

Figure 3.4: The global adaptation quality with respect to effect points

Figure 3.4 illustrate the results of the score (y- axis) in relation to each effect
point (x-axis). we can clearly see that the self-aware system perform much
better than the non-self-aware one along the entire time series. This is due to
the fact that the non-self-aware system ignores the sensitivity caused by QoS
interferences on co-located services and co-hosted VMs, which are significant in
our experiments.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

3.2.2 Smart Camera Networks Case Study
In the following, we qualitatively evaluate the proposed methodology by showing
how it can be applied in the smart camera networks case study. We also show
the experiments that compare the resulted system with a non-self-aware system.

Step 1 - Collect Requirements and Constraints

The requirements and constraints of the smart camera networks context as
shown in the Table below:

Table 3.20: The functional, non-functional requirements and constraints for the
smart camera networks case study.

Functional Requirements

The system should continuously track objects while they are visible to at least one camera of the network.

The system has to coordinate tracking of objects within a network of smart cameras via handover.

Each camera of the system has to be able to track objects autonomously within its own FOV.

The system has to be able to re-identify objects reliably within various cameras with different viewpoints.

Each camera has to be able to record information about its local handover behaviour.

The system should notice disappeared objects.

The system should be robust to node failures.

The system should be extensible (add new cameras during runtime).
The system should minimise communication effort while maximising tracking responsibility.

Non-functional Requirements

Maximise tracking utility.

Minimise the number of exchange messages in the network.

Constraints

Cameras can be added or removed during runtime.

Tracker can fail during execution.

Resources on each camera may not be exceeded.

the observed area has to be illuminated.

Step 2 - Propose Candidate Architecture

The presented architecture is implemented on distributed smart cameras. The
workflow of the proposed architecture has been shown in Figure 3.5 . The sensor
on each camera senses the current environment. The image acquisition collects
the image data (step 1) from the sensor and transmits it to the tracking al-
gorithm (step 2). The tracking algorithm detects and identifies the objects of
interest. In case the object moves out of the scope of the current camera, the

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Tracking Algorithm

Image Acquisition Data Collector

Handover
Mechanism

1

2

3

4
5

Resource Monitor 7

8
10

11

Sensor

Communication
Interface

Camera 1

Camera i
6

9

Figure 3.5: The proposed architecture

tracking algorithm initialises the handover mechanism (step 3). The handover
mechanism requests available cameras to continue tracking from the data col-
lector (step 4). Afterwards, the handover mechanism notifies those cameras and
requests their tracking capabilities via the communication interface (step 5 and
6). Upon receiving such a request, the camera analyses its available resources
(step 7) and tries to detect the object of interest (step 8). If the camera is
able to track the object, it notifies the initial camera (step 9). When the initial
camera received a reply from all contacted cameras, the next camera can be
selected via the handover mechanism (step 10). Information about the cameras
able to track the object are stored in the data collector and serve as a reference
for future coordination (step 11).

Step 3 - Select the Best Pattern(s)

We now select the pattern using the questions presented previously for each
self-awareness and self-expression capability:

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.21: Questions and answers for deciding whether to include stimulus-
awareness.

Stimulus-awareness
What does the capability
mean in your problem con-
text.

Locate and value objects within own field of view of a camera.

What are the functional
requirements that affected
by this capability?

1. The system should continuously track objects while they are visible to at least
one camera of the network.

2. The system has to coordinate tracking of objects within a network of smart
cameras via handover.

3. Each camera of the system has to be able to track objects autonomously within
its own FOV.

4. The system has to be able to re-identify objects reliably within various cameras
with different viewpoints.

5. The system should notice disappeared objects.
What are the non-
functional requirements
that affected by this
capability?

1. Maximise tracking utility.

What are the constraints
that could affect this ca-
pability?

1. Cameras can be added or removed during runtime.

2. Tracker can fail during execution.

3. Resources on each camera may not be exceeded.

4. The observed area has to be illuminated.
Whether this capability is
necessary or beneficial? Yes

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.22: Questions and answers for deciding whether to include time-
awareness.

Time-awareness
What does the capability
mean in your problem con-
text.

Unlearn previously learnt information in case something changes. Explore and
exploit behavioural strategies.

What are the functional
requirements that affected
by this capability?

1. The system has to coordinate tracking of objects within a network of smart
cameras via handover.

2. Each camera has to be able to record information about its local handover
behaviour.

3. The system should minimise communication effort while maximising tracking
responsibility.

What are the non-
functional requirements
that affected by this
capability?

1. Maximise tracking utility.

2. Minimise the number of exchange messages in the network.

What are the constraints
that could affect this ca-
pability?
Whether this capability is
necessary or beneficial? Yes

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.23: Questions and answers for deciding whether to include interaction-
awareness.

Interaction-awareness
What does the capability
mean in your problem con-
text.

Reaction to auctions, bids and handover. Definition of neighbourhood based on
auctions.

What are the functional
requirements that affected
by this capability?

1. The system has to coordinate tracking of objects within a network of smart
cameras via handover.

2. The system has to be able to re-identify objects reliably within various cameras
with different viewpoints.

3. The system should be robust to node failures.

4. The system should be extensible (add new cameras during runtime).
What are the non-
functional requirements
that affected by this
capability?

1. Minimise the number of exchange messages in the network.

What are the constraints
that could affect this ca-
pability?

1. Cameras can be added or removed during runtime.

2. Tracker can fail during execution.

3. Resources on each camera may not be exceeded.

4. The observed area has to be illuminated.
Whether this capability is
necessary or beneficial? Yes

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.24: Questions and answers for deciding whether to include goal-
awareness.

Goal-awareness
What does the capability
mean in your problem con-
text.

Utility function for objects to be tracked. Performance measurement of different
strategies.

What are the functional
requirements that affected
by this capability?

1. Each camera of the system has to be able to track objects autonomously within
its own FOV.

2. The system has to be able to re-identify objects reliably within various cameras
with different viewpoints.

3. The system should minimise communication effort while maximising tracking
responsibility.

What are the non-
functional requirements
that affected by this
capability?

1. Maximise tracking utility.

2. Minimise the number of exchange messages in the network.

What are the constraints
that could affect this ca-
pability?
Whether this capability is
necessary or beneficial? Yes

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.25: Questions and answers for deciding whether to include self-
expression.

Self-expression
What does the capability
mean in your problem con-
text.

Sending out auction invitations and bids.

What are the functional
requirements that affected
by this capability?

1. The system has to coordinate tracking of objects within a network of smart
cameras via handover.

2. Each camera has to be able to record information about its local handover
behaviour.

3. The system should be robust to node failures.

4. The system should be extensible (add new cameras during runtime).
What are the non-
functional requirements
that affected by this
capability?

1. Minimise the number of exchange messages in the network.

What are the constraints
that could affect this ca-
pability?

1. Cameras can be added or removed during runtime.

2. Tracker can fail during execution.

3. Resources on each camera may not be exceeded.
Whether this capability is
necessary or beneficial? Yes

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.26: Questions and answers for deciding whether to include meta-self-
awareness.

Meta-self-awareness
What does the capability
mean in your problem con-
text.

Bandit solvers.

What are the functional
requirements that affected
by this capability?

1. The system should notice disappeared objects.

What are the non-
functional requirements
that affected by this
capability?

1. Maximise tracking utility.

2. Minimise the number of exchange messages in the network.

What are the constraints
that could affect this ca-
pability?
Whether this capability is
necessary or beneficial? Yes

In summary, we again select the Goal Sharing with time-awareness capability
pattern including meta-self-awareness capabilities. This selection is based on the
aforementioned Table ??.

Step 4 - Fit the Selected Pattern(s)

We now fit the proposed architecture to the selected pattern, as shown in the
Figure 3.6 below.

Step 6 to Step 8

In smart camera systems, any alternative mechanisms apply either a central
component (server) or introduce a priori knowledge about the scenario to coor-
dinate tracking responsibilities. In the EPiCS smart camera demonstrator we
do not have both assumptions and deploy our system without any knowledge
of the scenario and without any central coordination. This allows a quick de-
ployment of such a system in a highly dynamic environment. Due to the lack
of applicable alternatives, we are not able to compare our approach directly.
However, the benefits of our socio-economic approach in comparison to a prior
knowledge and fixed communication partners is presented in the quantitative
experiments.

The details of the final architecture are shown in the Table 3.27 below:

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Table 3.27: The selected alternatives for the smart-camera case study.

stimulus-
awareness

interaction-
awareness

time-
awareness

goal-
awareness

self-
expression

meta-self-
awareness

sensor actuator

Selected
alternative(s)

Object
detec-
tion and
tracking

Reaction
to auc-
tions,
bids and
handover

Artificial
phero-
mones
in vision
graph

Utility
function
and local
perfor-
mance
measure-
ment

Commun-
ication
poli-
cies and
auction
schedules

Multi-
armed
bandit
problem
solvers

send synchr-
onous N/A N/A N/A N/A N/A N/A N/A N/A

asynch-
ronous

function
call

function
call

function
call

function
call

function
call

function
call

function
call multicast

handle sequential N/A N/A N/A N/A N/A N/A N/A N/A

parallel multi-
threading

multi-
threading

multi-
threading

multi-
threading

multi-
threading

multi-
threading

multi-
threading

multi-
threading

state reactive
proactive

and
reactive

proactive
and

reactive
reactive

proactive
and

reactive

proactive
and

reactive
transit N/A

link
one-to-
one

many-to-
many,
one-to-
one

one-to-
one

one-to-
one

one-to-
many

one-to-
many

structure compact combine+
separate

compact combine+
separate

combine+
separate

compact compact compact

existence exist

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

Multi-armed bandit
problem solver

Valuation of objects
& local performance

Participation in &
reaction to auctions

Object detection
& tracking

Artificial pheromones
in vision graph

Communication policies &
auction schedules

Figure 3.6: Fit the proposed architecture to Goal Sharing with time-awareness
capability Pattern including meta-self-awareness capabilities.

Quantitative Experiments

We conduct experiments with our smart camera case study using our self-aware,
socio-economic approach and compare the results with a non-self-aware ap-
proach where each camera only communicates with its direct neighbours. In
the self-aware approach, these neighbourhood relations are learnt online while
in the non-self-aware approach the neighbourhood relationships are defined a
priori and are not adapted during runtime. We simulate different scenarios and
change the network of cameras during runtime. These so-called uncertainties
affect the camera network only in the form of adding new cameras, remove ex-
isting cameras for a certain time or change the location and/or orientation of a
camera. We measure the generated utility during runtime and show the accu-
mulated utility for the entire network over time for all self-aware as well as the
non-self-aware approach.

Since we are interested in performing repeatable experiments to investigate
adaptivity and robustness issues, we used the simulation environment Cam-
Sim [11] with different scripted experimental setups of smart-camera networks.
In the following subsection the different experimental scenarios will be described.
For our experiments we considered three general scenarios and executed these
scenarios with a variety of objects, paths and events. The different scenarios
are illustrated in Figure 3.7.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

1
2

3 4

5

(6)
(7)

(a) Scenario 1

1

(4)

3

2

(b) Scenario 2

32
1

4 5

(c) Scenario 6

Figure 3.7: Three qualitative different scenarios with various uncertainties.
Green dots represent cameras while grey triangles indicate the corresponding
field of view

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

For the first and second scenarios we defined paths for the object to traverse
along. These paths are illustrated as blue lines. For scenario three, the objects
move in a straight line in a random direction. For each scenario we defined
different experiments using our events. For our three distinctive scenarios we
conducted experiments where we added a camera during runtime, removed an
camera from the test environment and changed the extrinsic parameters of a
camera. An overview is given in the following Table:

Table 3.28: The experiments configurations.

Experiment No. Scenario Action

1 Scenario 1 Add Camera (6)
2 Scenario 1 Remove Camera 3

3 Scenario 1 Change Position 3 to (7)
4 Scenario 2 Add Camera (4)
5 Scenario 2 Remove Camera 2

6 Scenario 2 Change Orientation of Camera 2
by -55 degree

7 Scenario 3 Remove Cameras 1, 2, 3, 4, 5

For the non-self-aware approach applied in the first and second scenario,
neighbourhood relations are defined between cameras only when they have over-
lapping FOVs. For scenario three, neighbourhood relations are defined whenever
an object can traverse from the FOV of one camera to another in a straight line
without appearing in the FOV of any other camera.

Figure 3.8 shows results for experiment number 3 employing our active ap-
proach. We changed the position of a single camera within the environment to
show the ability of our approach to deal with changes of the extrinsic parameters
of cameras. The vertical line shows the time at which the event happened. The
drop in utility gain for the static approach after the event occurred is apparent,
demonstrating its inability to adapt to the change. While the static approach
loses overall utility, the SMOOTH and STEP policies are able to keep a high
utility after the event, indicating their robustness to change.

The results of experiment 4 are shown in Figure 3.9 where we added a new
camera during runtime. The occurrence of the event is indicated with a red
vertical line again at time step 518. The increased accumulated utility using the
active SMOOTH and STEP approach is apparent. Since the camera was placed
at a location which was already covered by a different camera, the improvement
was rather small.

Figure 3.10 illustrates the results of scenario 2 with a camera failure event
(experiment 5), when passive approaches were used. Here the drop of the ac-
cumulated utility is obvious for the static approach, while the socio-economic
approaches are able to relearn the vision graph online and continue tracking the

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

Time

U
til

ity

Broadcast
STEP
SMOOTH
Static

Figure 3.8: Cumulative sum of the entire network utility over time for a typical
simulation run of experiment 3 (Scenario 1 with change event) and using our
passive approaches. The vertical line indicates the timestep when the event
occurred. The simulation ran for 1000 timesteps. We changed the position of
a single camera within the environment to show the ability of our approach to
deal with changes of the extrinsic parameters of cameras.

object within the entire network.

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Time

U
til

ity

Broadcast
STEP
SMOOTH
Static

Figure 3.9: Cumulative sum of the entire network utility over time for a typical
simulation run of experiment 4 comparing our active socio-economic approaches
with a static handover. The red vertical line indicates the timestep when the
event occurred. The simulation ran for 1000 timesteps.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Time

U
til

ity

Broadcast
STEP
SMOOTH
Static

Figure 3.10: Cumulative sum of the entire network utility over time for a typical
simulation run of Scenario 2 with an error event (experiment 5) and using our
active approaches. The red vertical line indicates the timestep when the event
occurred. The simulation lasted for 1000 timesteps.

Bibliography

[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.

[2] Google app engine. http://code.google.com/appengine/.

[3] Xen: a virtual machine monitor. http://xen.xensource.com/.

[4] Tariq Al-Naeem, Ian Gorton, Muhammed Ali Babar, Fethi Rabhi, and
Boualem Benatallah. A quality-driven systematic approach for architecting
distributed software applications. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 244–253, New York,
NY, USA, 2005. ACM.

[5] Tobias Becker, Andreas Agne, Peter R. Lewis, Rami Bahsoon, Funmilade
Faniyi, Lukas Esterle, Ariane Keller, Arjun Chandra, Alexander Refsum
Jensenius, and Stephan C. Stilkerich. Epics: Engineering proprioception
in computing systems. In Proc. Int. Conf. on Computational Science and
Engineering (CSE), pages 353–360. IEEE Computer Society, dec 2012.

[6] Frank Buschmann, Kevlin Henney, and Schmidt C. Douglas. Pattern-
oriented software architecture: On patterns and pattern languages. John
Wiley and Sons, 2007.

[7] Tao Chen and Rami Bahsoon. Self-adaptive and sensitivity-aware qos mod-
eling for the cloud. In Proceedings of the 8th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
’13, pages 43–52, Piscataway, NJ, USA, 2013. IEEE Press.

[8] Tao Chen and Rami Bahsoon. Symbiotic and sensitivity-aware architecture
for globally-optimal benefit in self-adaptive cloud. In Proceedings of the 9th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2014, pages 85–94, New York, NY, USA, 2014.
ACM.

[9] Rogério de Lemos et al. Software engineering for self-adaptive systems: A
second research roadmap.

[10] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. Fusion: a framework
for engineering self-tuning self-adaptive software systems. In Proceedings

79

Chen et al. The Handbook of Engineering Self-Aware and Self-Expressive Systems

of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, FSE ’10, pages 7–16, New York, NY, USA, 2010.
ACM.

[11] Lukas Esterle, Peter R. Lewis, Horatio Caine, Xin Yao, and Bernhard Rin-
ner. Camsim: A distributed smart camera network simulator. In Proceed-
ings of the 2013 IEEE 7th International Conference on Self-Adaptation and
Self-Organizing Systems Workshops, SASOW ’13, pages 19–20, Washing-
ton, DC, USA, 2013. IEEE Computer Society.

[12] Lukas Esterle, Peter R. Lewis, Xin Yao, and Bernhard Rinner. Socio-
economic vision graph generation and handover in distributed smart camera
networks. ACM Trans. Sen. Netw., 10(2):20:1–20:24, January 2014.

[13] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in
cloud computing: What it is, and what it is not. In Proceedings of the 10th
International Conference on Autonomic Computing (ICAC 13), pages 23–
27, San Jose, CA, 2013. USENIX.

[14] Nikunj R. Mehta and Nenad Medvidovic. Composing architectural styles
from architectural primitives. In ESEC / SIGSOFT FSE, pages 347–350.
ACM, 2003.

[15] Daniel A. Menasce, João P. Sousa, Sam Malek, and Hassan Gomaa. Qos
architectural patterns for self-architecting software systems. In Proceedings
of the 7th International Conference on Autonomic Computing, ICAC ’10,
pages 195–204, New York, NY, USA, 2010. ACM.

[16] Clements Paul, Len Bass, and Rick Kazman. Evaluating Software Archi-
tectures: Methods and Case Studies. MA: Addison-Wesley, 1998.

[17] Clements Paul, Rick Kazman, and Mark Klein. Evaluating Software Ar-
chitectures: Methods and Case Studies. Addison-Wesley, 2002.

[18] Thomas L. Saaty. The Analytical Hierarchical Process. McGraw-Hill, 1980.

[19] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela
Mirandola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger
Giese, and KarlM. Göschka. On patterns for decentralized control in self-
adaptive systems. In Rogério Lemos, Holger Giese, HausiA. Müller, and
Mary Shaw, editors, Software Engineering for Self-Adaptive Systems II,
volume 7475 of Lecture Notes in Computer Science, pages 76–107. Springer
Berlin Heidelberg, 2013.

[20] Lijuan Xiao, Yanmin Zhu, L.M. Ni, and Zhiwei Xu. Gridis: An incentive-
based grid scheduling. In Parallel and Distributed Processing Symposium,
2005. Proceedings. 19th IEEE International, page 65b, april 2005.

	Patterns for Self-aware Architecture Style
	Definition of Self-awareness
	Private and Public Self-awareness
	Levels of Self-awareness

	Definition of Self-expression
	Basic Pattern
	Basic Information Sharing Pattern
	Coordinated Decision-making Pattern
	Temporal Knowledge Sharing Pattern
	Temporal Knowledge Aware Pattern
	Goal Sharing Pattern
	Temporal Goal Aware Pattern
	Meta-self-awareness and Self-aware Patterns

	Architectural Primitives for Self-aware Systems
	Architectural Primitives and Candidate Techniques
	Capability
	Behaviour
	Interaction
	Topology

	The Dependency

	Pattern Driven Methodology for Engineering Self-aware and Self-expressive Systems
	The Methodology Overview
	Step 1 - Collect Requirements and Constraints
	Step 2 - Propose Candidate Architecture
	Step 3 - Select the Best Pattern(s)
	Step 4 - Fit the Selected Pattern(s)
	Step 5 - Determine the Important Primitives and the Possible Alternatives for Non-functional Requirements
	Step 6 - Create Scenarios
	Step 7 - Score the Alternative of Primitives Against each Non-functional Attribute using Analytical or Simulation Models
	Step 8 - Find the Best Alternatives for the Final Architecture View

	Qualitative and Quantitative Evaluation
	Cloud Autoscaling Case Study
	Smart Camera Networks Case Study

