
978-1-4799-5944-0/14/$31.00 c©2014 IEEE

Dynamic Protocol Stacks in Smart Camera Networks

Markus Happe, Yujiao Huang, Ariane Keller
Communication Systems Group, ETH Zurich, Switzerland

Email: {markus.happe, yujiao.huang, ariane.keller}@tik.ee.ethz.ch

Abstract—The term Internet of Things is often used to talk
about the trend of embedding microprocessors in everyday
devices and connecting them to the Internet. The Internet of
Things poses challenging communication requirements since the
participating devices are heterogeneous, resource-constrained and
operate in an ever changing environment. To cope with those
requirements, academic research projects have proposed novel
network architectures, such as the Dynamic Protocol Stack (DPS)
architecture.

In this paper, we use smart camera networks as an example of
the Internet of Things and evaluate the DPS architecture in this
scenario. Our smart camera nodes are implemented as an FPGA-
based system-on-chip architecture that uses the DPS architecture
for the network communication. We evaluate our smart camera
nodes in two case studies. In the first case study, we demonstrate
that our proposed smart camera network can track a single
object over the field of view of several camera nodes. In the
second case study, we show that an adaptive hardware/software
mapping of the network functionality can save about 22% of
the FPGA resources as compared to a static mapping. The
hardware/software mapping can be adapted at a processing delay
of a single video frame.

I. INTRODUCTION

Nowadays, we observe a trend that more and more com-
puters are embedded into all sorts of objects, such as clothes,
household articles and sports equipment. For configuration,
monitoring, or entertainment purposes, those compute nodes
usually offer a connection to the Internet. This also gives this
trend the name Internet of Things. In contrast to the traditional
Internet, the Internet of Things operates in a highly dynamic
environment with changing communication requirements (e.g.,
privacy levels) and network conditions (e.g., link quality).
Additionally, the devices are usually resource-constrained in
terms of available area, compute power, and energy. These
constraints require a communication firmware with minimal
overhead. However, most devices use the standard Internet
architecture as their communication platform. While the In-
ternet architecture provides the required functionality, it was
never optimized for resource-efficient network communication.
Rather it abstracts the heterogeneity of the communication
partners and only provides a limited degree of adaptation to-
wards dynamic mobile networks. We believe that the Internet
of Things would benefit from a novel, highly dynamic network
architecture that is aware of the heterogeneity of its nodes and
that is capable of optimizing its communication protocols over
time in a fine-grained manner.

Therefore, we investigate how flexible protocol stacks can
be used instead of static protocol stacks such as TCP/IP or
UDP/IP. Flexible protocol stacks split the networking function-
alities into individual functional blocks, which can be dynami-
cally linked with each other in order to form arbitrary protocol

stacks. In previous work [1] we presented such a flexible
protocol stack architecture, called Dynamic Protocol Stack
(DPS) architecture as well as EmbedNet, an FPGA-based
execution environment for dynamic protocol stacks. EmbedNet
supports (i) the autonomous configuration of protocol stacks,
and (ii) the dynamic mapping of network functionality to
either hardware or software. This allows resource-constrained
devices to achieve reasonable network processing performance
for arbitrary communication requirements, even though they
do not have a powerful processor nor unlimited space for
hardware accelerators.

In this paper we extend our work by employing our DPS
architecture in the Internet of Things, namely in smart camera
networks. Smart cameras combine several tasks such as video
sensing, processing and communication on a single embedded
device [2]. A typical task of a smart camera network is to
track an object over the field of view of several camera
nodes. In such a scenario they often need to process large
amounts of data and communicate with each other at strict
real-time constraints. Furthermore, smart camera nodes are
usually implemented on embedded devices with limited re-
sources, where the computational expensive tasks are mapped
to hardware and the control tasks to software [3]. A flexible
network architecture that can adapt itself to the current network
condition or communication scenario is highly desirable to
meet all communication requirements.

Specifically, this work provides the following contributions:

• A novel smart camera node architecture that is entirely
programmed on an FPGA platform and uses the Embed-
Net platform for communication.

• A first case study where multiple smart camera nodes
autonomously track a single moving object.

• A second case study where multiple objects are tracked
in the smart camera network where all network commu-
nication is encrypted. Each smart camera node can either
track an object locally, using its own camera view, or
remotely, using the camera view of another camera node.

• An evaluation of the communication throughput between
smart camera nodes and a quantification of the costs for
updating the hardware/software mapping of the Embed-
Net architecture.

The rest of this paper is structured as follows: Section II
presents related work. Section III introduces the general
concepts of dynamic protocol stacks and the corresponding
adaptive hardware/software mapping. Section IV presents our
reconfigurable smart camera node architecture. Then, Sec-
tion V describes a case study where one object is tracked by
several smart camera nodes, and Section VI describes a case
study where multiple objects are tracked by the smart camera
network. Finally, Section VII concludes the paper.

II. RELATED WORK

This section presents related work on dynamic protocol
stacks and FPGA-based smart camera networks.

A. Flexible Network Architectures

Already in the early 1990s, Tennenhouse and Wetherall [4]
proposed Active Networks in which users could inject custom
code into the network. This code was associated with a set of
packets that traversed the network from the source over several
routers to the destination. The code was executed on interme-
diate nodes and could modify the packets on the fly as desired.
A less flexible architecture is proposed by the Click modular
router [5] and netgraph [6]. Both Click and netgraph offer
the possibility to flexibly combine networking functionality.
However, they do not focus on run-time reconfiguration.

The concepts of flexibility, modularity, and extensibility
were also presented by Ghodsi et al. [7] as the basic re-
quirements for a network architecture that is able to evolve.
Wolf et al. [8] argue that a user should be able to choose
the service that best fits his requirements. In contrast to
related work our dynamic protocol stack architecture adapts the
protocol stack to the current environment such as link quality
and the applications requirements. Furthermore, our network
architecture allows for an adaptive hardware/software mapping
of the protocols.

B. FPGA-based Smart Camera Networks

Over the last years it became increasingly popular to
implement smart camera platforms partly or entirely on FPGA
boards to increase the performance and lower the power
consumption as compared to PC-based solutions. Most of
the works focused on the image processing and object/person
tracking capabilities of the platforms. For instance, Diaz et
al. [9] developed a hardware design, which includes reconfig-
urable window-based image processing elements. The design
has been implemented on an Altera Stratix EP1S60 FPGA
device that had been connected to a LUPA-4000 image sensor.
More recently, Maggiani et al. [10] proposed an architecture
which is split into a microcontroller, that processes all network
communication, and an FPGA, that implements computer
vision algorithms in reconfigurable hardware pipelines.

Similar to our approach, Zarezadeh and Bobda [3] designed
an FPGA-based hardware/software architecture for both, the
object/person tracking application and the communication mid-
dleware. Their smart camera nodes can exchange information
using an object request broker. They implemented a prototype
on a Xilinx Virtex-4 FPGA, which contains an embedded
PowerPC 405. In contrast to our work, their architecture only
supports static protocol stacks that are either fully mapped to
hardware or fully mapped to software.

In previous work [11], we have implemented a particle
filter-based video object tracking system on a Xilinx Virtex-4
FPGA board. The system-on-chip architecture can change the
hardware/software partitioning of the application tasks at run-
time in order to meet given performance goals. In contrast to
our previous work, we use a different tracking algorithm (a
camshift filter [12]), and we extend the scenario from a single
camera node to a smart camera network.

III. BACKGROUND

In order to facilitate the understanding of the smart camera
node architecture and the case studies presented in the fol-
lowing sections, we summarize here the DPS and EmbedNet
architectures. A detailed description is available in [1].

A. Static vs. Dynamic Protocol Stacks

The current Internet architecture is partitioned in a fixed
set of layers and specifies the interaction of a well known set
of network protocols, as shown in Figure 1(a). In contrast to
the current Internet architecture, protocol stacks can be built
dynamically in the DPS architecture.

application

PHY

MAC

network

transport

(a) static PS

application

PHY / MAC

(b) dynamic PS

application

SW

HW

PHY / MAC

(c) HW/SW mapping

Fig. 1. Static vs. dynamic protocol stacks (PS). The hardware/software
mapping of the used functional blocks can be adapted at run-time.

The basic concept of the DPS architecture is shown in
Figure 1(b). The DPS architecture splits network functionality
into individual functional blocks that process packets on their
way from the physical (PHY) / MAC layer to the application
layer and vice versa. The functional blocks can be combined
at run-time to form a protocol stack, and can be changed on-
the-fly in order to provide a communication channel that is
continuously optimized.

B. Adaptive Hardware/Software Mapping

We implemented the DPS architecture on a reconfigurable
system-on-chip in previous work [1]. In this implementation,
called EmbedNet, functional blocks can be implemented either
in hardware in the FPGA fabric or in software on the embedded
CPU as shown in Figure 1(c). While for performance reasons
it would be desirable to implement as many functional blocks
in hardware as possible, we are constrained by the FPGA area
and by the requirement to include novel protocols that are
unknown at design time. Therefore, our EmbedNet prototype
dynamically decides which functional block should be mapped
to hardware and which to software according to the current
processing requirements. In order to dynamically adapt the
hardware/software mapping at run time we use the possibility
to partially reconfigure modern FPGAs.

IV. ARCHITECTURE

Our smart camera network consists of a set of smart camera
nodes and a controller. The controller offers a user interface
that can display the video streams captured by all cameras, and
from where the object to be tracked can be selected. Upon
the selection of an object, a control message is sent to the

corresponding camera which starts tracking the object. From
now on the tracking is performed autonomously by the smart
camera network, and the tracking camera simply sends the
position of the object back to the controller, where it can be
displayed in the user interface. All nodes (smart cameras and
controller) are connected by an Ethernet switch. Therefore, the
DPS architecture implements a protocol stack that consists of
only the Ethernet protocol and omits higher layer protocols
such as IP, TCP, or UDP.

The controller is implemented on a commodity workstation
as a Linux user-space program. Each smart camera node is
implemented as a reconfigurable system-on-chip architecture
that is configured on a single FPGA. The hardware/software
architecture of a smart camera node is shown in Figure 2. The
FPGA design consists of two parts, a video object tracking ap-
plication (white) and the EmbedNet network node architecture
(black). The functionality of both parts is partially mapped to
an embedded processor and partially to the FPGA fabric.

ENC DECH2S S2H

CAM

network-on-chip

MMBP

camera
Ethernet

ICAPH2S S2H PR

SW

HW ENC

DEC

partial

bitstreams

ETH

protocol stack

builder & mappervideo object

tracker

FPGA

Fig. 2. Hardware/software architecture of a smart camera node: The white
part represents the video object tracking application and the black part the
EmbedNet network node architecture. The upper half of the FPGA design is
mapped to software and the lower half is mapped to hardware.

We have implemented the smart camera node on a Xilinx
Virtex-6 ML605 board. A Full-HD Panasonic HC-V727 cam-
corder is connected to an AVNET HDMI Input/Output FMC
module, which is plugged into the ML605 board. The cam-
corder provides a 1920×1080 video input stream at 50 frames
per second (FPS). A Xilinx MicroBlaze processor has been
instantiated on the FPGA fabric and runs the software parts
of the smart camera node. We have used the ReconOS [13]
execution environment in order to seamlessly integrate our
hardware blocks to the operating system. ReconOS extends the
Linux operating system such that software threads can interact
with hardware blocks (or hardware threads) using shared
memory and the well-known POSIX interface. The video
object tracking application and the EmbedNet architecture
can therefore communicate with their hardware blocks. The
MicroBlaze processor and all hardware blocks are clocked at
100 MHz.

A. Video Object Tracking Application (white)

The architecture of the video object tracking application
on a smart camera node is as follows: The video frames that
are captured by the external camera are sent to a hardware
module (CAM). The CAM block scales the input video down to
a resolution of 320×180 at 25 FPS. This reduced frame size is
then used for all further operations. The CAM module sends the
captured frames to the software application, where the object

tracking is started. We implement object tracking with the help
of a camshift filter [12] which requires two computationally
expensive operations, namely histogram backprojection (BP)
and the computation of the moments (MM). Therefore, those
two blocks are implemented as hardware modules.

To verify if the tracking works correctly, the software
application sends the calculated location and size of the object
back to the CAM module. The CAM module can send video
frames together with the current location/s of the object/s over
the EmbedNet architecture to the controller, which displays
the video frames together with the objects position. The
video transmission to the controller is optional and can be
activated/deactivated by sending a specific control message to
the corresponding smart camera node.

B. EmbedNet Architecture (black)

For communication, we use the EmbedNet architecture,
which has been already published in previous work [1]. The
EmbedNet architecture consists of a protocol stack builder
& mapper in software, which forms the required protocol
stack and dynamically maps the functional blocks either to
hardware or to software. The current prototype implementa-
tion of EmbedNet supports AES [14] encryption (ENC) and
decryption (DEC) functional blocks in order to establish a
secure communication channel. Our current prototype contains
one dynamic hardware slot (PR), which can be reconfigured
at run-time to implement either the ENC or the DEC block.
The partial bitstreams for both blocks are stored in external
memory, i.e. SDRAM. The protocol stack builder & mapper
can reconfigure this slot using the ICAP hardware module.
The EmbedNet architecture allows to forward packets from
software to hardware (S2H) and from hardware to software
(H2S). The ETH block can transmit packets to and receive
packets from the physical Ethernet interface. In contrast to
previous work [1], we extended the hardware/software inter-
face to buffer up to 180 packets in the S2H and H2S blocks
for performance reasons.

The functional blocks in hardware are connected by a
network-on-chip (NoC). The NoC consist of three network
switches which are connected with each other in a ring
topology. Each switch has an interface for the connection to
the NoC and two interfaces for connecting functional blocks.
In addition to networking functional blocks, the CAM module
of the video object tracking application is also connected
to the NoC. This allows the CAM module to directly send
packets to the protocol stack, without requiring processor
interaction. For the transmission of packets between functional
blocks, each packet is extended with a header that specifies
the address of the next functional block. If the next functional
block is mapped to software, the address corresponds to the
H2S functional block. The protocol stack builder & mapper
can configure each functional block with the address of the
functional block that should process the packets next.

V. CASE STUDY 1: SINGLE OBJECT TRACKING

In this section we describe our first case study where
a single object is tracked over the field of view of several
autonomous smart camera nodes. This case study shows the
correct operation of our smart camera network.

A. Scenario

The smart camera nodes should track a colored toy train,
over time. Only one of the smart camera nodes should be in
charge of tracking at any given time. As depicted in Figure 3,
the cameras are placed next to the oval track, such that each
camera sees a different section of the tracks. The train can
travel the route clockwise or counterclockwise in different
velocities, it can stop in between, and change the direction.
The smart camera nodes need to collaborate in order to decide
which camera node is in charge of tracking. The fields of view
of our smart camera network are shown in Figure 4.

1
32

Fig. 3. Case study 1: Tracking a toy train with multiple smart camera nodes.

Initially a user selects the object to be tracked on the
controller. The controller computes the histogram of the object
(used for the camshift algorithm), and sends it to the smart
camera node that currently sees it. This node is initially in
charge of tracking. Whenever a smart camera node is tracking
the train, it sends the current position and the approximate out-
line of the train in form of a bounding box to the controller that
stores all tracking information. When the object approaches the
edges of its field of view a Vickrey auction [15] is performed to
determine which camera will continue to track the object. Our
handover mechanism has been inspired by Esterle et al. [16].

The node originally tracking the object acts as an auction-
eer and sends the object’s histogram to the other nodes using
a broadcast message. The other smart camera nodes try to
find the object in their video input stream using the camshift
filter. If a camera node sees the object, it bids for the object
by sending a message back to the auctioneer. The height of
the bid depends on how well the camera can see the object.
The bid value corresponds to the detected size of the object,
weighted by the position of the object with respect to the field
of view of the camera. The smart camera node with the highest
bid wins the auction and is informed by the auctioneer that it
should continue tracking. The other nodes are informed that
they have lost the auction. It is possible that the auctioneer
decides not to handover the tracking responsibility if the bids
are low and it can still see the object.

Fig. 4. Case study 1: Field of views of the three smart camera nodes.

B. Results

In order to show the correct hand over between the cam-
eras, we monitor all packets sent by the smart camera nodes.
Therefore, we group the packets into two packet types: packet
type 1 contains communication between smart camera nodes
(auction, handover) and packet type 2 contains the messages
from the smart camera nodes to the controller (position and
bounding box).

An example measurement for the single-object tracking
case study can be seen in Figure 5. In the first 28 seconds,
the train runs three circles on the tracks at the lowest speed
level, which results in eight handovers. After 28 seconds, the
train stops for ten seconds and smart camera node 1 continues
tracking for this time interval. Then the train changes its
direction and accelerates to the second speed level. The train
takes about four more rounds in the final 24 seconds of our
experiment, which results in twelve further handovers.

dir. = cw, speed-1 stop dir. = ccw, speed-2

1

2

c
a

m
-1

1

2

p
a

c
k
e

t
ty

p
e

c
a

m
-2

1

2

0 5 10 15 20 25 30 35 40 45 50 55 60 65

c
a

m
-3

seconds
Fig. 5. Single-object tracking: Sent packets per smart camera node over time
(packet type 1: tracking handover, packet type 2: tracking result).

This experiment shows that the tracking handover works
reliably in our proposed smart camera network in a dynamic
scenario, where the train changes its direction from clockwise
(cw) to counterclockwise (ccw) and its velocity.

VI. CASE STUDY 2: MULTI OBJECT TRACKING

In this section we describe our second case study where all
network traffic should be encrypted for privacy considerations,
and where multiple objects should be tracked. With this case
study we show the benefit of using the DPS and the EmbedNet
architectures as opposed to the standard Internet architecture
for the communication in the smart camera network.

A. Scenario

We assume that a smart camera node can only track a
limited number of objects by themselves at the same time.
In our case, the camshift filter that is used for tracking only
allows for a single object to be tracked. Whenever a node
is supposed to track multiple objects, it can transmit its video
input stream to (idle) smart camera nodes, which take over the
tracking responsibility. We assume that the number of smart
camera nodes in the network is at least as high as the number
of tracked objects. The selection of the camera that performs
the remote tracking works as follows: (i) the camera that is
currently responsible for tracking broadcasts a remote tracking
request to all cameras in the network, (ii) all cameras that
are currently not tracking an objects reply, and (iii) the initial
camera randomly selects one of the idle cameras for remote

tracking and transfers the histogram of the object to be tracked
to this camera. The remote tracking camera then performs the
tracking and sends the objects position and bounding box back
to the camera that initially was tracking the object.

Figure 6 shows an example with two smart camera nodes
and two objects at three different points in time. First, node 1
sees both objects whereas node 2 sees no object in Figure 6(a).
In this case, node 1 asks the currently idle node 2 to track one
of the objects, i.e. the black ball. If node 2 agrees, node 1
transmits its input video to node 2 over the network. Node 2
then tracks the black object and sends its current position back
to node 1. In Figure 6(b) the black object has moved and each
node can see a single object. Hence, no video stream has to
be transferred. In Figure 6(c) the white object has also moved
into the field of view of node 2. Now node 2 streams its video
input to node 1, which tracks the white object for node 2.

A video frame is split into L packets, one packet per line.
The object’s position can be encapsulated into a single packet.
Therefore, the ratio between sent and received packets per node
is either L:1 or 1:L for a remote video object tracking.

21

L:1 1:L

(a) t = 1

21

(b) t = 2

21

1:L L:1

(c) t = 3

Fig. 6. Case study 2: Tracking two objects with two smart camera nodes.
(a) Node 1 sees two objects and transmits its video stream to node 2, (b) both
nodes see and track one object, and (c) node 2 sees two objects and streams
its video to node 1.

For privacy reasons, we require a secure connection be-
tween all nodes since the video streams and the tracking results
might contain sensible data. Therefore, we insert an AES
encryption block for outgoing packets and an AES decryption
block for incoming packets into the protocol stacks. Since
packet encryption/decryption is computational expensive, it
would be desirable if this could be accelerated in hardware.
However, our FPGA-based system-on-chip platform only of-
fers the space for one hardware accelerator, e.g., for either an
encryption, or a decryption block, but not for both. Hence,
in order to achieve the best tracking performance, a smart
camera node needs to dynamically adapt its hardware/software
mapping of functional blocks over time, whenever it changes
its role from transmitting a video stream to receiving a video
stream (and vice versa).

B. Results

For this scenario we evaluated the packet throughput of
the protocol stack for different hardware / software mappings
of the encryption and decryption functional blocks, then we
analyzed the FPGA resources required by our smart camera
nodes, and finally we quantified the overhead introduced by
the adaptive architecture.

1) Hardware/Software Mappings: We analyzed the packet
throughput supported by a single smart camera node for several
hardware / software mappings of the encryption and decryption
blocks. Table I summarizes our results. If the node transmitting

the video implements the encryption block in hardware, it is
able to transfer at the requested rate of 25 FPS. However, if
it implements the encryption block in software, it can only
transmit two FPS. Similarly, for the node receiving the video:
If it implements the decryption block in hardware, it can
receive 25 FPS, but if it implements the decryption block in
software it can only receive two FPS. In Table I, we also see
that the receiving node looses about 0.3% of the packets, even
if the decryption module is implemented in hardware. This
packet loss is introduced by the hardware / software interface,
which has a limited bandwidth. However, the video object
tracking application is robust to a certain amount of packet
loss. Whenever a video packet is lost, the application will use
the pixel line of the previous frame instead.

TABLE I. MEASUREMENT FOR PACKET THROUGHPUT IN PPS, THE
PACKET LOSS RATE IN % AND THE VIDEO TRANSMISSION RATE IN FPS.

send (encrypted) frames PPS Loss FPS

HW:CAM → H2S → SW:ENC → S2H → HW:ETH 429 90% 2
HW:CAM → HW:ENC → HW:ETH 4 500 0% 25

receive and decrypt frames PPS Loss FPS

HW:ETH → H2S → SW:DEC → tracking application 420 91% 2
HW:ETH → HW:DEC → H2S → tracking application 4 487 0.3% 25

In the multi object tracking scenario not only video data
is transmitted, but also control data (e.g. object selection,
handover, and object position messages). These messages are
encrypted as well and might flow in the opposite direction of
the video data transmission. Therefore, a smart camera node
might have to provide encryption and decryption at the same
time. Control messages are expected to be way less frequent
than video data messages, since for each received video frame
(consisting of 180 packets), only one control message is sent
back. Object selection and handover messages will occur even
less frequently. From Table I we see that a node that encrypts in
hardware can decrypt about 400 packets per second in software
(and vice versa), which should be more than enough to process
all control messages.

From this analysis we learn that for successfully tracking
multiple objects in our smart camera network, the smart camera
nodes need to adapt their hardware / software mapping of the
encryption / decryption modules, depending on whether they
currently transmit or receive the video frames.

2) Resource Consumption: The total resource consumption
of our adaptive architecture and different static architectures is
given in Table II. It can be seen that the adaptive architecture
with one reconfigurable hardware slot consumes a slightly
higher amount of look-up tables (LUTs) and flip-flops (FFs) as
the static architectures that contain either HW:ENC or HW:DEC.
This comes mainly from the overhead introduced by the ICAP
controller that is needed to perform the partial reconfiguration
of the FPGA for the adaptive system. The ReconOS ICAP
controller used in our implementation consumes 5% of the
resources of an encryption/decryption block.

We have also implemented a static architecture that con-
tains both hardware blocks, which results in 25% more LUTs
and 22% more FFs as compared to the adaptive architecture. It
should be noted that an adaptive architecture can provide much
larger savings in resources when there are more functional
blocks that can be dynamically mapped to the FPGA fabric.

TABLE II. RESOURCE CONSUMPTION

mapping LUTs FFs BRAMs

static: HW:ENC 34 297 25 318 314
static: HW:DEC 36 041 25 653 314

adaptive: HW:ENC or HW:DEC 37 534 25 949 314

static: HW:ENC and HW:DEC 46 743 31 689 314

ReconOS ICAP module + FIFOs 690 255 -

partial module: HW:ENC 11 974 6 648 -
partial module: HW:DEC 14 165 6 983 -

3) Overhead Analysis: In addition to the slightly increased
FPGA resources required for the adaptive system, also a
time overhead for the reconfiguration as well as the need to
store the partial bitstreams for the encryption and decryption
blocks need to be considered. In our implementation the partial
bitstreams have a size of 1.3 MB and the time overhead
is 38ms. This corresponds to the time that is required to
process a single video frame. The time overhead consists of
the following parts: First, the protocol stack builder & mapper
maps all functional blocks to software. Second, the FPGA is
partially reconfigured with the bitstream of the functional block
that should be mapped to hardware. Third, the protocol stack
builder & mapper configures the new hardware functional
block (in our example with the encryption key) and adapts
the protocol stacks to use the new hardware functional block.

To summarize, the static architecture that implements both
HW:ENC and HW:DEC would provide the best packet process-
ing performance because this architecture allows for a video
transmission of 25 FPS without requiring any reconfiguration
overhead. However, we believe that it is not always feasible
to statically map all functional blocks to hardware since
the FPGA resources are usually limited. Therefore, we need
efficient strategies to dynamically switch between different
hardware blocks at run-time (according to the current protocol
stacks and network traffic mix). Our experimental results show
that the HW/SW mapping of our adaptive architecture can be
efficiently updated for a given tracking scenario such that the
packet processing performance is only influenced marginally.

VII. CONCLUSION

In this paper we proposed a novel system-on-chip archi-
tecture for smart camera nodes, where the application and
the networking core are both partitioned into hardware and
software. The smart camera architecture employs dynamic
protocol stacks (DPS) instead of static protocol stacks such as
UDP/IP or TCP/IP. The DPS architecture allows to adapt the
hardware/software partitioning of the protocol stacks at run-
time. We analyzed the efficiency of our smart camera node
architecture in two case studies.

First, we demonstrated that our smart camera network is
able to autonomously track a toy train over the field of view of
three smart cameras when the train changes its direction and
its velocity. Second, we showed that it is beneficial (in terms
of required FPGA resources) when the network functionality
can be dynamically mapped to either hardware or software.
We also demonstrated that this re-mapping can be performed
within the delay of a single video frame. Hence, we conclude
that the dynamic hardware / software mapping of network
functionalities is a real alternative to static designs.

In future work, we want to extend our smart camera nodes
such that they can autonomously adapt the protocol stacks
(and not only the corresponding hardware/software mapping)
at run-time. For instance, the nodes could dynamically re-
quire packet acknowledgements for all auction and handover
messages whenever a video stream is transmitted over the
network. Furthermore, we want to develop and analyze smart
protocol stack adaptation and mapping strategies which find
suitable trade-offs between the benefits and costs of run-time
adaptation. Finally, we plan to integrate further functional
blocks such that we can build more complex protocol stacks.

ACKNOWLEDGMENT

The research leading to these results has received funding from
the European Union Seventh Framework Programme under grant
agreement n◦257906. The authors want to thank Jan Krekeler, An-
dreas Agne and Marco Platzner for providing the implementation of
the camshift filter.

REFERENCES

[1] A. Keller, D. Borkmann, S. Neuhaus, and M. Happe, “Self-awareness in
Computer Networks,” Hindawi International Journal of Reconfigurable
Computing, 2014.

[2] B. Rinner and W. Wolf, “An Introduction to Distributed Smart Cam-
eras,” Proceedings of the IEEE, vol. 96, no. 10, Oct 2008.

[3] A. A. Zarezadeh and C. Bobda, “Hardware Middleware for Person
Tracking on Embedded Distributed Smart Cameras,” Hindawi Inter-
national Journal of Reconfigurable Computing, Jan 2012.

[4] D. L. Tennenhouse and D. J. Wetherall, “Towards an Active Network
Architecture,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 5, 2007.

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The Click
Modular Router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, 2000.

[6] “netgraph – Graph-based Kernel Networking Subsystem,” (accessed in
Oct. 2014). [Online]. Available: {http://www.freebsd.org/cgi/man.cgi?
query=netgraph&sektion=4}

[7] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox, “Intelligent Design Enables Architectural Evolution,” in
Workshop on Hot Topics in Networks, ser. HotNets-X. ACM, 2011.

[8] T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N. Rouskas, I. Baldine,
and A. Nagurney, “Choice as a Principle in Network Architecture,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 4, 2012.

[9] F. Dias, F. Berry, J. Serot, and F. Marmoiton, “Hardware, Design and
Implementation Issues on a FPGA-based Smart Camera,” in Int. Conf.
on Distributed Smart Cameras (ICDSC). ACM/IEEE, 2007.

[10] L. Maggiani, C. Salvadori, M. Petracca, P. Pagano, and R. Saletti,
“Reconfigurable FPGA Architecture for Computer Vision Applications
in Smart Camera Networks,” in Int. Conf. on Distributed Smart Cameras
(ICDSC). ACM/IEEE, 2013.

[11] M. Happe, E. Lübbers, and M. Platzner, “A Self-adaptive Heteroge-
neous Multi-core Architecture for Embedded Real-time Video Object
Tracking,” Journal of Real-time Image Processing, vol. 8, March 2013.

[12] X. Chen, X. Li, H. Wu, and T. Qiu, “Real-time Object Tracking
via CamShift-based Robust Framework,” in Int. Conf. on Information
Science and Technology (ICIST). IEEE, 2012.

[13] A. Agne, M. Happe, A. Keller, E. Lübbers, B. Plattner, M. Platzner,
and C. Plessl, “ReconOS – An Operating System Approach for Recon-
figurable Computing,” IEEE Micro, pp. 60–71, Jan/Feb 2014.

[14] J. Daemen and V. Rijmen, The Design of Rijndael. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2002.

[15] W. Vickrey, “Counterspeculation, Auctions, and Competitive Sealed
Tenders,” Journal of Finance, vol. 16, pp. 8–37, Mar 1961.

[16] L. Esterle, P. R. Lewis, X. Yao, and B. Rinner, “Socio-Economic
Vision Graph Generation and Handover in Distributed Smart Camera
Networks,” ACM Transactions on Sensor Networks (TOSN), vol. 10,
no. 2, 2013.

