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The Internet architecture works well for a wide variety of communication scenarios. However, its flexibility is limited because
it was initially designed to provide communication links between a few static nodes in a homogeneous network and did not
attempt to solve the challenges of today’s dynamic network environments. Although the Internet has evolved to a global system of
interconnected computer networks, which links together billions of heterogeneous compute nodes, its static architecture remained
more or less the same. Nowadays the diversity in networked devices, communication requirements, and network conditions vary
heavily, which makes it difficult for a static set of protocols to provide the required functionality. Therefore, we propose a self-
aware network architecture in which protocol stacks can be built dynamically.Those protocol stacks can be optimized continuously
during communication according to the current requirements. For this network architecture we propose an FPGA-based execution
environment called EmbedNet that allows for a dynamic mapping of network protocols to either hardware or software. We show
that our architecture can reduce the communication overhead significantly by adapting the protocol stack and that the dynamic
hardware/software mapping of protocols considerably reduces the CPU load introduced by packet processing.

1. Introduction

Modern mobile phones change literally dozens of communi-
cation parameters several times per second in order to adapt
to changing channel conditions, such as distance to cell tower,
signal quality, and activity on the channel. Mobile phones
(and their communication counterparts) engage in this com-
plicated activity not because of a relish for clever technology,
but out of the need to support a growing number of devices
with limited physical resources (wireless bandwidth).

The Internet-of-Things will see a similar explosion in
Internet-capable devices, of which current estimates predict
billions in just a few years. We can therefore expect these
devices to compete for resources that are becoming scarcer
and scarcer, per device, as device numbers grow, just like
mobile phones; we can similarly expect that devices will be
exposed to changing operating environments in ways that
are comparable to changing channel conditions for mobile
phones.

But how does the current Internet architecture support a
device’s ability to adapt its Internet communication to chang-
ing operating conditions?The answer is that it does not: there

is a very small choice of protocols, essentially limited to TCP
or UDP, and even then it is difficult to switch from one to the
other during a conversation. And there are virtually no pos-
sibilities to sense operating conditions, such as the number of
dropped packets. Yet the benefits of sensing and adapting to
changing conditions would be potentially enormous.

For example, if the device has never experienced a
dropped packet while talking to a certain server, itmightwant
to switch from a reliable protocol like TCP to a potentially
unreliable one like UDP, saving the overhead in processing
time and electrical power that is needed for the reliability
protocol.

With a bit of effort, this might be achieved using today’s
Internet architecture. But other features, equally desirable,
are more difficult. For example, a medical heart rate monitor
could want to talk to a server in the home using unencrypted
messages, trusting to the link-layer encryption in the home’s
wireless network to keep messages secure in transit. When
the wearer of the heart-rate monitor leaves the home and is
using some public WiFi node, however, messages should be
encrypted. Of course, this adds additional load and increases
energy consumption, so it should only be done when needed.
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Another example is the question of updates. Heart rate
monitors do not for the most part expect to be updated
at all, and it may even be that its continuous functioning
is deemed so critical that it is not updated because that
would incur downtime. With a flexible architecture, it is
possible to download an update and to switch to the updated
version, while the monitor continues to collect data. Should
the update turn out to be flawed, it is even possible to switch
back to the previous version.

The final example is somewhat related to the previous
one. Should the heart rate monitor be based on FPGAs, then
another design decision arises because FPGAs support the
execution of functions either in hardware or in software.
While hardware implementations are generally faster than
their software counterparts and thus preferable, FPGA space
is limited, which usually makes it impossible to run all
functions in hardware. Therefore, the decision which func-
tions to execute in hardware and to execute in software is
subject to tradeoffs, which usually depend on the operating
conditions. Since these operating conditions may change, so
may the optimal assignment of functions to hardware or
software. For example, if the heart rate monitor finds itself
close to its home server and wants to upload a large number
of measurements, it will expect much traffic and thus the
transmission protocol should be executed in hardware, at the
expense of additional encryption. Outside its home network,
privacy is more important than speed, so the encryption
module could be in hardware and the transmission protocol
in software.

This paper presents a novel clean-slate network archi-
tecture that relies on dynamic protocol stacks and therefore
fundamentally differs from the Internet architecture that we
have learned to cherish over the last decades. In contrast to
the static protocol stacks that are used in today’s Internet
architecture, we propose to split up the networking function-
ality into functional blocks (FBs), which can be dynamically
linked with each other to form arbitrary protocol stacks. At
the beginning of a new communication between two peers,
the nodes have to agree on a common protocol stack that
respects the communication requirements dictated by the
application and takes into account the node-specific system
constraints and the current network conditions. Changes
in the node-specific system constraints or in the network
conditions might result in an adaptation of the used protocol
stack in order to optimize the communication behavior of the
nodes in a resource-efficient manner.

Unfortunately, replacing static standard protocol stacks
with dynamic protocol stacks generates the following chal-
lenges.

(1) How can application developers program their source
code without knowing the protocol stack that will be
later used for communication over the network?

(2) How can communication peers set up a common
protocol stack when there is no fixed stack?

(3) What methods can be used by nodes to adapt their
protocol stacks while maintaining preexisting con-
nections?

(4) How can a node be aware of its resources and the net-
work conditions, and how can it use this information
to decide when and how to adapt its protocol stack?

(5) How can we integrate hardware accelerators into
the network architecture, even if the used functional
blocks are not known before the manufacture of the
device?

In this paper we will present a novel FPGA-based self-
aware network architecture, called EmbedNet, which sup-
ports dynamic protocol stacks and provides solutions to all
these challenges.

To answer the first challenge, we have developed a
novel Berkeley Software Distribution (BSD) socket type,
where the application designer uses key words that specify
the communication requirements. These key words might
define that the application requires a reliable, secure, and
robust communication channel. At run time, the EmbedNet
platform composes suitable protocol stacks by matching the
application’s requirements with the properties of the available
functional blocks. The execution environment dynamically
selects the best protocol stack for the current situation.

For the second challenge, we assume that the source
node initially sends the set of suitable protocol stacks to
the destination node using a default protocol, which has to
be supported by all nodes. Each functional block will have
a unique identifier. A protocol stack can be described as a
concatenation of its FB identifiers.

To handle the third challenge, our EmbedNet architecture
sends control messages, which can be used by the commu-
nication peers to negotiate the next protocol stack. Each
packet contains a header which indicates the used protocol
stack. Hence, after a protocol stack adaptation the destination
node can distinguish between packets processed by the old
protocol stack and packets processed by the new protocol
stack.

For the fourth challenge, we apply novel concepts and
methodologies for self-awareness in networking. Our self-
aware network architecture can monitor the system state
and network condition using a set of sensors and dedicated
models. A self-aware stack builder is part of our EmbedNet
architecture that defines at which times the protocol stacks
should be adapted. The current implementation of our
EmbedNet architecture is aware of the CPU utilization and
the workload (in terms of packets to be processed for each
communication connection).

For the final challenge, we implement our self-aware
network architecture on a field programmable gate array
(FPGA). This allows us to dynamically map selected func-
tional blocks to reconfigurable hardware using partial recon-
figuration. Hence, EmbedNet can provide hardware accelera-
tion to functional blocks, even if these blocks were unknown
at the manufacturing time of the device. However, due to
the limited amount of FPGA area, only a limited subset of
functional blocks can be mapped to hardware at the same
time.Therefore, we apply a self-aware approach such that our
system is aware of the workload of all used protocol stacks in
order to identify the best hardware/software mapping for all
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used functional blocks. This kind of adaptation can be done
by each network node individually.

In previous work [1–6] we worked towards such a self-
aware network architecture and presented individual aspects.
While we described in [1] how protocol stacks can be built
from individual functional blocks, we described in [6] how
such systems can adapt the protocol stack at run time. In
[2–4] we presented basic aspects of the implementation in
short papers and in [5] we showed how network traffic
characteristics can be learned. This paper finally integrates
all individual aspects to a fully working system and provides
an evaluation of the complete system. To this end, several
components described in earlier work were improved, and
several new components were added.

Specifically, we provide the following contributions.

(a) We propose EmbedNet, a novel FPGA-based self-
aware network node architecture, which supports (i)
the autonomous configuration of dynamic protocol
stacks and (ii) the dynamicmapping of network func-
tionality to either hardware or software. EmbedNet
observes the networking environment using dedi-
cated sensors and internal networkmodels and adapts
its protocol stacks when that environment changes.
Our EmbedNet prototype does not experience any
downtime due to reconfiguration.

(b) We present novel methods to set up and adapt
protocol stacks based on the application requirements
and the current network conditions.

(c) We show that the self-adaptation of a protocol stack
can reduce the communication overhead in terms of
sent packets as compared to static stacks in a real-
world scenario.

(d) We propose two scheduling algorithms and show
how dynamic mapping improves the performance
of our EmbedNet platform considerably for different
network traffic mixes.

The rest of this paper is structured as follows. After giving
an overview of related work (Section 2), we present our self-
aware network architecture and show how we adapt the
protocol stack and the hardware/software mapping to chang-
ing network conditions (Section 3). Next, we describe our
FPGA-based execution environment for the self-aware net-
work architecture (Section 4). After that, we demonstrate the
efficiency of our approach by comparing our system against
static solutions in real-world network scenarios (Section 5).
We finish with conclusions and future work (Section 6).

2. Related Work

2.1. From Active Networking to Future Internet Research.
Already, in the early 1990s, as the Internet rapidly grew and
became ever more popular, researchers investigated dynamic
network architectures. Tennenhouse andWetherall proposed
Active Networks, in which users could inject custom code
into the network [7]. This code was associated with a set
of packets that traversed the network from the source over

several routers to the destination, and which was executed
on intermediate nodes and modified the packets on the fly as
desired. Tennenhouse andWetherall suggested four different
possibilities for active packet processing:

(i) network operators inject code on the intermediate
nodes;

(ii) every packet contains the program code to be exe-
cuted;

(iii) packets can put code into a node and other packets
could use that code;

(iv) packets contain a reference to code on an external
server and the routers download the code from that
server and store it in a local cache.

Based on those four possibilities, many researchers
worked on specific Active Networking architectures in the
following ten years. This work is summarized by several
survey papers [8–10]. However, none of the Active Network
architectures found its way into the commercial Internet,
some because of performance issues, others because of secu-
rity concerns, and still others because no hardware supported
them.

Still, research on dynamic network architectures con-
tinued, driven on the one hand by Internet issues such as
poor scalability, extensibility, security, and reliability, and on
the other hand by a change from a static, provider-centric
network to a mobile and user-centric network. For each of
these issues, there exist efforts that tackle them. For example,
scalability can be tackled with IPv6 or Network Address
Translation (NAT), security problems can sometimes be
mitigated by Virtual Private Networks (VPNs), and there is
a large number of new routing or transmission protocols
for mobile networks, such as Mobile IP or hop by hop
transmission.

The umbrella term for this research is Future Internet.
Under this term, researchers investigate not only additions
and patches to the Internet architectures, but also clean-
slate architectures. These architectures follow from asking the
question “given what we know today, how would we have
designed the Internet if we had to do it all over again?”. Our
self-aware network architecture is also a clean-slate Future
Internet architecture.

2.2. FPGAs in Active Networking. The original work in
Active Networking exploited the flexibility of software-only
systems. But already in 1998 the first extensions appeared
that used FPGAs as hardware accelerators, even though, at
that time, FPGAs were small and could only be reconfigured
as a whole. For example, Hadzic and Smith introduced the
Programmable Protocol Processing Pipeline (P4) architec-
ture [11]. It uses several FPGAs and a switching array that
decides which packet will be processed by which FPGA.
They can add new functions to the system by reconfiguring
an FPGA, and they implement different protocol stacks by
changing the path of a packet through the FPGAs. At the
same time, Decasper et al. introduced the Active Network
Node (ANN) [12]. The central component of their system is
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a switch which has, for each input port, a CPU and an FPGA.
Performance-critical functions are executed on the FPGA,
which can be reconfigured by the CPU. However, they do not
discuss how they decide when to reconfigure the FPGA. The
Plato architecture is an FPGA-only architecture for Active
Networks [13]. They also aim at reconfiguring the FPGA for
flexibility but do not discuss how a reconfiguration could
be started. Fragkiadakis et al. suggest an architecture with
one CPU and one FPGA [14]. They allow only one active
application to run at a time, and this application determines
the functionality implemented on the FPGA. The currently
active application depends on the received packet.There is no
discussion on reconfiguration overhead of the FPGA, which
seems surprising since the active application could change
with every packet.

To summarize, these architectures have realized the
potential of FPGAs for active networking but have failed
to convincingly address all aspects of using FPGAs. Either
they failed to describe the circumstances under which an
adaptation is triggered or they failed to discuss adaptation
overhead and hence also the maximum adaptation frequency
that still leads to an overall performance benefit.

2.3. FPGA-Based Platforms for Network Processing. Already
in 2000, researchers at the Washington University in St.
Louis introduced an FPGA-based system called FPX [15]
that enhances the Washington University Gigabit Switch [16]
with reprogrammable features. They used two Xilinx FPGAs
on a custom board. (Only 85 of these boards were ever
produced.) Several research projects were done on the FPX
in the areas of IP routing, video processing, and partial
FPGA reconfiguration. However, this project is no longer
continued, since the hardware is outdated. Similarly, the
RiceNIC project [17] developed an open network interface
platform for prototyping and educational purposes. In this
case, the problem is twofold. First, their underlying hardware
is not available anymore and, second, RiceNIC’s architecture
is tightly coupled with the hardware, which would mean a
major redesign when switching to new hardware.

From 2002 to 2009 the German research associationDFG
[18] funded a priority program entitled Reconfigurable com-
puting systems [19]. Within this program two projects were
using FPGAs to build more powerful network processors. In
the DynaCore project [20] the network processor receives
packets and executes the protocols that are computationally
cheap. Packets that need processing through computationally
expensive protocols are forwarded to an FPGA that is
connected to the network processor over a Gigabit Ethernet
interface. Partial reconfiguration of the FPGA can be used to
change the functionality provided by the FPGA. There is a
limited set of protocols that can be executed on the FPGA and
the transition condition from one configuration to the next is
statically defined.

In contrast to this architecture the FlexPath NP [21]
architecture receives packets in the FPGAand processes them
completely in hardware if all required protocols are available.
Only packets requiring different protocols are forwarded
to a CPU cluster, or, with a combination of FlexPath and

DynaCore and a corresponding hardware implementation on
the DynaCore FPGA, they are sent to the DynaCore FPGA.

Even thoughDynaCore and FlexPath could be interesting
to other researchers, no public version is available. However,
if a researcher starts with network programming on FPGAs
he can choose from several platforms. The NetFPGA project
[22, 23] provides a networking board with four Ethernet
interfaces. The community around NetFPGA offers several
reference designs that make it easier to start working with
the board. A commercial alternative is the COMBO FPGA
Board [24] from INVEA-TECH. INVEA-TECH also offers a
software suite that facilitates the development of networking
programs for their board.

In addition to specialized networking boards, general
purpose FPGA evaluation boards can also be used to develop
networking applications.They do not have frameworks dedi-
cated to network programming but instead have a wide range
of supported peripherals, have professional documentation,
and are relatively cheap. This is especially interesting for
mixed research groups that share a single hardware platform
and that have a diverse range of requirements on their
platform.

We have implemented our self-aware network node
architecture on a general purpose Xilinx Virtex-6 evaluation
board. However, our architecture can also be implemented
on specialized networking boards, such as a NetFPGA or a
COMBO FPGA board.

2.4. Runtime Adaptation for Network Processing. Runtime
adaptation was studied in the context of network processors
since the beginning of 2004 where Kokku et al. showed that
the performance of a network processor can be enhanced by
adapting the mapping of networking elements to processing
units frequently [25]. The optimization goal is either mini-
mizing power consumption [26, 27] or providing maximum
throughput [28–30]. They look at buffer occupancy between
processing units and the utilisation of processing units
to determine the optimal mapping. These approaches are
interesting for our scenario, but they do not fully cover it.
First, they have a homogeneous system with several tens of
identical processing units, whereas we are dealing with two
entirely different kinds of processing units (one is a CPU and
the other a hardware accelerator). Second, the mechanisms
that connect the execution units are different: whereas they
can map several modules to the processing units, we can do
this only for the CPU, which has to execute all the modules
that are not implemented in hardware.

Kachris and Vassiliadis [31] evaluate run time reconfig-
urable network processor designs based on FPGAs. Their
architecture received packets on an embedded processor and
was able to dynamically reconfigure hardware accelerators.
Their design used three different hardware accelerators.
Moreover, these accelerators could be implemented multiple
times. In order to find the best mapping of accelerators, they
use Integer Linear Programming (ILP) on five different traffic
mixes at design time. At run time, their system analyzes
the actual traffic mix and chooses the one configuration
corresponding to the closest preanalyzed traffic mix. This
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approach is interesting since it moves the computation-
intensive task of finding an optimal mapping from run time
to design time. However, in our scenario this is unrealistic,
since we cannot make any assumptions on traffic mixes and
we allow for the introduction of new protocols at run time.

2.5. Summary. In contrast to the architectures we reviewed
above, ours not only adapts to different distributions of
network packets, but also allows us to seamlessly integrate
completely new protocols. Additionally, packets can be pro-
cessed in hardware or in software, depending on the current
protocol and performance requirements. Furthermore, we
require amethodology, an algorithm that decides which parts
should be executed where. None of the algorithms used in
related work can be adapted to our scenario.

3. Concepts and Methodologies for
Self-Awareness in Networking

Dynamic protocol stacks split network functionality into
individual functional blocks that can be combined at run
time to form a protocol stack and that can be changed on
the fly, in order to provide a communication channel that is
continuously optimized.This section gives some background
on packet processing and describes the building blocks and
algorithms that enable self-aware networking. Section 4 will
then focus on the actual implementation of our self-aware
network architecture.

3.1. Background on Packet Processing. Packet processing is
different from other computing workloads, and in order to
understand some of the design choices explained later, it is
important to understand how.

(i) Processing a network packet usually requires only
simple processing steps at which hardware circuits
excel, such as comparing bits, decrementing integers,
prepending headers, and looking up data in a hash
table. No floating-point arithmetic is required.

(ii) On the network layer, most network packets do not
depend on each other. Hence they can be processed
independently and in parallel.

(iii) Processing a packet can be split into several sequential
steps. For a simple router this could be “verify MAC
address to ensure packet is for this node,” “deter-
mine next hop address,” “update time-to-live in IP
header,” “update checksum,” “update MAC header,”
and “transmit packet.” Many packets received on one
node require the same processing steps. Togetherwith
the previous characteristic this means that a pipelined
architecture is appropriate for processing network
packets.

(iv) The rate of data to be processed is determined from
the outside. If the packet arrival rate is faster than
the packet processing rate, packets will be dropped.
Hence, themaximumpacket rate a system can process
is a good system performance indicator, but how long

it takes to process a given workload is not. Again,
a pipelined architecture is more appropriate for this
kind of workload than a sequential one.

3.2. Self-Aware Network Architecture. For self-aware net-
working, we propose the network node architecture shown
in Figure 1. The architecture contains the following building
blocks.

(i) The network models contain a list of supported net-
work protocols, the network characteristics, and pre-
dictions on how the networking environment might
look like in the future.

(ii) Sensors provide information such as the signal-to-
noise ratio, remaining battery life, or throughput.
Sensors can be passive (just observing) or active
(probing the environment and observing the reac-
tion).

(iii) The sensor daemon collects data from individual sen-
sors. It offers additional functionality such as sending
notifications whenever a monitored value exceeds a
specified threshold.

(iv) The self-adaptation engine contains a strategy finder,
which selects the current strategy (minimize power,
maximize throughput, etc.), and a stack builder, which
determines the best stack and adapts the networking
core accordingly.

(v) The networking core is responsible for processing
packets. Functional blocks do not interact directly
with each other. This makes it easier to change
the protocol stack at run time. Rather, in software
there is a Packet Processing Engine (PPE) and in
hardware there is a dedicated network on chip (NoC)
that forward packets between the different functional
blocks. Each functional block is identified by an
Information Dispatch Point (IDP), which is mapped
to the function actually processing the packets. The
complete protocol stack is identified by the sequence
of IDPs of its functional blocks. The details of our
networking core are described in [2].

3.3. Self-Aware Protocol Stack Setup and Adaptation. The
protocol stack setup consists of two parts. First, the local
node finds all feasible protocol stacks from the application’s
requirements and the functional blocks. In the second step,
this set of stacks is communicated to the local node’s com-
munication partners and they then choose one of the stacks
(according to local optimization criteria).

3.3.1. Local Node. In the Internet architecture, an application
solves the problem of choosing a suitable protocol stack by
using a specific BSD socket type and additional libraries
as needed, for example, for encryption. In our self-aware
networking architecture, the application can instead specify
a set of properties that need to be fulfilled for a given com-
munication.The current Application Programming Interface
(API) uses simple key words for both protocols and require-
ments; see Algorithm 1 for an example. The stack builder
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Figure 1: Overview of the self-aware node architecture.

struct bind msg
char name[FBNAMSIZE];
char app[FBNAMSIZE];
char props[MAX PROPS][10];
int flags;

;
int main(void)
⋅ ⋅ ⋅

char buff[51 2];
memset(buff, 0, sizeof(buff));
sock = socket(PF DPS, SOCK RAW, 0);
⋅ ⋅ ⋅

bmsg = (struct bind msg ∗) buff;
strcpy(bmsg->app, “chat”);
bmsg->props[0] = “RELIABILITY”;
bmsg->props[1] = “PRIVACY”;
bmsg->flags = TYPE CLIENT;
⋅ ⋅ ⋅

ret = bind config(bmsg);
⋅ ⋅ ⋅

ret = sendto(sock,data,len,0,NULL,0);
⋅ ⋅ ⋅

ret = close(sock);
⋅ ⋅ ⋅

return 0;

Algorithm 1: Dynamic protocol stack architecture API example.

then examines the protocol models and finds all protocol
stacks that match the requirements. Local preference of one
stack over the other is expressed in additional requirements.
This automatically means that all such stacks are equally
preferable to the local node and a communication partner
cannot choose a protocol from this set that the local node
would rather not use.

3.3.2. Internode Adaptation. In the second part of the proto-
col stack setup phase, the local node negotiates a particular
protocol stack with the destination node or nodes. First, the
local node computes identifiers for all the protocol stacks
computed in the first part and sends them to the destination
node.Thedestination node then decideswhich protocol stack
to use, sets up this protocol stack, and sends the identifier of
the chosen stack back to the local node.

If the local node never receives a reply from the destina-
tion, which could happen on a lossy link, the source resends
the configuration message and waits for the confirmation.
After the completion of the negotiation phase, actual data
transmission starts.

It is important to note that all self-aware network nodes
use the same method to compute the identifier of a given
protocol stack. In order to distinguish between data messages
and control messages (for the stack negotiation) a one byte
header is introduced.
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There remains the problem of what protocol to choose
for the protocol negotiation phase itself, for which we simply
assume that all nodes in a given network segment use the
Ethernet protocol. Similarly, if a connection to a node in
another segment should be established, the intermediate
nodes must use the same internetworking protocol, for
example, IPv4 or IPv6.

3.3.3. Stack Identification. In the Internet architecture, the
decision on how to process a packet is based on next-header
fields that are part of each protocol header. For example, in
the next-header field of the Ethernet protocol it is specified
whether the protocol encapsulated in this Ethernet frame is
IPv4, IPv6, ARP, ICMP, and so forth. If the entire protocol
stack is negotiated up front and hence known to the packet
processing engines on the source and destination, this step-
by-step resolution of the next protocol is not necessary.
Rather, we can use one protocol stack identifier per connec-
tion.

This identifier is calculated by the stack builder as follows:
every functional block has a unique name, derived from the
inverted URL associated with its developers. (This is similar
to the convention for package names in the Java program-
ming language.)The unique identifier for the overall protocol
stack is then obtained by concatenating the individual names
and hashing them. If the identical protocol is implemented
by several developers and their implementations pass an
interoperability test, a special interoperability name should be
used. Upon packet reception, the Ethernet functional block
checks the hash and forwards the packet to the corresponding
stack “pipeline.”

3.3.4. Changing Protocol Stacks. Negotiating a change in the
protocol stack is done just like negotiating a new stack,
except that renegotiation is executed over the currently used
protocol stack. During the adaptation of the protocol stack,
packets might be reordered on their way from source to
destination. Therefore, special care has to be taken that
packets still belonging to the old stack are not processed by
the new stack and vice versa. Since the hash that identifies
a given stack will change when the protocol stack is changed,
also the packets sent over the new stack will be identified with
a different hash.This hash is used to dispatch the packet either
to the new or the old protocol stack.

Figure 2 shows what happens during a protocol stack
change. First, a source node sends rawpackets to a destination
node. This “empty” protocol stack is identified with hash1.
Then, the source nodes wants to renegotiate the protocol
stack by sending possible changes to the destination node.
The destination node selects a protocol stack, which includes
the functional block FB1. The destination node sets up the
new protocol stack, which is identified with hash2, and
informs the source node about its selection. Then, the source
node also configures the new protocol stack and starts to send
packets using the new protocol stack. For some transition
time, the destination node supports both protocol stacks.The
destination node can therefore correctly process packet 2,

APP APP
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APP

Hash 1 Hash 1
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Hash 1 Hash 2

Hash 2

EthernetEthernet

Ethernet

Ethernet
FB1

FB1

Source Destination

Packet 1 (hash 1)

Packet 2 (hash 1)
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Chosen protocol
Packet 3 (hash 2)

Packet 4 (hash 2)

t t

Figure 2: Updating the dynamic protocol stack over time.

although it arrives later than the first packet that uses the new
protocol stack.

3.4. Dynamic Hardware/Software Mapping. In order to
improve the performance of the system as compared to a
software only system, functional blocks can be implemented
in hardware accelerators. While for performance reasons it
would be desirable to implement as many functional blocks
in hardware as possible, we are constrained by the FPGA
area and by the requirement to include novel protocols that
are unknown at design time. Therefore, a system is required
that dynamically decides which functional block should be
implemented in hardware and which in software.

Figure 3 shows our approach for self-aware hardware/
softwaremapping. It is a simplified version of the general self-
aware node architecture described in Figure 1. The mapping
algorithm obtains information from three different sources:
goals, sensors, andmodels. The goals are specified by the user
and might be “no packet loss,” “minimize CPU load caused
by network traffic,” and so forth.The sensors collect statistical
information such as “packets per second per flow” or “CPU
load.” The models describe the overall system and can either
be known or learned at run time. Examples of models are “a
packet is processed faster in hardware than in software,” or
“packets per second per flow does not change between two
measurement intervals.” Based on this input, the self-aware
scheduler determines the hardware software mapping and
also initiates the reconfiguration of the hardware, should that
be required. Some specific self-awaremapping algorithms are
described in Section 5.2.1.

4. The EmbedNet Architecture

In this section we present EmbedNet, which is an FPGA-
based system-on-chip implementation of all self-awareness
concepts and methodologies, which have been presented in
the last section.
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Figure 3: Self-aware hardware/software mapping.

4.1. System-on-Chip Hardware Design. The hardware design
of our FPGA-based EmbedNet prototype is depicted in
Figure 4. We use a System-on-Chip (SoC) architecture that
combines a soft-core MicroBlaze CPU [32] with several
hardware modules and peripherals on a single device. The
Linux operating system runs on theMicroBlaze CPU and the
required file system is stored on a compact flash disk. The
functional blocks can either be executed on theMicroBlaze or
directly in the FPGA. In order to implement our architecture
on an FPGA board, we assume that it has external SDRAM, a
physical Ethernet interface and a compact flash disk reader.

There are three modules that are always present in the
FPGA.One is the Ethernet functional block (ETH) that inter-
faces with the physical interface (PHY in the figures) and two
modules which are responsible for transmitting the packets
over the hardware/software boundary (called H2S and S2H,
resp.). In addition to these statically configured modules,
there are also dynamic modules (PR). Those modules can be
reconfigured at run time with the functionality of arbitrary
functional blocks.

Functional blocks are connected by a network on chip
(NoC) that forwards packets between them and also supports
pipelined packet processing. The NoC consists of switches in
a ring topology, where each switch connects to a configurable
number of functional blocks. The total number of modules
is a design-time parameter; this allows for the throughput of
the NoC to scale appropriately by increasing the bandwidth
between the switches and by allowing for more hardware
modules to be connected to one switch. Run-time reconfig-
uration of the modules is done with the help of the Xilinx
core XPS HWICAP [33], where the bit files for the partial
reconfiguration are stored on an external flash card.

While a given area on the FPGA is reconfigured, it may
emit spurious signals. In order to prevent packet processing

errors during reconfiguration, we added a dedicated enabling
block between the NoC and each dynamic module. During
reconfiguration, this block sets the signals that go into the
NoC to a known value.

For communication between hardware and software, we
use the ReconOS extension to Linux [34]. While the original
ReconOS implementation provides transparent communica-
tion between Linux user space and the hardware, we have
extended it to also support communication between Linux
kernel space and the hardware [4]. This extension is required
because many software parts of our network architecture run
in the kernel space for performance reasons.

To aid implementation of a functional block in hardware
and software, we provide wrappers: in hardware, this is a
VHDL entity and in software this is a Linux kernel module.
The wrapper consists of the code required for receiving and
sending packets and configuration data as well as transferring
internal state between a hardware and a software module.

Since there is no automatic translation from a functional
block in software to one in hardware, it is the responsibility of
the functional block’s author to make sure that the respective
implementations are equivalent and also to provide the state
that is required when resuming a hardware block in software
or vice versa.

4.2. Execution Environment. Thecomplete EmbedNet execu-
tion environment is shown in Figure 5.The packet processing
framework together with the functional blocks is responsible
for packet processing, whereas the self-aware framework is
responsible for the adaptation of the system. In the left part,
user-space applications send and receive packets over a BSD
socket interface. Since we do not use the TCP/IP protocol
suite, we implemented a dedicated socket class that offers the
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Figure 4: EmbedNet FPGA design.

well-known system calls like 𝑠𝑒𝑛𝑑() and 𝑟𝑒𝑐V(). Sending a
packet through our socket inserts it in the packet processing
engine, which forwards the packets to the correct functional
blocks, no matter whether the block is currently mapped to
software or hardware.

The architecture uses a dedicated addressing scheme for
the functional blocks. The system updates these addresses on
the flywhenever it needs to adapt the route a packet flow takes
within a single node. As already described in Section 3 each
functional block is identified by an Information Dispatch
Point (IDP). An IDP is mapped to the receive function of
the corresponding functional block. If the functional block
is currently executed in software, a pointer to its function
is stored, if the functional block is executed in hardware,
the hardware address of the functional block is stored. This
address consists of the number of the switches to which the
functional block is connected to and the port number on this
switch.

If a packet shall be forwarded, first the IDP of the next
functional block is looked up. Second, it is checked whether
the next block is implemented in hardware, and, if so, the
current hardware address is looked up. In software, this deci-
sion is done by the packet processing engine. In hardware,
however, each functional block has to make this decision
by itself. Therefore, each hardware functional block has a
dedicated configuration interface. The hardware Ethernet
functional block is slightly different, since in addition to
making IDP-to-address lookups, it also has to make lookups
from the hash identifying a given packet flow to IDPs (and
vice versa for sending packets).

When adapting the packet flow due to either a new
protocol stack or a new hardware/software mapping, concep-
tually, only the mapping of the IDP to the actual execution
environment needs to be changed. Practically, the procedure
is somewhat more complicated, since the FPGA also needs to
be reconfigured in order to hold the new functional block.

The self-aware framework in Figure 5 shows the infras-
tructure that is required for the self-aware mapping of

functional blocks to either hardware or software. It is split
between Linux user space, Linux kernel space, and the FPGA
itself. The central part is the self-aware scheduler which is
responsible for calculating the hardware/software mapping.
While the framework does not specify a given algorithm to
be executed, it provides an interface to access the statistics
generated by the packet processing engine, such as the
number of packets it processed for a given flow. After the self-
aware scheduler decides on a new mapping, it performs the
reconfiguration.

4.3. Adapting theHardware/SoftwareMapping. For the expla-
nation of the required steps to adapt the hardware/software
mapping of a protocol stack, let us consider the following
scenario: there are two protocol stacks 𝑒th → 𝐵 → 𝐶
and 𝑒th → 𝐷 → 𝐸 from which currently 𝑒th and 𝐵 are
mapped to hardware and the rest is implemented in software.
The algorithm decides that in the new mapping 𝐷 should be
implemented in hardware and 𝐵 in software.

This results in the following steps, which are also
described in Figure 6.

(I) Move 𝐵 from hardware to software. The transition of a
functional block from hardware to software does not take
much time. A functional block that is currently used in a
protocol stack is always present in software, regardless of
whether it is currently processing packets or not. Therefore,
the following three steps need to be done (compare steps 1 to
3 in Figure 6).

(a) Stop forwarding packets to 𝐵. Functional block 𝑒th
is configured to forward all packets to the software
where they are buffered.

(b) Transfer state.The state is gathered from the hardware
block and transferred to the software block.

(c) Forward packets to 𝐵. The core forwards the packets
again to functional block 𝐵.
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This completes the mapping procedure for functional
block 𝐵 and the hardware module is not required anymore
and can be reconfigured.

(II) Move 𝐷 from software to hardware. The transition of a
functional block from software to hardware requires more
time, since the FPGA needs to be reconfigured. However,
this reconfiguration can be done, while the functional block
is still executing packets in software. The following steps are
required.

(a) Partial reconfiguration. Perform the partial recon-
figuration of the hardware module with the bit file
required for functional block𝐷 (step 4).

(b) Stop forwarding packets to 𝐷. In the current imple-
mentation this involves buffering all packets in soft-
ware. However, one could envision an implementa-
tion that buffers the packets in hardware (step 5).

(c) Transfer state. The state is gathered from the software
module and transferred to the hardwaremodule (step
5).

(d) Forward packets to 𝐷. Functional block 𝑒th is config-
ured to forward the packets to the hardware mod-
ule and the packet processing engine forwards the
buffered packets to the hardware. In this step the
packets might arrive out of order in the hardware

module. This could be avoided if the buffering was
implemented in hardware (step 6).

This completes the remapping procedure. The functional
blocks that are remapped only need to be stopped for a
short period of time, where the state is transferred from the
software to the hardware or vice versa. The functional blocks
not involved in the remapping are running continuously.

When employing such a system it needs to be considered
whether for the given situation it is tolerable to have a system
that reorders packets (e.g., because the packet order is not
important or because the packets get ordered on a higher pro-
tocol layer that is always implemented in software) orwhether
the local node is not allowed to reorder packets (e.g., because
some functional blocks that will be executed in hardware
require in-order packet processing). For the remainder of this
paper, we assume that the packet order does not matter and
we therefore can live with the packet reordering that might
be introduced during system reconfiguration. Specifically in
our experimental setup, we send packets in a way that makes
reordering unnecessary.

5. Experimental Results

We have performed two different kinds of experiments to
analyze our self-aware network architecture. In Section 5.1,
we show the benefits of dynamic protocol stacks on software-
only systems. We have evaluated our strategies for setting up
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a protocol stack and adapting it over time using commodity
laptops that only implement the software part of our self-
aware network architecture. In Section 5.2 we evaluate our
self-aware hardware/software mapping algorithms for two
concurrent protocol stacks, which were implemented on
our FPGA-based EmbedNet platform. The self-aware net-
work architecture for both cases is available in github at
https://github.com/EPiCS/reconos/tree/v3.0 dev.

5.1. Self-Aware Protocol Stack Adaptations. In order to eval-
uate the benefits of a self-aware network architecture, we
show how our system autonomously adapts itself to changing
network conditions. We developed a simple application that
mimics a sensor that sends measurement data periodically to
a server. We argue that transmitting a packet over a wireless
interface costs energy and therefore should only be per-
formed when necessary. Therefore, we implemented a stack
builder that includes an idle repeat request (IRR) reliability
protocol in the protocol stack only when sensors report low
link quality. The link quality is determined by a sensor that
divides the current with the maximum possible wireless link
quality. Our link-quality-aware network architecture [6] is
shown in Figure 7.

We evaluated our architecture on commodity notebooks.
In order to obtain reproducible results, we used a wired
connection between the test machines and used the Linux
traffic control tool tc with the netem discipline [35] to
emulate packet loss. We recorded the link quality between
two nodes while walking around in our office building; see
Figure 8. We have used this recording as realistic input for
our emulation. Simultaneously, wemeasured that packets got
lost when the link quality was below 35%.

Our stack builder requests to be notified by the sensor
daemon when the signal strength falls below a threshold
of 40% or increases beyond 50%; see Figure 8. Upon such
an event, it either inserts or removes the reliability module
and renegotiates the protocol stack with the neighboring
node. The lower threshold for renegotiation ensures that the
reliability protocol is inserted to the protocol stack before
the link quality reaches the critical value of 35%. The upper
threshold is used to avoid frequent adaptations of the protocol
stack.

Table 1: Comparison between static and self-aware configurations
over 140 seconds [6].

Config. Packet loss rate Overhead
Reliability Reconfig.

Unreliable 31% — —
Reliable 0% 128% —
Autonomous 0% 60% 40%

For evaluation purposes, we compared the data loss rate
and the total number of packets sent for different config-
urations; see Table 1. The configuration labeled “unreliable”
never uses reliability, “reliable” always uses reliability, and
“autonomous” dynamically adapts itself to the link quality.
We used these measured values to emulate the network con-
ditions on a machine that connected the two test machines.

The configuration with no reliability lost on average 31%
of the packets, whereas we did not observe packet loss in the
other two configurations. However, this reliability comes at a
price. The overhead (in terms of sent packets) for achieving
reliability was 128% for the configuration that was statically
configured to use the reliability protocol. The total overhead
for the dynamic configuration was 100% split in 60% for
sending acknowledgement and retransmission packets and
40% for sending the protocol stack reconfigurationmessages.
This clearly shows that adaptive protocol stacks can reduce
the total communication overhead in dynamic scenarios.
However, the adaptation algorithm has to be designed care-
fully to avoid increasing the total overhead by sending too
many stack reconfiguration messages.

We also measured the protocol stack reconfiguration
time; that is, the time it takes from an event that triggers a
reconfiguration until data can be sent over the new protocol
stack. This is the sum of the time to determine and recon-
figure the stack on both sides of the communication and the
time to send the reconfiguration messages. We measured a
protocol stack reconfiguration time of 806 𝜇s whereof 286𝜇s
were required for the transmission of the packets (round trip
time).

5.2. Self-Aware Hardware/Software Mapping. To evaluate the
self-aware hardware software mapping, we used two simple
protocol stacks that are made up from functional blocks of
type privacy or security. The functional block of type privacy
implements an AES (advanced encryption standard [36])
encryption module that uses electronic codebook (ECB)
mode. This encryption algorithm requires rather complex
operations on the packet and can therefore be seen as a rep-
resentative of all functional blocks that require heavy packet
processing. We do not advocate using ECB mode, because it
reveals patterns in plaintext, but it has the same processing
characteristics as more advanced modes and is thus well
suited for a performance evaluation. The functional block
of type security implements a simple intrusion prevention
system (IPS) by detecting non-shortest-formUTF8-encoding
attacks [37]. This operation requires examining the whole
payload once and is therefore representative of all functional
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Figure 8: Measured link quality over 140 seconds. Packets got lost
when the link quality was below the dashed line. The protocol stack
is adapted when the graph crosses the gray bar [6].

blocks that require access to the whole network packet. This
is often required, for example, for calculating a checksum.

The overall system consists of two applications. One
application receives packets over a protocol stack that is built
from the Ethernet and from the AES functional block; the
other application receives packets over a protocol stack that
is built from the Ethernet and from the IPS functional block.
The Ethernet functional block is always mapped to hardware,
whereas the applications are always in software in Linux user
space. The AES and the IPS blocks can be mapped either
to hardware or to software. However, only one of the two
blocks can bemapped to hardware at a given time.The system
is implemented on a Virtex-6 LX240T FPGA. The Linux
operating system runs on a Microblaze CPU with a clock
rate of 100MHz with 16 kB instruction cache and 16 kB data
cache. With these performance characteristics, this CPU is
by orders of magnitude less capable than current workstation
CPUs. The focus of this evaluation is not to show how our
architecture compares with other computing platforms, but
to show how different levels of self-awareness compare on
our platform. To this end, we tested our system with three

different mapping algorithms and three different network
traffic mixes.

5.2.1. Mapping Algorithms. Wehave implemented the follow-
ing three mapping algorithms M1–M3 that map functional
blocks to either hardware or software.

M1 Optimal static mapping: this mapping is obtained by
an engineer who has perfect knowledge. He knows
how long it takes to process a packet in software and in
hardware and he knows the traffic from each scenario.
With this knowledge he builds an optimal but static
mapping.

M2 Simple self-aware mapping: this mapping algorithm
measures the number of packets per second that
arrive in software for each protocol stack and puts the
functional block that has to process more packets in
hardware.

M3 Smart self-aware mapping: this mapping algorithm
senses the number of packets per second for each flow
and also senses how long it takes to process a packet
for each protocol stack. As a decision basis it uses the
moving average of the packet rate weighted by the
packet processing time. Additionally it only changes
the mapping if this number of one flow exceeds 110%
of the other flow.Thosemeasures should help to avoid
fluctuations of the mappings during periods in which
both applications receive similar amounts of traffic or
during time periods with short spikes in the traffic.

For a fair evaluation of our self-aware network architec-
ture, we compare the results of the optimal static mapping
with the results obtained by the two self-aware mapping
algorithms for varying scenarios.

5.2.2. Network Traffic Mixes. We have tested the three
mapping algorithms with three different network traffic
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mixes T1–T3, which are representative of network traffic seen
by an end node (as opposed to an intermediate node such as
a network router) in the Internet.

T1 Nonoverlapping constant bit-rate traffic: this traffic
mix could correspond to a user who first streams a
video that requires one protocol stack and after this
he makes a phone call that requires the other protocol
stack. We sent first 60,000 packets at a rate of 1,000
packets per second for the protocol stackwith IPS and
then we sent 60,000 packets at a rate of 1,000 packets
per second for the protocol stack with AES.

T2 Overlapping constant bit-rate traffic: this traffic mix
corresponds to a long running application which
receives packets over a protocol stack with IPS con-
figured and a short running application that requires
packet encryption.We sent 120,000 packetswith a rate
of 1,000 packets per second to the protocol stack with
IPS and in the middle of this transmission we sent
20,000 packets at a rate of 500 packets per second to
the protocol stack with AES.

T3 Congestion-controlled traffic: in order to avoid over-
loading in the Internet, several protocols implement
congestion control algorithms. Simplified, the traffic
that results from those algorithms can be character-
ized as follows. The traffic rate linearly increases until
the algorithm detects congestion.Then the traffic rate
is reduced to half of the maximum traffic rate and
then increased again until congestion is detected.This
results in a typical sawtooth packet rate sequence. We
sent 31,275 packetswith amaximumpacket rate of 200
packets per second to both protocol stacks (AES and
IPS). Both traffic flows were shifted, so that the peak
traffic rate for both flows alternates.

In all scenarios we send maximum sized Ethernet packets
(1500 bytes).

5.2.3. Mapping Results. When a packet is processed in
hardware, the hardware functional blocks (ETH, AES/IPS,
and H2S/S2H) are pipelined and compute in parallel. The
hardware/software interface is the slowest functional block in
this pipeline. As a result the AES and IPS hardware modules
do not affect the maximum packet throughput. Hence, our
self-aware scheduler can focus on the software execution
times, where the AES block takes 3.5 times as long as the IPS
block in our scenario.

To get a rough idea of the speed difference, we have
measured the packet processing times in hardware and
software for both blocks, AES and IPS. The hardware imple-
mentation of the AES block is 150–400 times faster than
the corresponding software implementation (depending on
the packet size). The hardware implementation of the IPS
block is 50–280 times faster than the corresponding software
implementation (depending on the packet size).

Figure 9 gives an overview over the resulting hardware
software mapping over time for the nine combinations of
mapping algorithms and network traffic mixes.
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Figure 9: Traffic mixes and resulting hardware/software mappings
for the three mapping algorithms over time. The static algorithm
always puts the AES block in hardware. The dynamic algorithms
start with no functional block mapped to hardware but adapt the
mapping to the traffic.

The optimal static mapping implements the AES block in
hardware and the IPS block in software.This can be explained
by the fact that it takes the AES block 3.5 times longer to
process a packet than the IPS block. The simple self-aware
algorithm might lead to nonoptimal solutions since it does
not take the time required to process a packet into account
nor does it prevent frequent changes in the mapping, which
lead to increased reconfiguration overhead.

In order to better evaluate the differences in the algo-
rithms, we measured CPU utilization while processing pack-
ets (Figure 10) and the packet loss in percent for each traffic
mix, for each application separately (Table 2) and also for the
overall scenario (Figure 11).

We can see that the self-aware algorithms require the
least CPU resources to process the network traffic mixes
with constant bit-rate traffic. However, the simple self-
aware algorithm requires the most CPU resources for the
congestion-controlled traffic. This is because it reconfigures
often, which requires CPU resources as well. This behaviour
is also reflected in the highest packet loss for the simple self-
aware algorithm for the congestion controlled traffic.

If the static algorithm and the smart self-aware algorithm
are compared with each other, the self-aware algorithm
always performs better. On average it requires 15% less CPU
resources and loses 1.7% fewer packets.

In order to better understand how this result could be
further improved, we analyzed the overhead introduced by
the self-aware network system.

5.2.4. Overhead Induced by Self-Awareness. Additional over-
head is introduced in order to implement our self-aware net-
work system. For the self-aware hardware/software scheduler
the overhead consists of the following parts.
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Table 2: Measured packet loss for all combinations of mapping algorithms and network traffic mixes.

Scheduling algorithm T1: constant bit-rate T2: overl. constant bit-rate T3: congestion controlled
Total AES IPS Total AES IPS Total AES IPS

M1: static 4.5% 0.0% 9.0% 16.9% 14.5% 17.2% <0.1% <0.1% <0.1%
M2: simple self-aware 1.4% 1.6% 1.2% 22.0% 52.0% 16.8% <2.6% 2.2% 0.9%
M3: smart self-aware 1.8% 2.2% 1.3% 14.6% 20.8% 13.6% <0.1% <0.1% <0.1%

Table 3: Overhead of partial reconfiguration.

Modules FPGA area Bitstream size Initial reconfiguration Subsequent reconfigurations
IPS 7% 0.65MB 850ms 110ms
AES or IPS 15% 1.3MB 1600ms 220ms
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Figure 10: CPU utilization for all combinations of mapping algo-
rithms and network traffic mixes.

(i) Sensors: sensors need to be implemented which col-
lect statistical data on the network traffic. This results
in an enlarged code base which requires more RAM
and longer execution time since the statistics need to
be updated.

(ii) Mapping algorithm: in regular intervals the map-
ping algorithm needs to evaluate the statistical data
and determine the new mapping. This results in an
enlarged code base which requires more RAM and
additional CPU overhead since the algorithm needs
to be executed.

(iii) Reconfiguration overhead: If the mapping is changed,
a partial reconfiguration of the FPGA has to be
performed. During the reconfiguration, no packets
can be processed in the area to be reconfigured.
Additional time is required to transfer the state from
hardware to software or vice versa.

In our system the dominant overhead is the partial
reconfiguration of the hardware module (FPGA area) using
the Internal Configuration Access Port (ICAP). The recon-
figuration times for varying bitstream sizes are shown in
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Figure 11: Packet loss for all combinations of mapping algorithms
and network traffic mixes.

Table 3.The partial bitstreams are stored on the compact flash
memory. Hence, a bitstream file either has to be loaded from
the compact flash disk, or it is already cached in the RAM, in
which case the reconfiguration is considerably faster.

The reconfiguration times shown in Table 3 are con-
siderably higher than those shown in related work. This
can be attributed to the overhead introduced by the Linux
operating system. For instance, in [38] they neither use an
operating system nor are the bitstreams stored on an external
memory. Additionally, they show that the HWICAP core
provided by Xilinx can be optimized to perform an order of
magnitude faster while not requiring CPU resources during
the reconfiguration. Using their optimized core would also
improve the reconfiguration time in our system, as well as the
packet loss in our system.

6. Conclusion and Future Work

In this paper we have introduced a novel self-aware net-
work architecture that uses dynamic protocol stacks which
are composed of functional blocks. In contrast to network
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communication in the current Internet with its fixed pro-
tocol stacks, we propose to use key words that define the
communication requirements for an application.A self-aware
stack builder then identifies a set of suitable protocol stacks
that fulfill all requirements for specific network conditions.
Two self-aware network nodes, which want to communicate,
will select a common protocol stack in a negotiation phase,
which respects the user-defined application requirements for
the current networking condition. This protocol stack can
be updated on the fly by both nodes whenever the network
conditions change. Our EmbedNet platform implements the
proposed self-aware network architecture on anFPGA,where
the functional blocks can also be dynamically mapped to
either a soft-core CPU or to reconfigurable hardware mod-
ules. A self-aware scheduler adapts the hardware/software
mapping of the used functional blocks in order to minimize
the overall packet loss and the CPU load caused by packet
processing.

Wehave shown that self-awareness in the networking area
can improve the performance with regards to several aspects.
With the self-aware negotiation of the protocol stack itself, we
can adapt the functionality provided by the protocol stack at
run time. In a simple scenario with two commodity laptops
we could show that we can reduce the number of packets
required for data transmission by 28% for a given scenario
compared to a static protocol stack (without changing the
hardware/software mapping).

With the self-aware mapping of network functionality
to hardware and software, we have shown that the CPU
resources required to process packets as well as packet loss
can be reduced as compared to a static system. Our experi-
ments indicate that smart scheduling algorithms are required
in order to obtain better results than optimal static mappings
due to the high reconfiguration overhead of our EmbedNet
platform. Compared to an optimal static mapping, our smart
self-aware mapping strategy could reduce the CPU load by
15% and reduce the packet loss by 1.7% on average for three
different traffic mixes for two applications.

In future work, we will develop more advanced self-
aware mapping strategies and analyze our self-aware network
architecture in scenarios with more concurrent applications,
complexer protocol stacks, and reconfigurable hardware
modules. The low performance of the soft-core MicroBlaze
processor provides a major bottleneck for the overall system
performance of our EmbedNet platform. Therefore, we plan
to port EmbedNet to the Xilinx Zynq platform [39], which
contains a more powerful dual-core ARM processor in
addition to an FPGA. Finally, we will investigate techniques
to reduce the reconfiguration overhead.
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