Reducing Processing Delay in Dataflow-oriented
Middleware Systems for Smart Camera Applications

Herwig Guggi and Bernhard Rinner
Institute of Networked and Embedded Systems
Alpen-Adria-Universitat Klagenfurt
herwig.guggi@aau.at, bernhard.rinner@aau.at

ABSTRACT

Dataflow-oriented processing is an attractive paradigm for

smart camera applications. In this paper we present a dataflow-

oriented middleware system to support the development of
such applications on resource-limited distributed systems.
Our main contribution includes the reduction of the over-
all processing delay by delaying the data generation and by
the just-in-time transfer of data elements. A side effect of
this delayed data transfer is also a reduction of the mem-
ory requirement for the communication links. We introduce
the basic algorithm and present experimental results of our
middleware system running in a distributed environment.

Keywords

dataflow processing; middleware system; data generation;
adaptation; multi-camera systems; pipe-and-filter architec-
ture

1. INTRODUCTION

The optimisation of middleware systems for distributed
applications is an important field of study as the number
of computing devices is constantly increasing and the re-
quest to take advantage of these networked resources arises.
Smart cameras are one example of this trend. While single
cameras can be used to trigger events and support a human
observer in a surveillance system [1] or perform vehicle de-
tection and speed estimation [2], distributed smart camera
networks offer an even higher benefit [3]. They can be used
to detect obstacles to avoid collisions [4] or perform a co-
operative tracking with local image analysis [5]. Usually a
middleware system is used to coordinate the distributed exe-
cution and the communication between devices. As the sys-
tem load may change during runtime, a middleware system
has to support online adaption of resources. One example
of such a dynamic system is described by Esterle et al. [6]
where they use a socio-economic approach for online vision
graph learning and tracking handover in smart camera net-
works.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

A middleware system suitable for distributed video pro-
cessing applications has to provide at least three key fea-
tures. First, as these applications process data from differ-
ent camera devices, it must support the processing of data
streams from multiple sources and potentially to multiple
sinks. Second, since the processing load is typically depen-
dent on the content, the execution time may vary during
runtime. Thus, a suitable middleware has to cope with these
dynamic changes of the execution times. Finally, the overall
delay of processing pipeline should be as small as possible.

Most data-flow-based applications rely on the pipe-and-
filter architecture. The pipe-and-filter architecture consists
of two main components. First, the filters which produce,
consume or process data. Source-filters provide new data
to the system. An example for a source filter is the image
acquisition which generates new image data to the system.
Sink filters consume the data and typically visualize them
to the user or store them in a file. Process filters receive
data from the input, process them and forward the result to
the output. Second, pipes are responsible to forward data
from the outputs of one filter to the inputs of other filters.
The connections are created by system designers. Figure 1
depicts a pipeline with an ensemble of pipes and filters. The
filters 1, 2 and 3 produce data. Filters 4 and 7 fuse data from
different sources and filters 8 and 10 consume data (e.g., by
visualizing the result on a user interface).

In this paper we describe a middleware system for dy-
namic smart camera applications. It supports multiple data
sources and sinks, the adaption to changing execution times
and the reduction of the pipeline delay. Applications repre-
sented as single-rate acyclic data-flow can be realized with
this middleware system. These features are implemented
in a distributed system with no central coordination unit.
The required control mechanism is implemented in a dis-
tributed manner where each filter is augmented by a dedi-
cated control unit. These control units communicate via a
bidirectional control channel which is parallel to the data
connections. In figure 1 the control channels are visualized
as red, dotted arrows.

The pipeline delay is reduced by just-in-time delivery of
data which means that new data is delivered to the input
of the succeeding filter as soon as the processing of previous
data element has been completed to avoid blocking. Just-
in-time delivery requires the sources to be executed at the
same rate as the slowest filter in the pipeline, i.e., the bot-
tleneck filter. The max-consensus algorithm [7] is used to
identify and distribute the execution time of the bottleneck
filter to the pipeline. To reduce the number of data elements

A A

"£— control -
o v

Figure 1: A sample pipeline with a number of fil-
ters. Filters with the numbers 1, 2 and 3 are source
filters and filter with the numbers 8 and 10 are sink
filters. Data flow (unidirectional) visualized in blue
and control flow (bidirectional) visualized in red.

in the pipeline, congestions are detected by our control al-
gorithm and distributed via the control channels. As a con-
sequence, the source filters postpone the generation of new
data elements accordingly and the pipeline delay is reduced.
Our algorithm is evaluated by comparison with state-of-the-
art data-flow processing. Our experiments show that the
pipeline delay could be reduced from 36 s to 2.5 s.

The rest of the paper is organised as follows: Section 2
summarises related work in the area of data-flow based ex-
ecution models. Section 3 describes the basic components
of the system. In Section 4, we explain the necessary con-
trol mechanisms to reduce the data delay. Section 5 provides
measurement results where the proposed system is compared
to a reference implementation. Section 6 concludes the pa-
per with a summary and discussion of future work.

2. RELATED WORK

A number of middleware systems for distributed smart
camera applications are already available [8]. In this sec-
tion we give a short overview of the most relevant related
systems.

CORBA [9] one of the best known systems for distributed
computing provides methods for remote method invocation.
Two methods, synchronous and asynchronous calls are pos-
sible. This middleware system does not support pipe-and-
filter based execution where data from element “a” is anal-
ysed by element “b” and then forwarded to element “c”. The
infrastructure provided by CORBA can be used to imple-
ment a data-flow based system, but this is not supported by
the base system. The timing for method invocation and the
decision between synchronous or asynchronous calls has to
be made by the programmer. This requires detailed knowl-
edge of all elements and their needs (e.g., if an algorithm
needs every picture or if pictures can be dropped). Mech-
anisms for changing parameters such as the execution time

based on the system load or the current context are missing.

Gstreamer [10] runs applications as pipelines. The pipelines
are normally executed on a single device and in a single
thread. Once started, pipelines will run in a separate thread
until you stop them or the end of the data stream is reached.
Streaming data are passed between elements in the pipeline
with buffers. Buffers are created by the data provider and
read by the data consumer. This system works good for pre-
captured sources. In the case of live data, it makes sense to
provide a mechanism that automatically adapts the frame-
rate of the data producer to those of the consumer.

HIVE [11] creates pipelines called “swarms” out of single
elements called “drones” where each drone is executed in its
own thread. Synchronised and streaming data transfer mod-
els are provided to transmit data from one drone to another.
By using the streaming data transfer, a pipeline is created,
and it is up to the programmer to set their parameters in a
way that the execution speed is the same for all drones in
the pipeline. There is no mechanism provided to react on
changes in the processing load. If the input queue of a filter
is full, new elements are simply dropped. The synchronized
data transfer ensures that a processing pipeline operates at
its maximal capacity and does not waste unnecessary band-
width. It works in a way that each drone only requests data
from its provider as soon as this drone has finished with the
processing for the previous data. After receiving the data,
the drone will process this data element and request the next
data as soon as the processing is finished.

The problem with this mechanism is that even if the data
transfer is called synchronized, the threads of the drones are
not synchronized which means that in some cases a source
drone produces more data than a filter drone can process.
This leads to frame-drops in case of a video encoding. An-
other drawback is the added delay that is introduced by
requesting the next data after the last data has finished pro-
cessing.

Schriebl et al. [12] describe a system where every block
(representing the filter in a pipe-and-filter architecture) has
an output memory where its results can be accessed by sub-
sequent blocks. To maintain consistency of the stored data,
access to the memory is guarded by a lock that is passed
between the producing and consuming block similar to a to-
ken. Blocks can form chains of arbitrary length where each
pair of blocks is connected by a shared memory and a lock.
This mechanism ensures that the whole pipeline is always
filled.

With this approach, the execution speed of the whole pro-
cessing pipeline is automatically reduced to the rate of the
slowest component and no data element will be dropped. In
the case of recorded video sources, every frame will be pro-
cessed with the pipeline nearly filled (only the filters after
the bottleneck will be free from data for some time). This
mechanism also works for live-video sources as the capturing
rate is automatically adapted to the one of the processing
rate of the bottleneck. However, it is unclear how filters
with more than one input are handled.

Moreland [13] present a survey about visualisation net-
works. The behaviour when modules get executed is de-
scribed as a primary feature of visualisation pipeline sys-
tems. According to this paper, all visualisation pipelines
generally fall under two execution systems: event driven and
demand driven. An event-driven pipeline launches execu-
tion as data becomes available in sources. A demand-driven

o o —
§ 'cz 2 g |8
5|2zl F|legd|ET
L1EE|LE|EE |88
= oo | E = .-g ° g
Zlzs|Ad|ER |3
CORBA [9]
Gstreamer [10] [2K O ©)
HIVE [11] ®| O ®)
Schriebl et al. [12] | @ | @ O O [)
Guggi et al. [14] O| @ o [) O
proposed system) o o [) [)

Table 1: Classification of middleware systems.
White bullets represent unsupported, gray bullets
partially realised and black bullets fully covered
properties.

pipeline launches execution in response to requests for data.

A typical example for an event-driven pipeline could be
the system as described by Schriebl et al. [12]. New data is
produced as soon as possible. An example of the demand-
driven pipeline could be the synchronized data transfer as
described by the HIVE [11] having the already mentioned
problems. Our system could be described as a combination
of the two mentioned execution systems. We produce data
in an event-driven manner by also regarding to the demands
of the bottleneck filter.

In our previous work [14] we present a distributed pipe-
and-filter middleware. In addition to the reduced memory
consumption, it was shown that the pipeline delay can be
reduced as compared to a state-of-the art execution model.

However, this system is limited to single data source pipelines.

Table 1 compares the related middleware approaches based
on the following criteria: (i) processing data from multiple
sources, (ii) avoiding dropping data elements, (iii) optimi-
sation of the pipeline delay, (iv) dynamic adaptation during
runtime and (v) providing low control overhead.

3. SYSTEM DESCRIPTION

In this section, we describe the individual parts of our
dataflow-oriented middleware system. An application con-
sists of a number of filters and the pipes connecting the
filters. The filter and the pipe are executed in two separate
threads to ensure that processing the (input) data can be
performed concurrently with transferring the (output) data
of a filter. In addition to the data elements also control in-
formation such as the bottleneck time and the number of
data elements in the pipeline have to be distributed. This
control information is transmitted on dedicated control links
along the dataflow graph.

Each filter may have any number of input ports and a
single output port (cp. Figure 2). Each input port and
the output port have a unique buffer to store a single data
element. The input port stores arriving input data. The
output port stores execution result data to be forwarded to
the succeeding filters. As soon as input data is available on
each input port and the buffer of the output port is empty,
the execution of the user code is triggered. The result of
the execution is stored in the buffer of the output port. As

~

Input port e

Input port

User code

9| Output port Input port

]

Input port

" Control |‘-
Py

Filter / Pipe

execution delay

pipeline trigger delay —/

data delay

buffer delay transmission delay

Figure 2: Visualisation of the individual components
of a single block. Directed data path is shown with
black, solid arrows. The bidirectional control path
is shown with dotted, red arrows.

soon as the result is stored, the transmission thread (pipe)
is triggered. The pipe copies the result of the buffer of the
output port to a transmission buffer and empties the buffer
from the output port to allow another element to be pro-
cessed by this filter. The transmission thread further copies
the data from the transmission buffer to the input buffers of
the following blocks. Source filters are triggered by a timer
event. The timer of all filters are set to the bottleneck time.
The exact mechanism for finding the correct value for the
timer is described in the next section.

The time that a single data element requires to pass through
one filter-pipe combination is called the data delay. This
delay is composed by the following individual delays (cp.
Figure 2): First, the buffer delay which is the time that the
data element is stored in the input buffer. Second, the ez-
ecution delay which is the time that is required to execute
the user code and to store the result to the buffer of the
output port. Third, the pipeline trigger delay which is the
time between storing the result to the buffer of the output
port and the start of the transmission thread. Fourth, the
transmission delay which is the time-span between copying
the result from the buffer of the output port to the trans-
mission buffer and end of storing all data elements to the
input buffers of all following blocks.

In parallel to the user code, there is one control unit in
each filter. The control units of the pipeline are connected
via bi-directional transmission channels which are parallel
to the pipes. Each control unit can receive messages down-
stream (from the input ports), send messages downstream
(via the output port), receive messages upstream (from the
output port) and send messages upstream (via the input
ports).

As the main goal of this work is to reduce the processing
time of any pipe-and-filter based application, it is necessary
to reduce the data delay. This delay can be reduced by
decreasing one of the following delays. The buffer delay de-
pends on the time of arrival of the individual data elements.
The execution delay depends on the processing hardware,
the user algorithm and the input data. The pipeline trigger
delay depends on the implementation of the task scheduler
of the operating system. The transmission delay depends on
the used communication channel, the amount of user data

and the number of data consumers (following filters).

For any data processing architecture in the form of a con-
nected, directed graph, the processing rate of this system
is limited by the execution time of the bottleneck filter ;.
The location of the bottleneck filer in the dataflow graph
does not influence the data rate of the pipeline.

If the pipeline is empty and all source filters produce at
the rate of the bottleneck filter, all data can pass through all
filters without any buffer delay as each received data packet
can always be processed immediately after reception. In
this optimal case, the data rate is the rate of the bottleneck
filter and the buffer delay is reduced to zero. In case of a
congestion the total delay (time from data production to
consumption) is increased by a factor of n x t, where n is
the number of data elements in all input buffers which are
not currently processed.

Due to scheduling effects and variations in the execution
times of each filter, it can happen, that buffers may fill up
during runtime. This can be detected by the filter controller.
As soon as a single buffer fills up, the corresponding source
filters have to delay the next execution. The delay is calcu-
lated in a way that after the delay time, the optimal number
of data elements in the pipeline is reached again.

A sync message (cp. Section 4) is generated by the filter
detecting the congestion. This message is sent upstream
to the source filters. As soon as the sync message reaches
a source, this source is able to calculate the optimal and
read the actual number of data elements in the pipeline.
If the actual number is higher than the optimal one, the
next execution of the source is delayed in order to reach the
optimal case again.

With these two simple mechanisms (setting the processing
rate of the sources to the processing rate of the bottleneck
and delaying single sources if a congestion is detected) it
is possible to execute any directed, multi-source, multi-sink
dataflow-oriented processing architecture with reduced data
delay. In addition to the reduced delay, the required memory
is also minimised as the overall number of data elements in
the pipeline is reduced.

We decrease the data delay by reducing the buffer delay.
This can be achieved by just-in-time data delivery. Two
main challenges have to be handled to ensure a low data
delay. First, the bottleneck time has to be known by all
filters. Second, the number of data elements in the pipeline
have to be reduced. The bottleneck time has to be known
by all filters for two reasons. First, if another filter detects
that it processes slower than the current bottleneck, the new
bottleneck has to be announced. Second, the source filters
have to set the timer for triggering data generation to the
value of the current bottleneck time. The reduction of the
number of data elements in the pipeline helps to prevent
congestion thus reducing the buffer delay.

4. CONTROL AND SYNCHRONISATION

The two challenges just explained are handled by the con-
trol unit of each filter. Two control message types are used to
optimize the execution of the system. First, bottleneck up-
date messages are used to update the information about the
global bottleneck time. Second, sync messages are used to
reduce the number of elements in the pipeline. Bottleneck
update messages consist of the bottleneck time ¢, and the
filter that detected the bottleneck. Sync messages are sent
if a data congestion is detected. This message consists of

the current bottleneck time t;, the sum of delays from the
filter that detected the congestion to the source filter and
the number of data elements from the filter that detected
the congestion to the source filter.

Each filter has an internal parameter t;;, which represents
the locally stored bottleneck time. After processing of the
first data element, ¢ is set to the own execution time. This
value is sent to all neighbours (upstream and downstream)
in a bottleneck-update message. If a higher value than the
local bottleneck is received, the local value of t; is updated
and the new value is forwarded to all neighbours. This is
the implementation of the max-consensus algorithm. Ne-
jad et al. [7] have proven that the max-consensus algorithm
can be used to find the global maximum execution time in
this setup.

Algorithm 1 describes the mechanism to detect a conges-
tion at the input ports of a filter. If a new element should
be transmitted to the input port while the input buffer is
still occupied, the congestion is detected. The control unit
detecting the congestion creates the sync message with the
ty, and the sum of the own execution and transmission time
as sumDelay. numDataFElements is set to the number of
data elements in the current filter. The message is then sent
upstream via the input ports.

Algorithm 1 Handling of new data on an individual filter
input port
1: function HANDLEDOWNSTREAMDATA (element)

2: if inputBuf fer! = EMPTY then

3: SENDCONGESTIONMESSAGEUPSTREAM|()
4: else

5: input Buf fer = element

6: end if

7

end function

The processing of a received sync messages is shown in Al-
gorithm 2. Filters receiving the sync message, add their own
execution and transmission time to the value of sumDelay,
add the local number of elements to the numDataElements
and send the message upstream.

Source filters will finally receive the sync message and cal-
culate the optimal number of data elements in the pipeline
with eopr = (%} If the counted number of data el-
ements in this pipeline numDataFElements is larger than
eopt, the next execution of the source filter is delayed by
ty X (numDataElements — eopt). After this time, the opti-
mal number of elements in the pipeline is reached and the
source produces further data elements at the same rate as
the bottleneck filter can process data. In an ideal system,
all sources are then synchronized to the bottleneck and the
minimal possible data delay can be achieved. In most real
systems, scheduling effects of the operating system cause
variations in the data delay which requires continuous adap-
tion to keep the low data delay.

S. EVALUATION

The proposed algorithm is compared to dataflow process-
ing with blocking communication which serves as reference
system. In the reference system, all filters forward the data
to the succeeding filters as soon as the input buffer of these
filters are empty. The architecture of the reference system
is also used by Schriebl et al. [12]. The reference and the

N
[

N
o

w
w

w
o

N
v

—new source 1+2
—new source 3

N
o

ref-source 1+2

[
[

-ref-source 3

=
o

delay for single data element [s]
wv

o
(

1
10
19
28
37
09
118
127 -
136 5

€] o0 o [=]
vmmr\wma

data element

w
w

w
o

N
v

—new-source 3

N
o

------ ref-source 3

=k
o wuv

delay for single data element [s]
wv

0
ST NOMOVUWOOANLWOO AT O MO AN
S AN N ONOODO I M NN 00O N
o A H H H A NN

data element

Figure 3: The data delay for single data-elements in the pipeline with 3 sources (sources one and two have
the same delay) as received by sink filter 8 (left) and filter 10, respectively. Comparison between reference
system (dotted graphs) and proposed system (solid graphs).

Algorithm 2 Handling of the sync messages

1: function HANDLESYNCMESSAGE(syncMessage)
2: if isSourceFilter then

3: ty = syncMessage.sumDelay

4: ty = syncMessage.bottleneckTime

5: ep = syncMessage.numDataElements
6: eopt =[]

T if e, > eopt then

8: delay =ty X (ep — €opt)

9: next ExecutionTimer.sleep(delay)
10: end if

11: else

12: syncMessage.sumDelay+ = tprocessing
13: syncMessage.numDataFElements+ = eown
14: end if

15: end function

proposed system are implemented in C# and executed on a
number of different devices (including Windows and Linux
PCs). A distributed middleware was implemented that sup-
ports features for downstream communication for filter-data
and bidirectional communication for control-data.

The sample pipeline is the pipeline as visualized in Fig-
ure 1 with 10 additional filters between source 3 and filter 5.
All filters are configured to have an execution time of 100
ms. The sample scenario has been selected in order to re-
alize a number of challenging configurations. A number of
sources with different data-delays are provided. Not all sinks
depend on data from the same input filter(s). The bottle-
neck filter might be outside the data-path from one of the
sources.

In smart camera applications, the execution time of some
algorithms depend on the input data. Static scenes with
only a small amount of changes between consecutive images
can be processed faster than images taken in a dynamic en-
vironment. The dynamics of a scene may change during
run-time. Surveillance cameras may have highly dynamic
scenes during peak-time and static scenes during off-peak
times. Wireless LAN is often used to mount cameras on
locations independent on the availability of network cables.
Therefore, important features for distributed smart camera

applications are support for wireless connections and the
ability to adapt to changing conditions during run-time.

Three different experiments are conducted to test if the
proposed system is able to support the required features
for distributed smart camera applications. The static case
(to show that the system works fine while the dynamics of
a scene does not change), the dynamic case (to show the
capability of the system to adapt to changing environment
conditions) and the distributed execution with different pay-
load sizes (to test the execution in a distributed—wireless
connected configuration). The first two experiments are ex-
ecuted on a single PC. The last experiment is conducted on
two PCs. The two PCs are connected via a 11Mbit wireless
LAN. In these experiments we measure the total pipeline
delay which is defined as time difference between the gener-
ation of a data element at the source filter and its consump-
tion at the sink filter. In case of multiple sinks, the total
delay is measured for each sink individually.

5.1 Static Case

The static case compares the behaviour of the proposed
system with the reference system in a static scenario. During
the experiment execution, the execution times of all filters
remain constant. In the static case, the sink filter with num-
ber 8 has been selected to be the bottleneck filter with an
execution time of 1000 ms. All other filters have an execu-
tion time of 100 ms. Figure 3 compares the pipeline delay
of the reference system with our system by visualizing the
pipeline delay as received by filter 8 (left) and by filter 10
(right), respectively. As filter 10 does not receive any data
from sources 1 or 2, there is also no delay measurement for
these sources. Even though the bottleneck (filter 8) is not
in the data path of filter 10, the proposed system is still
able to adapt the processing rate of source filter 3 which en-
sures a low delay for data from this source. On the graphs
from the reference system, it can be realized that the delay
is constantly increasing up to a level where all filter buffers
preceding the bottleneck are full and the maximum delay
has been reached. The variations in the delays are caused
by task scheduling effects of the operating system. The solid
lines of the graph represent two phases of our proposed sys-
tem. First, the initialisation phase where the bottleneck
time has not yet been determined and distributed through

the pipeline. During this phase, all sources produce at their
maximum rates which causes the pipeline to fill up (such as
in the reference system). As soon as the bottleneck time has
been determined and distributed among the network using
max-consensus and sync messages. The sources react as de-
scribed in section 4 by reducing their data production rate
and delaying the next execution to a moment where the op-
timal number of data-elements in the pipeline is reached.
The second phase is the steady state where the sources pro-
duce at the desired data rate and the delay remains at a low
level. On filter 8 the average pipeline delay for our system
in this scenario is 0.5 s for sources 1 and 2, and 1.7 s for
source 3. On filter 8 the average pipeline delay for the refer-
ence system in this scenario are 7.2 s for sources 1 and 2 and
37.5 s for source 3. Thus, our approach is able to reduce the
pipeline delay of the same code as in the reference system
by an order of magnitude.

5.2 Dynamic Change of the Bottleneck Filter

This evaluation focuses on the ability of the system to
react to changes of the bottleneck during run-time. We ex-
ecuted the sample scenario in six phases. In phases 1, 3
and 5 all filters have the same execution time of 100 ms.
In the other phases, always one filter is selected a the bot-
tleneck with an execution time of 1000 ms. In phase 2,
the bottleneck is filter 8, in phase 4, filter 9 is the bottle-
neck and in phase 6, filter 5 is the bottleneck filter. During
the execution of the six phases, we evaluate two properties
of our approach. First, we demonstrate how our system
adapts the data production if the bottleneck time increases
or decreases. Second, we show how the sources adapt to the
execution time of the bottleneck even if the sources do not
provide data to the bottleneck filter. During phases 4 and 6
sources 1 and 2 do not provide data to the bottleneck filters
but the system is still able to reduce the data delay for all
sources.

Figure 4 visualizes the measured pipeline delays for the
data elements received by filter 8 (left) and filter 10 (right),
respectively. Filter 10 does not receive any data from sources
1 and 2 and therefore cannot calculate a pipeline delay for
data from these sources. By analyzing the parts of the graph
from phases 2, 4 and 6, it can be realized, that these sec-
tions act like in the static case. While the data delay in the
reference implementation is continuously increasing (up to
a limit), the proposed system reduces the data delay after a
short initialisation period.

5.3 Distributed Execution and Different Pay-
load Sizes

The third experiment evaluates the distributed execution
and different payload sizes. To test the distributed execu-
tion, the sample pipeline has been executed on two devices.
Two windows PCs are used for the test. These two PCs
have been connected via an 11Mbit/s wireless LAN con-
nection. The main goal of the distributed execution was
not to have an optimal splitting of the sample application,
but to provide a high number of data communications be-
tween the devices. Therefore every other of the ten filters
between source 3 and filter 5 are executed on a different de-
vice. All sources (1,2 and 3) and sinks (8 and 10) as well as
filter 6 are executed on one device and all other filters are
executed on the other device. The pipeline delay values from
the first sink (filter 8) is evaluated. To sum up, data from

—new source 1+2

—new source 3

------ ref source 1+2

------ ref source 3

1 10 100 1k 10k 100k
payload size [byte]

Figure 5: Average data delay for different payload
sizes for sample scenario with distributed filters.

source 1 and 2 are transmitted via the network two times
(once from the source to filter 4 and once from filter 7 to the
sink). Data from source 3 are transmitted 13 times via the
network. All in all there are 15 data connections between
the two PCs and the available bandwidth is 11Mbit/s. In
our experiment all connections transmit the same amount
of data. Thus the maximum available bandwidth per data
connection is 733kbit/s which is 92kbyte/s.

Simple filters and fusion filters have been implemented to
test the system. Simple filters accept input data from a sin-
gle source (cp. filters such as 5,6 and 9). After a delay that
simulates the processing delay, the data element from the
input is forwarded to the succeeding filters. Fusion filters
merge the data from multiple inputs into a single data el-
ement. Simple filters forward the input data unmodified.
Fusion filters forward the largest received payload and drop
the payload data from the other inputs.

For this evaluation, filter 9 has been set to be the bottle-
neck with an execution time of 1000 ms. All other filters
execute with an execution time of 100 ms. The visualized
delay values are the average values for the steady state of
the system (after initialisation). The payload size has been
varied between 1byte and 100kbytes. Figure 5 visualizes the
measurement results. The proposed system always works
with a far lower data delay than the reference system. While
the payload is lower than the calculated maximum data-size
(95kbyte/s), the payload seams not to have an influence on
the data delay. At a payload size of 100kbyte the data trans-
mission becomes the bottleneck causing the data delay to
increase.

6. CONCLUSION

In this paper we presented a distributed algorithm that
is able to synchronise any multi-source and multi-sink pipe-
and-filter based application. The improvement to state-of-
the art middleware systems is on the one hand the reduced
data-delay. On the other hand, our system works in a dis-
tributed environment without any central component. This
is very important for current and future applications which
will be executed on a number of different devices. The pro-
posed system automatically adapts to system changes that
occur during runtime.

Our experimental results show that the proposed system

fo2)
o

Phase1 Phase2 Phase3 Phase4 Phase5 Phase 6

v
o

N
o

—new source 1+2
—new source 3
------ ref source 1+2

N
o

--ref source 3

delay for single data element [s]
= w
o o

fo2)
o

Phase1 Phase2 Phase3 Phase4 Phase5 Phase 6

v
o

N
o

—new source 3
------ ref source 3

N
o

=
o

delay for single data element [s]
w
o

|~]

33
65
97
129
161
193

n M~ e m
N N 0N W
NN AN Mmoo

385
417
449
481
513
545

data element

Figure 4: The data delay for single data-elements in the pipeline with 3 sources (sources one and two have
the same delay). Comparison between reference system (dotted graphs) and own system (solid graphs). Data
elements are received by filter 8 (left) and filter 10 (right), respectively.

manages to synchronize all sources even if the bottleneck is
not in the data path of the specific source. The data delay is
reduced by just-in-time data delivery. The event-based syn-
chronisation does not require any continuous polling mech-
anism to be updated about the current system state. Our
approach is beneficial for a number of applications. Applica-
tions working with live data as often used by smart camera
systems benefit from the reduced delay and earlier visuali-
sation of processing results. Applications working with pre-
recorded data experience a reduced memory requirement.

7. ACKNOWLEDGMENTS

This work was performed in the EPiCS project (Engineer-
ing Proprioception in Computing Systems) and has received
funding from the European Union under grant no. 257906.

8. REFERENCES

[1] M. Bramberger, J. Brunner, B. Rinner, and
H. Schwabach, “Real-time video analysis on an
embedded smart camera for traffic surveillance,” in
Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS 2004), may 2004, pp. 174 — 181.

[2] D. Bauer, A. N. Belbachir, N. Donath, G. Gritsch,

B. Kohn, M. Litzenberger, C. Posch, P. Schén, and
S. Schraml, “Embedded vehicle speed estimation
system using an asynchronous temporal contrast
vision sensor,” FURASIP J. Embedded Syst., vol.
2007, pp. 34-34, January 2007.

[3] B. Rinner and W. Wolf, “A Bright Future for
Distributed Smart Cameras,” Proceedings of the IEEE,
vol. 96, no. 10, pp. 1562-1564, October 2008.

[4] H. Guggi and B. Rinner, “Distributed smart cameras
for hard real-time obstacle detection in control
applications,” in Distributed Smart Cameras (ICDSC),
2011 Fifth ACM/IEEE International Conference on,
aug. 2011, pp. 1 6.

[5] M. Bramberger, A. Doblander, A. Maier, and
B. Rinner, “Distributed embedded smart cameras for
surveillance applications,” Computer, vol. 39, pp. 2006,
2006.

[6] Lukas Esterle, Peter R. Lewis, Xin Yao, and Bernhard
Rinner, “Socio-Economic Vision Graph Generation
and Handover in Distributed Smart Camera
Networks,” ACM Transactions on Sensor Networks,
vol. 10, no. 2, pp. 24, 2014.

[7] B. Monajemi Nejad, S.A. Attia, and J. Raisch,
“Max-Consensus in a Max-Plus Algebraic Setting:
The Case of Fixed Communication Topologies,” in
XXII International Symposium on Information,
Commumnication and Automation Technologies,
Sarajevo, Bosnia and Herzegovina, 2009.

[8] B. Rinner and M. Quaritsch, “Embedded Middleware

for Smart Camera Networks and Sensor Fusion,”

Multi-Camera Networks: Principles and Applications,

July 20009.

Alan Pope, The CORBA Reference Guide:

Understanding the Common Object Request Broker

Architecture, Addison Wesley, 1998.

[10] “GStreamer: open source multimedia framework,”
http://gstreamer.freedesktop.org, last visited: August
2012.

[11] A. Afrah, G. Miller, D. Parks, M. Finke, and S. Fels,
“Hive: A distributed system for vision processing,” in
Distributed Smart Cameras, 2008. ICDSC 2008.
Second ACM/IEEE International Conference on, sept.
2008, pp. 1 9.

[12] W. Schriebl, T. Winkler, A. Starzacher, and
B. Rinner, “A pervasive smart camera network
architecture applied for multi-camera object
classification,” in Proceedings of the Third ACM/IEEE
International Conference on Distributed Smart
Cameras, 2009. ICDSC 2009. IEEE, 2009, pp. 1-8.

[13] K. Moreland, “A Survey of Visualization Pipelines,”
IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 3, pp. 367-378, 2013.

[14] H. Guggi and B. Rinner, “Increasing Efficiency of
Data-flow Based Middleware Systems by Adapting
Data Generation,” in Proceedings of the Seventh IEEE
International Conference on Self-Adaptive and
Self-Organizing Systems (SASO 2013), 2013, pp.
189-198.

9

