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Abstract. Both Evolutionary Dynamic Optimization (EDO) methods areirR
forcement Learning (RL) methods tackle forms of Sequemidision Making
Problems (SDMPs), yet with different key assumptions. Is gaper, we com-
bine the strength of both EDO methods and RL methods to deelew algo-
rithm for SDMPs. Assuming that the environmental state seobable and that
a computational model of the reward function is availalile,key idea in our al-
gorithm is to employ an evolutionary algorithm to searchlwateward function
at each time step, the outcome of which is exploited to spperbavergence to
optimal policies in RL methods. Some preliminary experitaéstudies demon-
strate that our algorithm is a promising approach for SDMPs.
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1 Introduction

Sequential Decision Making Problems (SDMPs) are those evhatecision maker is
required to make a sequence of decisions over time, and #ralbpgerformance is de-
pendent on all the decisions made. In the Reinforcementirgg(RL) community,

SDMPs are mainly studied as Markov Decision Problems (MDPi?sgreas in the Evo-
lutionary Dynamic Optimization (EDO) community, SDMPs aisually interpreted as
tracking moving optimum problems. More formally, SDMRsin be defined as follows:

Definition 1. Consider a discrete time interval [0, ¢.], during which the environmental
stateat timestep ¢, s;, followsa probabilistic distribution P(s;|So, ..., St—1, X05 -5 X¢—1 )5
where s; and x; denote the environmental state at time step 7 and the decision/action
made at time step 4 respectively, 0 < ¢ < t — 1. A SDMP can be stated as making a
sequence of decisions, one at each time step during [0, ¢.], so that the decision sequence
maximizes the expected accumulated rewards* over the entiretime interval [0, ¢]:

max > B(fi(s%), ®

=0

3 We consider SDMPs and dynamic optimization problems (asmefin [1]) to be inter-
changable terms, describing the same general problem form.

* In general, we maximize the discounted accumulated rewdrds, E(v* - fi(si, X:)), where
~ is a user defined discount factor< v < 1. Whent. goes to infinity,0 < v < 1. In this
paper, we only consider finite with v = 1.



where f; isthe reward function at time step 4, which returns an immediate reward of an
action taken at time step 7 in state s;. f; can be either deterministic or stochastic. E/()
returns the expected value of the randomvariable f;(s;, X;). Also, some computational
timeis allowed for the decision maker to make a decision at each time step.

As demonstrated in [1], both RL methods and EDO methodsedokins of SDMPs,
albeit forms with different key assumptions. More specificéor RL methods, the key
assumption is that the environmental siite Equation 1 is at least partially observable
to the decision maker. For EDO methods, the key assumptitiaishe decision maker
is able to evaluate the immediate rewgrdf a decision at each time step without ac-
tually implementing that decision. In other words, a conagional model off (s, x) at
each time step is assumed to be available in EDO methods.

In this paper, we combine the strength of learning in RL méthand the strength
of optimizing in EDO methods to develop a new algorithm forNBPs, assuming that
the environmental stateis observable and that a computational modef (s, x) at
each time step is available. The main idea in our algorithio isse an Evolutionary
Algorithm (EA) to search orf(s, x) at each time step, and the search result from the
EA is exploited to speed up convergence to optimal decisioasiL method. The new
algorithm is described in detail in Section 2, followed byrsopreliminary experimental
studies in Section 3. Conclusions and future work are dssmigh Section 4.

2 A New Algorithm for Sequential Decision Making

We base our new algorithm on Q-learning [2] and EAs, and healté the Q-learning
Based Evolutionary Algorithm (QBEA). Given a computatibrmeodel of the reward
function f at each time step, an EA is used in QBEA to searclf oand all evaluated
decisions/actions together with their immediate rewardgl@en used to update the Q
values to hopefully gain a faster convergence to optimal iQes The pseudo code of
QBEA is given in Algorithm 1.

Algorithm 1 Pseudo code of QBEA
1: Arbitrarily initialize the Q value€)(s, x) for each state-action pais, (x);
2: Observe the initial stat®;
3:fort=0—t. do

4 Employ an EA to search on the reward functifis:, X);

5. for each evaluatew; on f; do

6: Q(st,Xi) — (1 = a)Q(s, Xi) + a(fi(se, X:) + v max; Q(5 X;));
7. endfor

8 Select an actior; in s; based on the Q values;

9:  Take actiorx;, and observe the immediate rewardnd a new statg1;
100 Q(se,xe) — (1 — a)Q(st,Xt) + a(r + v max; Q(St+1,%;));
11: end for

In Line 6 of Algorithm 1, when we evaluate; on f; in states,, we are not sure
which new state; would lead to ifx; is implemented. Therefore, in order to update the



Q valueQ(s, x;), we sample the currently estimated probability distribai® (s|s;, X;)
(assuming it is Markovian) to produce a state

3 Preliminary Experimental Studies

In this section, we conduct some preliminary experimentadiss of QBEA on two
benchmark instances of the conceptualised dynamic ogtioiz problem benchmark
we developed in [1].

For both benchmark instances, the reward function at tieyetds:

fe(se, x¢) = 30 — 2|z — c¢| + by, (2)

wheres; represents the state at time stes, = (¢, b). z; belongs to the interval
[—10, 10] and represents the decision at time stepy = 5, andc; = ¢;—1 * —1. The
dynamic of the bia$; is as follows ¢y = 6):

b _ 91} Zf Tt—1 2 07
T =6, otherwise,

3)

wheref, is a parameter, which controls the influencecaf; on b;, with larger values
being more influential. In the first benchmark instarfes set to100, and in the second
benchmark instancé; is set tol5.

We compare QBEA to an ideal EDO method, where at each timeagtepision that
maximizes the current reward function is implemented (tkethas ‘EDO’ hereafter),
but without considering any impact of the action on the fatWe compare QBEA also
to the Q-learning algorithm (denoted as ‘Q-learning’ h&era We use semi-uniform
random exploration strategy to select an action in ‘Q-le@nwhere at each time step
the best action in terms of th@ value is selected with probability — ¢. Otherwise, a
random action is choseais set to0.1. The learning rater in ‘Q-learning’ is updated as
a = q1/(q2 +1t), whereq; andqg, are set t®200 and300 respectively, andis the index
of the time step. The discount factor in ‘Q-learning’ is se017. For ‘Q-learning’, the
action space is equally discretized iRtbdifferent actions{—10, —9, —8, ..., 8,9, 10}.
The@ valuesin ‘Q-learning’ are all initialised tvat the beginning of the time (i.e., time
stept = 0). The settings of QBEA is the same as ‘Q-learning’ except &iaactions
are evaluated at each time step and that the true probatiigitibution P(s|s;, X;) is
used to generate

The performance of ‘EDO’, ‘Q-learning’, and QBEA, togetheith the optimal
accumulated rewards, on the first and second benchmarkaestaare presented in
Figures 1 and 2 respectively. We can see that QBEA achievemsistently better
performance than ‘EDO’ and ‘Q-learning’ in both instances.

4 Conclusions and Future Work

In this paper, we developed a new algorithm, QBEA, for SDM®ssuming that the
environmental state is observable and that a computatioadkl of the reward func-
tion is available, the main idea in QBEA is that an EA is useddarch on the reward
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Fig. 1. The averaged accumulated rewards in Equation 1 3%euns at each time step.
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Fig. 2. The averaged accumulated rewards in Equation 1 3%euns at each time step.

function, and the evaluation experience of the EA is usedpate the Q values in
Q-learning, which can speed up the convergence in Q-legrSiame preliminary ex-
perimental studies demonstrated the effectiveness of Q@EAan ideal EDO method
and the Q-learning algorithm.

Some enhancements to QBEA are still needed to make it apfditamore general
cases. Firstly, a regression model is needed to generaBEAQo continuous state and
action space. Secondly, in cases where it is impossible dluate all the actions at
a time step, some mechanisms are required as to which swudi® evaluated in an
EA. Finally, models to estimate the probability distrilmutiP(s|s;, X;) is lacking in the
current version of QBEA.

References

1. H. Fu, P. R. Lewis, B. Sendhoff, K. Tang, and X. Yao. Whatdeamic optimization prob-
lems? InProceedings of the 2014 | EEE Congress on Evolutionary Computation (CEC). IEEE
Press, 2014. in press.

2. C.J.C. H. Watkins and P. Dayan. Q-learniidgchine learning, 8(3-4):279-292, 1992.



