
A Q-learning Based Evolutionary Algorithm for
Sequential Decision Making Problems

Haobo Fu1, Peter R. Lewis2, and Xin Yao1

1 CERCIA, School of Computer Science, University of Birmingham, UK
2 School of Engineering and Applied Science, Aston University, UK

hxf990@cs.bham.ac.uk, p.lewis@aston.ac.uk, x.yao@cs.bham.ac.uk

Abstract. Both Evolutionary Dynamic Optimization (EDO) methods and Rein-
forcement Learning (RL) methods tackle forms of SequentialDecision Making
Problems (SDMPs), yet with different key assumptions. In this paper, we com-
bine the strength of both EDO methods and RL methods to develop a new algo-
rithm for SDMPs. Assuming that the environmental state is observable and that
a computational model of the reward function is available, the key idea in our al-
gorithm is to employ an evolutionary algorithm to search on the reward function
at each time step, the outcome of which is exploited to speed up convergence to
optimal policies in RL methods. Some preliminary experimental studies demon-
strate that our algorithm is a promising approach for SDMPs.

Keywords: Reinforcement Learning, Evolutionary Dynamic Optimization, Se-
quential Decision Making

1 Introduction

Sequential Decision Making Problems (SDMPs) are those where a decision maker is
required to make a sequence of decisions over time, and the overall performance is de-
pendent on all the decisions made. In the Reinforcement Learning (RL) community,
SDMPs are mainly studied as Markov Decision Problems (MDPs), whereas in the Evo-
lutionary Dynamic Optimization (EDO) community, SDMPs areusually interpreted as
tracking moving optimum problems. More formally, SDMPs3 can be defined as follows:

Definition 1. Consider a discrete time interval [0, te], during which the environmental
state at time step t, st, follows a probabilistic distribution P (st|s0, ..., st−1, x0, ..., xt−1),
where si and xi denote the environmental state at time step i and the decision/action
made at time step i respectively, 0 ≤ i ≤ t − 1. A SDMP can be stated as making a
sequence of decisions, one at each time step during [0, te], so that the decision sequence
maximizes the expected accumulated rewards4 over the entire time interval [0, te]:

max

te
∑

i=0

E(fi(si, xi)), (1)

3 We consider SDMPs and dynamic optimization problems (as defined in [1]) to be inter-
changable terms, describing the same general problem form.

4 In general, we maximize the discounted accumulated rewards:
Pte

i=0
E(γi

· fi(si, xi)), where
γ is a user defined discount factor,0 ≤ γ ≤ 1. Whente goes to infinity,0 ≤ γ < 1. In this
paper, we only consider finitete with γ = 1.

where fi is the reward function at time step i, which returns an immediate reward of an
action taken at time step i in state si. fi can be either deterministic or stochastic. E()
returns the expected value of the random variable fi(si, xi). Also, some computational
time is allowed for the decision maker to make a decision at each time step.

As demonstrated in [1], both RL methods and EDO methods tackle forms of SDMPs,
albeit forms with different key assumptions. More specifically, for RL methods, the key
assumption is that the environmental states in Equation 1 is at least partially observable
to the decision maker. For EDO methods, the key assumption isthat the decision maker
is able to evaluate the immediate rewardf of a decision at each time step without ac-
tually implementing that decision. In other words, a computational model off(s, x) at
each time step is assumed to be available in EDO methods.

In this paper, we combine the strength of learning in RL methods and the strength
of optimizing in EDO methods to develop a new algorithm for SDMPs, assuming that
the environmental states is observable and that a computational model off(s, x) at
each time step is available. The main idea in our algorithm isto use an Evolutionary
Algorithm (EA) to search onf(s, x) at each time step, and the search result from the
EA is exploited to speed up convergence to optimal decisionsin a RL method. The new
algorithm is described in detail in Section 2, followed by some preliminary experimental
studies in Section 3. Conclusions and future work are discussed in Section 4.

2 A New Algorithm for Sequential Decision Making

We base our new algorithm on Q-learning [2] and EAs, and hencecall it the Q-learning
Based Evolutionary Algorithm (QBEA). Given a computational model of the reward
functionf at each time step, an EA is used in QBEA to search onf , and all evaluated
decisions/actions together with their immediate rewards are then used to update the Q
values to hopefully gain a faster convergence to optimal Q values. The pseudo code of
QBEA is given in Algorithm 1.

Algorithm 1 Pseudo code of QBEA
1: Arbitrarily initialize the Q valuesQ(s, x) for each state-action pair (s, x);
2: Observe the initial states0;
3: for t = 0→ te do
4: Employ an EA to search on the reward functionft(st, x);
5: for each evaluatedxi onft do
6: Q(st, xi)← (1− α)Q(st, xi) + α(ft(st, xi) + γ maxj Q(̂s, xj));
7: end for
8: Select an actionxt in st based on the Q values;
9: Take actionxt, and observe the immediate rewardr and a new statest+1;

10: Q(st, xt)← (1− α)Q(st, xt) + α(r + γ maxj Q(st+1, xj));
11: end for

In Line 6 of Algorithm 1, when we evaluatexi on ft in statest, we are not sure
which new statexi would lead to ifxi is implemented. Therefore, in order to update the

Q valueQ(st, xi), we sample the currently estimated probability distributionP (s|st, xi)
(assuming it is Markovian) to produce a stateŝ.

3 Preliminary Experimental Studies

In this section, we conduct some preliminary experimental studies of QBEA on two
benchmark instances of the conceptualised dynamic optimization problem benchmark
we developed in [1].

For both benchmark instances, the reward function at time stept is:

ft(st, xt) = 30 − 2|xt − ct| + bt, (2)

wherest represents the state at time stept: st = (ct, bt). xt belongs to the interval
[−10, 10] and represents the decision at time stept. c0 = 5, andct = ct−1 ∗ −1. The
dynamic of the biasbt is as follows (b0 = θb):

bt =

{

θb if xt−1 ≥ 0,
−θb otherwise,

(3)

whereθb is a parameter, which controls the influence ofxt−1 on bt, with larger values
being more influential. In the first benchmark instance,θb is set to100, and in the second
benchmark instance,θb is set to15.

We compare QBEA to an ideal EDO method, where at each time stepa decision that
maximizes the current reward function is implemented (denoted as ‘EDO’ hereafter),
but without considering any impact of the action on the future. We compare QBEA also
to the Q-learning algorithm (denoted as ‘Q-learning’ hereafter). We use semi-uniform
random exploration strategy to select an action in ‘Q-learning’, where at each time step
the best action in terms of theQ value is selected with probability1 − ǫ. Otherwise, a
random action is chosen.ǫ is set to0.1. The learning rateα in ‘Q-learning’ is updated as
α = q1/(q2 + t), whereq1 andq2 are set to200 and300 respectively, andt is the index
of the time step. The discount factor in ‘Q-learning’ is set to 0.7. For ‘Q-learning’, the
action space is equally discretized into21 different actions:{−10,−9,−8, ..., 8, 9, 10}.
TheQ values in ‘Q-learning’ are all initialised to0 at the beginning of the time (i.e., time
stept = 0). The settings of QBEA is the same as ‘Q-learning’ except that all actions
are evaluated at each time step and that the true probabilitydistributionP (s|st, xi) is
used to generatês.

The performance of ‘EDO’, ‘Q-learning’, and QBEA, togetherwith the optimal
accumulated rewards, on the first and second benchmark instances are presented in
Figures 1 and 2 respectively. We can see that QBEA achieves a consistently better
performance than ‘EDO’ and ‘Q-learning’ in both instances.

4 Conclusions and Future Work

In this paper, we developed a new algorithm, QBEA, for SDMPs.Assuming that the
environmental state is observable and that a computationalmodel of the reward func-
tion is available, the main idea in QBEA is that an EA is used tosearch on the reward

0 200 400 600 800 1000
0

5

10

15
x 10

4

time step

ac
cu

m
ul

at
ed

 r
ew

ar
ds

EDO
Q−learning
QBEA
Optimal

Fig. 1.The averaged accumulated rewards in Equation 1 over30 runs at each time step.

0 200 400 600 800 1000
0

1

2

3

4
x 10

4

time step

ac
cu

m
ul

at
ed

 r
ew

ar
ds

EDO
Q−learning
QBEA
Optimal

Fig. 2.The averaged accumulated rewards in Equation 1 over30 runs at each time step.

function, and the evaluation experience of the EA is used to update the Q values in
Q-learning, which can speed up the convergence in Q-learning. Some preliminary ex-
perimental studies demonstrated the effectiveness of QBEAover an ideal EDO method
and the Q-learning algorithm.

Some enhancements to QBEA are still needed to make it applicable to more general
cases. Firstly, a regression model is needed to generalize QBEA to continuous state and
action space. Secondly, in cases where it is impossible to evaluate all the actions at
a time step, some mechanisms are required as to which solutions are evaluated in an
EA. Finally, models to estimate the probability distributionP (s|st, xi) is lacking in the
current version of QBEA.

References

1. H. Fu, P. R. Lewis, B. Sendhoff, K. Tang, and X. Yao. What aredynamic optimization prob-
lems? InProceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE
Press, 2014. in press.

2. C. J. C. H. Watkins and P. Dayan. Q-learning.Machine learning, 8(3-4):279–292, 1992.

