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Abstract— Dynamic Optimization Problems (DOPs) have definition of DOPs was provided, and yet the authors studied
been widely studied using Evolutionary Algorithms (EAs). ¥t,  the performance (best-of-generation) of a genetic algorit
a clear and rigorous definition of DOPs is lacking in the with dominance and diploidy on a dynamic 0-1 knapsack

Evolutionary Dynamic Optimization (EDO) community. In thi s S - )
paper, we propose a unified definition of DOPs based on the problem. Similarly, Branke studied the performance (ofé&l

idea of multiple-decision-making discussed in the Reinfaement ~ Performance) of memory-based EAs on the moving peaks
Learning (RL) community. We draw a connection between EDO  benchmark [4], without explicitly defining DOPs.
and RL by arguing that both of them are studying DOPs In some other works [22][1][17], DOPs were simply
according to our definition of DOP_S. We point out that existirg defined as a sequence of SOPs over time, in which the goal
EDO or RL research has been mainly focused on some types of1E h SOP is to find luti imizing the fit
DOPs. A conceptualized benchmark problem, which is aimed or ef”lc IS 10 ind a solution maximizing the '_ness
at the systematic study of various DOPs, is then developed. function of that SOP. Hence, the performance of algorlthms
Some interesting experimental studies on the benchmark real  for such DOPs was measured by the average performance
that EDO and RL methods are specialized in certain types of on each SOP during a considered time interval.
DOPs and more importantly new algorithms for DOPs can be Ci ; ;
developed by combining the strength of both EDO and RL Anothertype of deflnl'tlon of DOPs can be found.ln.[3.]’ In
methods. which DOPs were considered as problems of maximizing an
integration of a Dynamic Fitness Function (DFF) over a time
|. INTRODUCTION period by determining a solution at each time point. Nguyen
. . [14] also defined DOPs as maximizing such an integral,
PTIMIZATION has been long studied using EVOIu'but with a more flexible definition framework than [3] in

: tF|onary b,?lgorlthmsb(EQ's?a (Ze_n(;:ratlly spetakmg, Opot"terms of quantifying how the DFF changes, how previously
mization problems can be divided Ito tWo calegones. ONgqiarmined solutions influence the dynamic, etc.

is Static Optimization Problems (SOPs), and the other is There also exist some descriptions about what DOPs

D_yngmic Optimization Prqblems (DOPs). Without any aM3hould look like. Examples are “optimization problems are
biguity, a SOP can be defined as:

S . . . . considered dynamic only if the EA has to cope with the
Def_lnltlon 1.1: Given a _fltness fun_ctlonf, which is a dynamic” by Branke [5], “If any of those uncertainties reft
mapping from some sed, €., a_soluuon space, to thg realto optimization problems are to be taken into account, we
numbgr'sIR{:,ith, asOpisto flndasoluuéni.e., making o) the problem dynamic” by Jin et al [10], “DOPs are
a deC|S|on,x_ in A such that for ali € “4 Fx) Z F(x). optimization problems which must be solved as time goes
We can think of a SOP as a one-decision-making probler‘By,. by Bosman [3], and “DOPs are a special class of dy-

where only one solution, i.e., one decision, is determied f 5 ic hroplems which are solved on-line by an optimization
a SOP. In contrast, there has not been a consensus abé’lﬁbrithm as time goes by” by Nguyen et al [15].

the definition of DOPs studied in the Evolutionary Dynamic 1o aforementioned four types of definitions of DOPs

Opti.miza.ltion (EDO) community. are limited in different ways. The first type does not define
Historically, many definitions about DOPs have been pronopg explicitly but considers DOPs as problems of adapting

posed in EDO. Applying genetic algorithms to DOPs wag, gojytion to a changing fitness landscape using EAs. This
initially studied by Goldberg and Smith [9]. In [9], no ex@li |56y restricts the possible domain of DOPs, as it unnec-
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and people may interpret the same description differently. this situation, an event corresponds to the arrival of ndg jo

In this paper, we propose a unified definition of DOPsor the breakdown of machines, and a corresponding decision
Our definition is inspired by the idea of multiple-decision4s about scheduling new jobs or re-scheduling some existing
making in the Reinforcement Learning (RL) [18] communityjobs. There are some other examples in the second category
As a result, most problems studied in RL can also be defing@3][6].
as DOPs according to our definition. The contribution of The concept of multiple-decision-making has also been
our definition of DOPs is three-fold. The definition capturesliscussed in RL, in which a decision is also called an action.
the distinctive feature of DOPs compared to SOPs, whichve first introduce some key concepts, borrowed from RL, for
is multiple-decision-making. Secondly, according to oef-d our definition of DOPs in the following.
inition, most problems studied in EDO and RL are DOPs, State: A state contains all the information, which is
and therefore the definition draws a connection between ED@|evant to decision-making. Simply put, a state is assedia
and RL. Thirdly, different types of DOPs studied in EDO andyith a system, with which the decision maker is interacting,
RL can be explicitly categorised within our definition. Theand can be understood as a set of variable¥he system’s
second contribution of this paper is a conceptualized DO&ate is a function of time: the state at timgtept is a,
benchmark, which is derived from our definition of DOPaNhICh is assumed to be dependent on previous states and
and developed for the purpose of systematically studyingecisions made before time step
different types of DOPs. For the third contribution of this  action/Decision/Solution: We use action, decision, and
paper, one representative method from EDO and one repigsjytion interchangeably in this paper. The decision maker
sentative method from RL are tested on our conceptualizggeracts with a DOP system by making decisions, one
DOP benchmark. The purpose is to show that EDO methogdgcision for one time step, in order to maximize a certain
and RL methods are specialised in certain types of DOPgerformance. The action taken at time stejs denoted as
and they can benefit each other in solving DOPs. _ Xs. X; is chosen from an action set/spagg, available at time

The rest of this paper is structured as follows. We giV@tept, and.4, usually depends oe,. For instance, assuming
our unified definition of DOPs in Section II. In Section Ill, y,¢ investigated DOP is about setting control parameters to

different types of DOPs studied in EDO and RL are brieflyyayimize a system’s performance, the value of the control
reviewed and categorised. A conceptualized DOP benchmagk ameters at time stepis then the actior; taken at time

is developed in Section IV. Some experimental studies on ”&?ept. It should be noted that usually some computational
conceptualized DOP benchmark are conducted in Section ¥me is needed to come up with a decision.

Finally, conclusions and future work are given in Section VI Immediate Reward/Fitness: We use reward and fithess

1. A UNIFIED DEFINITION OF DOPs interchangeably in this paper. We assume that the decision
In our opinion, the distinctive feature of DOPs compareé"aker receives an immediate reward every time after making

to SOPs is that the decision maker has to make muItipFé decision. The reward is just a_ signal that indicates_the
decisions over time, and the overall performance depenagrformance of the system at the time step when the decision

on all decisions made during an investigated time interva® made. The reward can be understood as a real number
larger values for better performance. For instancthef

In contrast, SOPs can be considered as one-decision-mak]’?‘uigq

problems. It should be noted that decisions in DOPs are beiH%YeStigatEd DOP is about maintaining a system at a target

made sequentially over time. Also, decisions made prefjousState over a time period, the immediate reward after making
may have an impact on later decision-making in DOPs. a decision can be the similarity between the target state and

There are various real-world situations where multipléN€ System’s state at that time step. It should be notedhkat t
decisions are being made over time, and we identify twabiective of QOPS is not about maximizing the immediate
main categories from the EDO literature. In the first catggor"€Ward at a time step but the accumulated rewards over a
decisions are being made in a fixed frequency, and thffne period.
is mostly found in control problems. For instance, in the Bearing in mind these key concepts and the distinctive
greenhouse control problem [20], a decision maker updaté@ature of DOPs compared to SOPs, which is multiple-
the control parameters every few seconds, so that the pEgcision-making over time, we define DOPs as follows:
formance of the system over time is maximised. One update Definition 2.1: DOPs are problems about how to make an
of the control parameters corresponds to one decision.rOtt@ptimal set of decisions over time in order to maximize a cer-
examples in this category can also be found [16][12]. In th&in performance, which is a function of all decisions made
other category, decisions are being made over time in &ver time. More formally, consider a time intervl, t.],
event-triggering manner. In other words, a decision has @Hring which the system’s state at time stepx;, follows
be made because something relevant in the environment agrobabilistic distribution” (|, ..., at—1, X0, -, Xe—1),
changed, and the decision maker has to react to the chanféich is dependent on previous states and actions. A DOP
by making a new decision. For instance, in the dynamigan be stated as making a sequence of decisions, one at
job shop scheduling problem [2], the decision maker has ®ach time step durin{), t.], so that the decision sequence
assign new incoming jobs in an on-line manner. Also, when
a machine breaks down, some jobs have to be reassigned. Ifwe only consider discrete time in this paper.



maximizes the expected accumulated rewaoder the entire  A. DOPs Investigated in EDO

time interval [0, t.]: Types of DOPs studied in EDO are determined by the

te benchmark problems and the algorithm performance mea-
max Y E(fi(c, X)), (1)  sures used in EDO.
i=0 According to the latest survey on EDO [15], in nearly

wheref; is the reward function, which returns the immediatell benchmark problems in EDO, the state is independent
reward of an action taken in staw;. f; can be either Of previous decisionsP(aq|ag, ..., ai—1,X0, s Xp—1) =
deterministic or stochastidZ() returns the expected value P (|, ..., a;—1). In addition, most benchmark problems
over the random variabl¢;. It should be noted that some are Markovian as well:P(a|ay, ..., ;—1,Xo, ..., Xg—1) =
computational time is allowed for the decision maker to mak& (¢ |c;—1). Taking the widely used moving peaks bench-

a decision at each time step. mark [4] for example, the benchmark is generated by
In the following, we would like to point out some potentialadding a random noise to the current state. There-
assumptions with regard to DOPs. These assumptions d@fe, P(a:|ao,...,ai—1,X0,.,Xi—1) = Plou|az_1) in

be used to differentiate different types of DOPs. We wilthe moving peaks benchmark. Other widely used bench-
demonstrate in the next section that existing EDO and Rmarks [13][25] also havé®(au|aw, ..., att—1, X0, -, X¢—1) =
have mainly studied only some types of DOPs via examining (o |c—1).
the corresponding underlying assumptions. One exceptional benchmark, in which previous decisions
. Assumptions about the observability of state Ba- have an impact on the dynamic of state, was developed by
sically, the stater can be fully observable, partially Bosman [3]. However, the benchmark is not general enough
observable, or non-observable to the decision maker.@s there is not much flexibility in terms of specifying the
Assumptions about the dynamic of state These Observability of state, the dynamic of state, and the reward
assumptions are solely related to the probabilitfunction. _
distribution P(cy|ag, ..., 4—1,%0, ..., Xe—1). N an The performance measures also determine what types of
extreme case, the full probability distribution is knownDOPS have been studied in EDO. According to [15], there
to the decision maker. If the full probability distribution @re¢ two major types of performance measures in EDO.

is not available, a common assumption is that i he most common type is the optimality-based performance
is  Markovian: P(o|a, ..., 0—1,X0, ..., X—1) = Measure, and the other is the behaviour-based performance

P(oy|oy—1,%—1). In some other cases, themeasure. We will discuss only optimality-based perforneanc

dynamic of state is assumed to be independeft€asures. The reason is that behaviour-based performance

of decisions: P(ay|ag,...,0u—1,X0, ... X—1) = measures_usually measure the population diversiFy in EAs

P(ay|ayg, ...,cu—1). If the dynamic of state is when solving DOPs and therefore are not properties of the

dependent on previous decisions, we say the DOP hdgderlying DOPs themselves.

a time-linkage property [3]. One popular optimality-based performance measure is the
« Assumptions about the reward function This is about best-of-generation measure [24], which takes the form:

to what extent the decision maker has information about L& X

the reward functiory. The decision maker can have full _ -

information (i.e., a concrete function form g% or no F G ;(N ;FBOG”)’ @

information (i.e., an action has to be made in order to

get its immediate reward at a particular state) abfut whereG is the number of generationd! is the number of

Alternatively, the decision maker can have intermediat@!gorithm runs, andpoc,, is the best fitnessof individuals

information aboutf such that the decision maker canat generation of the jth run. The underlying assumption

query the immediate reward of any action at a time Ste@bout the DOPs when using this performance measure is that

without actually implementing the action. not every fitness evaluation contributes to the algorithm’s
performance. In other words, it is assumed that the deci-
[1l. DOPs STUDIED IN EDO AND RL sion maker has intermediate information about the reward

We can differentiate different types of DOPs based on od#nction such that a query of an action’s immediate reward,
DOP definition by explicitly specifying those assumptioné-e-l a fitne_ss evaluation, can be performed without agtuall
with regard to the observability of state, the dynamic ofesta implementing the action.
and the reward function. We demonstrate this via briefly Another widely used performance measure is the off-line
reviewing DOPs studied in EDO and RL. We also identifyperformance [5], which takes the form:
some types of DOPs that may need more research attention

G
in EDO. _ 1
F, = el ;FBS” (3)

8In general, we maximize the discounted accumulated rewards
Zﬁ;o E(v* - fi(a,%;)), where v is the user defined discount factor,
0 < v < 1. Whent, goes to infinity,0 < ~ < 1. In this paper, we 4A solution’s fitness is an alias of the immediate reward ebiby
only consider finitete with v = 1. implementing the solution, i.e., making a decision.



TABLE |

wheredG is the number of generationBg g, is the best fitness ASSUMPTIONS ABOUTDOPS STUDIED INEDO AND RL. THESE

obtained by the algorithm since the last state change #ll th
. . e . . ASSUMPTIONS ARE ABOUT THE OBSERVABILITY OF STATETHE
ith generation. Similarly, not every fitness evaluation dsun o
. h . . . DYNAMIC OF STATE, AND THE REWARD FUNCTION. ‘N’ MEANS NO
in the measure of off-line performance, which indicates the .

. - . . . . INFORMATION IS ASSUMED. ‘I’ MEANS INTERMEDIATE INFORMATION IS
availability of intermediate information about the reward

. . . . . ASSUMED. ‘F’ MEANS FULL INFORMATION IS ASSUMED.
function. Besides, when using the off-line performance, it

is assumed that every time a better action, in terms Ofesearch observability of staté dynamic of statd reward function
immediate reward, is found the action is implemented. EO"(‘)”‘U””V N T F N T T N T F
A lot of researchers in EDO also use the measure nam%_P v 7 7 v 7 v

best-error-before-change [19]:

F3 = % Zei, (4) value function, the Q function, the policy, and more general
i=1 information about RL, readers are referred to [18].

wherem is the number of state changes, ands the best ~ There are some underlying assumptions about DOPs in
error (the error means the difference between a solution®-- Firstly, the state is at least partially observable te th
fitness and the fithess of an optimum) just before e decision maker, otherwise all the learning about the value
change happens. The best-error-before-change takeslarsimfiunction or the Q function would be infeasible. Secondly,
form to Equation 1, and yet it is still implicitly assumed tha Most RL algorithms assume that the dynamic of state is
the intermediate information about the reward function ijarkovian or nearly Markovian. Finally, no information is

available. required a priori about the reward function. In other words,
We are also aware of the on-line performance measutba order to get the immediate reward of an action in a state,
proposed in [5], which takes the form: the action needs to be implemented.
1 Nye C. A Comparison View of DOPs in EDO and DOPs in RL
Fa = Ny z_; £, ©) In this subsection, we summarise different types of DOPs

studied in EDO and RL based on our previous discussions.
whereF; is the fitness of théth fitness evaluation, and;.  We classify DOPs into different groups by checking whether
is the total number of fitness evaluations. This measure dog®se assumptions discussed in Section Il are made. The
not assume the information of the reward function. Yet, theummary is tabulated into Table I.
on-line performance measure has been rarely used in EDOIn Table I, we divide assumptions into three levels within
[15]. each category of assumptions. ‘N’ means no information
) i is assumed. ‘I’ means intermediate information is assumed.
B. DOPs Investigated in RL ‘F’ means full information is assumed. For the assump-
Problems studied in RL are also about multiple-decisiortions about the observability of state, what existing EDO
making, which can be defined as DOPs according to oumethods need for solving DOPs is being able to evaluate
definition in Equation 1. In the following, we briefly analysea solution (i.e., get its fitness) at the current time step.
the framework of a general RL method, from which weThe observability of state is irrelevant to EDO methods. In
discuss what assumptions have been made in DOPs studisahtrast, the state should be at least partially observable
in RL. RL methods. Accordingly, EDO and RL are marked as ‘N’
A typical RL algorithm can be generally described asind ‘I’ respectively in this category.
follows. Initially, the agent, i.e., the decision makershzo For the assumptions about the dynamic of state, most of
prior information about the DOP. The agent first observethie work in EDO deals with DOPs where previous decisions
the current state of the system and then implements &ave no impact on later dynamic of state. Besides, EDO
action. After the action, the system transits into the nexnethods do not require the full information of state, i.e.,
state, and an immediate reward is returned to the agent. Bye probability distributionP(au|ay, ..., at—1,Xo, oy Xe—1).
interacting with the system this way for a number of timéNVe therefore mark EDO as ‘I’ in this category. Although
steps, the agent gradually learns a model that summarisestedditional RL methods assume the dynamic of state to be
the experiences so far. One experience corresponds tded trigpMarkovian, a lot of RL methods have been proven to be
(state, action, reward), which means the agent received aeffective in situations where the Markov property does not
reward after taking an action in a particular state. The rhodbold. We therefore mark RL as ‘N’ in this category.
can be the value function of state or the Q function of the With regard to the assumptions about the reward function,
pair (state, action). Through the loop of ‘trial-and-error’, it from the performance measures used in EDO, we can see
is hoped that the agent will gradually approximate the truthat most EDO methods assume that a fithess evaluation can
model, which gives the optimal policy in terms of rewardde performed without actually taking an action. Therefore,
accumulated in the long run. A policy is basically a mappingn evaluation model for the reward function is assumed to
from a state to an action. For more information about thbe available for these EDO methods. Yet, EDO methods do



not require the analytical form of the reward function. InC. The Reward Function
contrast, in order to get the immediate reward of an action The reward function takes a state and an action as inputs

in a certain state, that action has to be implemented in Ring outputs a real number. The reward function in our
methods. Therefore, EDO and RL are marked as ‘I' and ‘Npenchmark consists of the biasand several peak functions

respectively in this category. _(hi — wi||x — ci]|2 is theith peak function):
From Table |, we can see that more research attention .
should be given to DOPs where previous decisions can fla,x) = m}f{hi — w;||X — G|z} + b, (6)

influence the dynamic of state and DOPs where an evaluation
model of the reward function is not available, from theVherec represents a stai@ = (f1, ha, ..., him, w1, wa; ...,
perspective of EDO. It will also be interesting to compard?m: €11, €12, -+ ¢mn, b), @and X is an action.c; denotes a

the performances of EDO methods and RL methods on tN&COr (¢i1, iz, --cin), @nd || ||z is the Euclidean norm.
same DOPs. Without loss of generality, we require; > 0 (1 <i <m).

IV. A CONCEPTUALIZED DOP BENCHMARK D. The Dynamic of State

A lot of DOP benchmarks have been developed in EDO We divide all state variables im into two groups. The
[15], in which common features are that decisions maddynamic of the first group does not depend on previous
before have no impact on later dynamic of state and th&ctions, while the dynamic of the second group depends on
decision maker is able to do a fithess evaluation withoytrevious actions.
implementing an action. There are also many benchmarksThe first group consists of all variables except for the
developed in RL [8], which can be seen as DOP benchmark&sb in a. We employ thes different dynamics suggested
according to our definition of DOPs. Benchmarks in RL havér CECO09 dynamic optimization competition benchmark
some common features that may favour only RL methodgenerator [11] to update the state variables in the firstmrou
such as a discrete action space, no evaluation model of thbe 6 dynamics are described as follows:
reward function, and full observability of states. In order 1) small step
systematically studying different types of DOPs, we depelo
a Conceptualized DOP benchmark in the following. By Ap =79l -7 Pscverity, 7
making DOP assumptions discussed in Section Il explicitly, 2) |arge step
our conceptualized DOP benchmark enables the generation
of different types of DOPs, which can be hardly achieved Ap = [|9[|-(A-sign(r)+(Amaz —A) 1) Pseverity, (8)
within existing DOP benchmarks. Based on our definition 3) random
of DOPs, we define the state space, the action space, the A = N(0,1) - Gucverity, 9)
reward function, and the dynamic of state respectively & th
benchmark. 4) chaotic

We generalize the moving peaks benchmark [4] to define
our benchmark. The concepts of height, width, and center for 1 = Gmin+ 5+ (S = Omin) (1 = (91 = dmin) /| |¢|1|())’
the reward/fitness function in the moving peaks benchmark (10)
are transferred to our benchmark.

2
A. The State Space 61 = Smin + |l6]l - (sin(Ft +¢) +1)/2, (1)

A state is simply a set of variables in our benchmark. Each
state consists of four parts, namely height, width, ceaired,
bias. Each height, width, and center are associated with a . 2m
peak function, \g/]vhose meaning will be explained later in the bt = Pmin +[|9]] - (sin(Ft +¢) +1)/2+
reward function. The bias is just a single scalar. Therevaoe t N(0,1) - noiseseperity, (12)
parameters to control the dimension of state. One is callec‘1 . . . )
the number of peaks:, and the other is the dimension of W ere ¢ represents any single state variable in the first

peakn. Simply put, a statex is represented using the vector3'ouP of . ¢y s th? value of¢ at time stept, qnd Ag
(1, hs b Wy ws Wy C11. C1a . b) of length denotes the change ihnbetween two consecutive time steps:
b PR my b) 90 m b 9y mns

(n =+ 2)m + 1, Where}li and W; denote the helght and the ¢f+1 = ¢t + A¢ ¢mina ||¢||1 and ¢seve7’ity denote the
width of theith peak fUNCtoONG; (¢; = (ci1, cia, -.ry cin)) iS minimum value ofy, the range ofp, and the change severity

the center of théth peak function, and is the bias. of ¢ respectively.A and Amq, are constant parameters. A
' logistic function is used for thechaotic change:§ is a

B. The Action Space positive constant in the intervél, 4). P is the period for the
An action is specified by a set of variables. For a stateecurrentchange and theecurrent with noiseehange, ana

space that has the dimension of peak function beintpere is an initial phaser is a random number drawn uniformly

aren variables to specify an actior:= (z1, x2, ..., ). The  from the interval(—1,1), and sign(r) returnsl whenr is

action/solution spacg; for the statex; is basically a subset positive,—1 whenr is negative, and otherwise N'(0, 1) is

of the n dimensional real numbeiR™. a random number drawn from the Gaussian distribution with

5) recurrent

6) recurrent with noise



mean0 and variancel. noisescverity 1S the noise severity time step is increased . The functiong(), which defines

applied to therecurrent with noisechange. the dynamic of the bias in the state, is:
The biasb;1, in the state depends on the latésactions .
. . 91) Zf Xe—1 Z Oa
and biases for the latestime steps: by = : (14)
—0, otherwise,
b1 = G(Xembg1s oo Xt bp—ig1, -0, b)), (13)  wherex,_; is the action taken at time stép- 1, andd, is a

: ' . . arameter, which controls the influencexgf ; on b;, with
whereg() is a user-defined function returning a real number; : . : .
. N .. _larger values being more influential. In the first benchmark
Since we use the concept of peak function in definin .
L stance ), is set to bel00.
the reward function in our benchmark, and our benchmar

is aimed at generating different types of DOPs, we namy The settings of the second benchmark instance is exactly
our benchmark Conceptualized Moving Peaks Benchm e same as the first one, except the parandgtier Equation

(CMPB) a_i4 is set tq bd5s. The reason to design such two benchmark
' instances is that we would like to compare the performances
E. Specifications for a Benchmark Instance of CMPB ~ ©f EDO methods and RL methods in two representative
There are two groups of things need to be specified isﬂuaﬂops. One situation is that actions made prewousi{;eh
. e large impact on the dynamic of state, while the other is that
order to get a benchmark instance of CMPB. actions made previously have little impact on the dynamic

In the grtsrt] grotj_p, the paramzt?rsbregardl_?_gdtoTtrr:etstabq, 1state, i.e., maximizing the reward function at each time
space and the action space need o be specilied. The typ Rep separately tends to be equivalent to maximizing the

the functi in Equation 13 cumulated rewards. Such experimental design is useful in
T urr:c long () Ic? quation 15. di din s .indicating the advantages of EDO methods and RL methods.
I n tde se(t:)on grodup, aﬁsylmpflonﬁ Ilzcubsse 'g eICt'c’nFor both benchmark instances, the dynamic of the state and
need to be S‘?‘t_e exp 'C'tY' t_s ou € made Cleaf,q raard function are assumed to be deterministic. Alsp, t
whether the decision m_aker IS given th(_a ful! analyn_ca ynamic of the state is Markovian. We assume that the de-
form of the rewarq fupctlon, the |ntermed|ate mformatmncision maker has intermediate information about the reward
of the reward function in which the decision maker can POSfinction, i.e., a fitness evaluation can be performed withou

questions about the immediate reward of any action withot plementing an action. Besides, the state is assumed to be
implementing such an action, or no information of the rewar lly observable to the decision maker

function where an action has to be implemented in order to
get its immediate reward at a particular state. The assomptiB. Investigated Algorithms in EDO and RL

about the dynamic of state is determined once options in theThe Particle Swarm Optimizer (PSO) with a restart strat-
first group are specified, e.g, whether the dynamic of state égy is selected as the representative EDO method, which we
Markovian. Finally, it is necessary to specify to what extengenote as ‘RPSO’ hereafter. The restart strategy means the
the decision maker has information about the statex can  \hole population is randomly reinitialized except that the
be fully observable, partially observable in which, e.g., est solution found in the last time step is copied into the
white noise is added tex before it is passed to the deCiSioncurrent popu|ati0n whenever the environmental state m”g
maker, or non-observable. The corresponding PSO follows the constriction version [7]
The swarm population size i€). The two constants, which
are used to bias a particle’s attraction to the local bestlamd
In this section, we generate two benchmark instances gfobal best, are both set to Bé5, and hence the constriction
CMPB. More importantly, we conduct some preliminaryfactor takes a value df.729844. The velocity of particles is
experimental studies of the performances of a represeatatconstricted within the range-Visax, Varax]. The value of
EDO method and a representative RL method on the twig,, , x is set to be the range of the search space, whiéh is
benchmark instances. The purpose is to reveal which typgsour case100 fithess evaluations are allowed for ‘RPSO’
of DOPs EDO methods and RL methods are specialised i6 come up with an action at a time step.
respectively. The Q learning algorithm [21] is selected as the represen-
tative RL method, which we denote as ‘Q-learning’ hereafter
The semi-uniform random exploration strategy is used to
We generate the first benchmark instance as follows. Thselect an action in ‘Q-learning’, where at each time step the
peak dimension and the number of peaks in the state are baiist action in terms of the currently estimat@dvalue is
1, which makes the dimension of the stdatéAccordingly, the selected with some probability— ¢, and with probabilitye,
action space is one-dimensional. The height and the width &n action is selected at random. In our experimens, set
the state are fixed t80 and?2 respectively. The range of the to be0.1. The learning rate) in ‘Q-learning’ takes the form:
center in the state i5-10, 10], and the action space is alson = q1/(¢2 +t), whereq; andg, are two constants, andis
[—10, 10]. The dynamic of the center is recurrent with periodhe index of the time step, which starts fréhand increases
being 2 time steps: the center starts fatand is multiplied by 1 every time the environmental state changgsand ¢,
by —1 every time the environmental state changes (i.e., there set to be&00 and 300 respectively. The discount factor

V. EXPERIMENTAL STUDIES

A. Two Benchmark Instances of CMPB



. o . TABLE |
in ‘Q-learning’ is set to be).7. Also for ‘Q-learning’, the

. . . . . . . . AVERAGE AND STANDARD DEVIATION OVER 30 RUNS OF TOTAL
action space is discretized, which in our experiment is the

. . . REWARDS ACCUMULATED DURING DIFFERENT PHASESTHE 1ST PHASE
set{-10,-9, -8, ...,8,9,10}. At the beginning of the time
. . o . , IS FROM TIME STEP1 TO 1000. THE 2ND PHASE IS FROM TIME STEP
(i.e., time stept = 0), the @ values in ‘Q-learning’ are all
A 1001 TO 2000.
initialised to 0.

The main feature of ‘RPSO’ is that at each time step it 1st Phase 2nd Phase
tries to select an action that maximizes the current reward Be”ihtm_af': Instance '\gggcg‘ 3%‘6997 D;‘g 2@‘;3957 D;‘é
function. In other words, ‘RPSO’ does not care about what stinstance Q-learning| 92801 22575.0105644 11719.0
impact the selected action would have on the dynamic of— 2nd instance RPSO [29927 3.3 | 29897 2.7
state. This feature is also shared by most other EDO methods Q-learning| 26035  4743.5| 26951  4426.9
[15]. The main feature of ‘Q-learning’ is that it tries to tea
the true Q value of each state and action pair. Based ¢ 55X 10 ‘
the true Q values, optimal actions in terms of maximizing “l[---RPSO
the discounted accumulated rewards can be derived for ai —Q-learning
state. It has been shown in [21] that for Markovian decisiot 21/ Optimal
problems (i.e., DOPs defined in this paper with the dynami
of state being Markovian), ‘Q-learning’ converges to the
true Q values with probability under mild conditions as
the number of time steps goes to infinity. However, in
reality, there is always a trade-off between exploratiod an
exploitation in ‘Q-learning’, and the performance within
finite time steps depends on the structure of the Markovia
decision problem and the parameters in ‘Q-learning’. 05 -

5

accumulated rewards

C. Experimental Results ; e

1) Results on the First Benchmark Instancehe perfor- NGl ‘ ‘
mances of ‘RPSO’ and ‘Q-learning’ on the first benchmark 0 500 timlg%?ep 1500 2000
instance, in which an action has a large impact on the bias
at the next time stepff = 100), are presented in Figure rig. 1. The averaged accumulated rewards in Equation 1 veuns at
1 and Table II. We can see that ‘Q-learning’ achieves each time step, obtained by ‘RPSO’ and ‘Q-learning’ respelgt on the
consistently better performance than ‘RPSO’. The reasonfiést benchmark instance, together with the optimal accated| rewards at

.. ’ each time step.
that the dependence of the bias in the state on the last action

is gradually learned in ‘Q-learning’, and therefore at each

time step ‘Q-learning’ tends to select an action, which itssu on the bias at the next time step is small, so maximizing
in the bias being positive at the next time step. In conteast, only the current reward function still gives a relativelyogb
action is selected in ‘RPSO’ solely depending on the curreglerformance. Secondly, in order to converge to the true Q
reward function. When the center in the state has a negatiyglues, all actions including suboptimal or even the worst
value, ‘RPSO’ will tend to select an action with a negativeyctions in each state need to be implemented many times
value. As a result, the bias will oscillate betwe&dd and jn ‘Q-learning’. This decreases the overall performance. |
—100. other words, learning in ‘Q-learning’ has an overhead of
The optimal action at each time step is straightforward tgnplementing poor actions in each state. Finally, withiritéin
obtain for the first benchmark instance. The optimal actton §me steps, the convergence rate to the true Q values in
each time step is that the action equalwhen the center is ‘Q-learning’ has a large impact on the performance. The
positive and the action equalswhen the center is negative. convergence rate is influenced by the initialised Q values,
The optimal accumulated rewards at each time step, denoigg exploration strategy, the learning rate, and the way to
as ‘Optimal’, is also plotted in Figure 1. update the Q values after an action is implemented. However,

2) Results on the Second Benchmark Instaritiee per- it s not straightforward as how to set the parameters in ‘Q-
formances of ‘RPSO’ and ‘Q-learning’ on the second benchearing’ properly.

mark instance, in which an action has a small impact on the

bias at the next time step,(= 15), are presented in Figure VI. CONCLUSIONS AND FUTURE WORK

2 and Table II. The optimal action at each time step is the In this paper, we propose a unified definition of DOPs

same as that for the first benchmark instance. The optimiadsed on the idea of multiple-decision-making over time

accumulated rewards at each time step, denoted as ‘Optimatispired by RL. We draw a connection between EDO and

is also plotted. RL, arguing that both EDO and RL are trying to solve
From Figure 2, we can see that ‘RPSQO’ achieves BOPs according to our definition of DOPs. We point out

consistently better performance than ‘Q-learning’. Thidiie that some types of DOPs, where previous decisions can

to the following three aspects. Firstly, the impact of ancact influence the dynamic of state or an action has to be
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Fig. 2. The averaged accumulated rewards in Equation 1 3weuns at  [10]
each time step, obtained by ‘RPSO’ and ‘Q-learning’ respelgt on the
second benchmark instance, together with the optimal aglzted rewards

at each time step.
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implemented to get its fithess, need more research attenti[on]
from the perspective of EDO. Moreover, a conceptualized
DOP benchmark, CMPB, is developed for the purpose ¢fs;
systematically studying various types of DOPs within one
benchmark. Finally, some interesting experimental resari¢
obtained by testing one representative EDO method and opg;
representative RL method on CMPB.

The experimental studies may indicate that EDO method<!
compared to RL methods, may be better at DOPs where
actions have a small impact on the dynamic of state. I6]
contrast, as the impact of actions on the dynamic of state
increases, the advantage of learning in RL methods may take
over EDO methods. Yet, more comprehensive experimentar]
studies are needed for any concrete conclusion.

For the future work, firstly, more research attention in EDQug]
should be given to DOPs in which actions taken previousl
can influence the later dynamic of state or an evaluatiﬁg]
model of the reward function is unavailable. Secondly, sinc
we have established a connection between EDO and RE(]
arguing that both of them are trying to solve DOPs based
on our definition of DOPs, it would then be beneficial2y)
to comprehensively compare the state-of-the-art methods |
EDO with those in RL on various types of DOPs using[zzl
CMPB, as a deep understanding can be gained about their
own advantages. Finally, it would be interesting to combink3]
the advantages of both EDO and RL methods in solving
DOPs.

[24]
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