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1 Introduction

Since the earliest days of computers, people have sought to apply them to the
solving of large and complex problems. Indeed, computers’ ability to solve large
problems have brought benefits to humanity in fields as wide ranging as chess
playing [1] and protein folding [2], amongst many others. However, key to the
continued ability to apply computers to these kinds of problems is finding ways
to enable them to scale massively, while remaining accessible to those who might
use them. For example, it could be argued that the requirement either to own
a supercomputer such as Deep Blue or have the funds and specialist knowledge
to build a distributed platform such as that used by the Folding@Home project
reduces accessibility.

Grid computing is one technology which attempts to address this. By pro-
viding a standard way to access computing power on tap, a grid platform allows
users to run very large generic programs, distributed over many computational
nodes [3]. Related technologies such as cloud computing [4] enable a similar
standard means of access to potentially unbounded scalable computing, while
service oriented architectures [5] provide a framework for distributed computa-
tional resources to be componentised and packaged up, such that distributed
applications may be constructed from loosely coupled components. As platforms
grow, localised failures become more likely, and systems can often no longer be
assumed to be of a static nature, as its component nodes can be added and
removed during run time. Therefore, key characteristics for resource allocation
mechanisms to possess are that they are resilient to failures and also able to
adapt in order to obtain high performance, taking advantage of system changes
during run time.

Given such a range of approaches to scaling up computational capabilities,
it is not surprising that computational resource allocation in such systems is
not a single well defined problem. Instead, it is perhaps best described as a
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family of problems, each specific to the particular embodiment, but with much in
common. At its heart however, the problem of computational resource allocation
can be stated as follows: how should computational resources be made available
to users, such as to achieve the objectives of the resource providers, the users
and the system overall? It is important to note here that the term user does
not apply solely to an end user of a computer system or their processes, but
also to any user node which requires the use of a resource from a provider node.

In order to answer this question for a particular system, it is of course nec-
essary to possess some further understanding of what is required. Does the how
in the question refer to a particular outcome or endpoint, or perhaps instead
a governing process, a set of rules or parameters to which the allocation must
conform? Many approaches [6] focus on fairness and efficiency as global objec-
tives. Furthermore, what are the objectives of the resource provider and user
nodes? Are the providing nodes’ objectives aligned, and do they align with the
objective for the behaviour of the system as a whole, if one exists? If there is a
conflict or tradeoff in achieving the objectives, how are these to be resolved?

In order to gain some perspective on these issues, it is interesting to consider
Foster and Kesselman’s [3] characterisation of computer systems as they scale.
They note that in simple single end machine systems, resource allocation is
typically dealt with at the operating system level, by a kernel or similar program
which has absolute control over the resources in the machine. This enables
it to achieve a tightly integrated system, but also provides a bottleneck, as
resource requests must be fed through the kernel in order to be assigned. In
clusters, many individual machines can communicate through message passing
and file systems. Here increased scale is obtained at the expense of integration,
as homogeneous nodes are controlled by a single machine responsible for job
allocation. Larger still, intranets are characterised more by heterogeneity of
nodes, which may be under administrative control of separate entities. Nodes
may have different policies for use of their resources, different external demands
and different capabilities. Here issues exist with regard to the availability of
global knowledge. Nodes may attempt to map out the computing environment
in order to plan the best use of resources, though the size and dynamic nature
of such networks means that any one node is unlikely to have an accurate view
of the system’s current state [3]. The final category considered by Foster and
Kesselman is perhaps the most interesting, that of internets. These forms of
network span many organisations, locations and platforms and are large and
heterogeneous. Here there is no central control and often no global objective
with regard to resource allocation.

In this chapter, we consider the ability of economics-inspired techniques to
achieve efficient allocations while also providing adaptivity and resilience. It
has been shown that markets can be used to produce efficient and adaptive
allocations in a range of resource allocation scenarios [7]. However, the type
of market mechanism used, and how it is deployed, can have a large impact
upon resilience. Many mechanisms require a centralised price fixing process
such as an auctioneer or specialist, introducing a single point of failure. Other
approaches use regional super-nodes within a network, creating bottlenecks and
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unnecessary weak points. There are also fully decentralised approaches which
may be used, though these can introduce additional computational overhead.
This chapter reviews these and argues that of the family of economics-inspired
approaches, the retail-inspired posted offer market mechanism is a promising
technique for efficient, adaptive and resilient computational resource allocation
in the presence of increasing scalability.

2 Computational Resource Allocation

One prominent way of acquiring the large pool of resources required by modern
software systems, such as social networks, is to rent them from the cloud [4].
The cloud makes it possible for infrastructure, platform, and software providers
to publicly offer their resources on demand on a pay-per-use or subscription
basis. The huge cost savings and rapid elasticity of resources, i.e. scaling out
and scaling in, have made cloud a hot topic among academics and in industry.
Beyond its appealing business model, cloud computing has raised interesting
challenges in terms of how resources may be allocated to satisfy stakeholders’
objectives.

Cloud-based systems are continuously faced with the challenge of coping
with dynamics and uncertainties at run time. For example, the mode of use
of cloud resources cannot be fully anticipated, hence workload patterns vary
frequently. Furthermore, the cloud environment is highly volatile, as resources
fail and network connections fluctuate in unexpected ways. To be successful, a
cloud resource management solution must cater to these uncertainties instead
of avoiding them. For these reasons, software agents are often relied upon to act
on behalf of users and providers to reach their respective objectives. To clarify
our understanding of what an agent is, we adhere to the following definition:

Agents are computer systems [or components of such systems] that
are capable of independent, autonomous action in order to satisfy
their design objectives. [...] As agents have control over their own
behaviour, they must cooperate and negotiate with others in order
to satisfy their goals [8].

An agent’s autonomy empowers it to decide whether to cooperate with other
agents or not, depending on its objective. As opposed to the definition above,
cooperation in our work isn’t a mandatory requirement, instead, we view agents
as self-interested and fully autonomous in their ability to make decisions.

The interaction between users and providers in the cloud environment may
therefore be modelled using concepts in multi-agent systems (MAS). As advo-
cated by Jennings [9], the MAS analogy is well suited to complex application
domains, of which cloud is an example, characterised by:

• a large number of components,

• flexible (dis)connection between components, and
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• complex component interconnections.

Next, we describe the cloud federation model, the objectives of its stake-
holders, and the resource allocation problems it presents.

2.1 The Cloud Federation Model

The emergence of many cloud providers offering various services has propelled
the vision of cloud federation [10, 11]. The proponents of the cloud federation
model advocate that next generation of cloud providers will have the capacity to
seamlessly interact among themselves, thereby taking advantage of economies of
scale [12]. This would afford providers the possibility of outsourcing resources
at run time in the event of failure of any cloud provider in the federation.
Opencirrus1 is an example of a test bed that is designed for cloud federation
research. The cloud federation model is shown in figure 1.

Cloud users interact with the federation via a middleware by submitting
their job requests and the associated Service Level Agreements (SLAs). The
quality of service (e.g. availability, reliability and performance) expectations of
the cloud users are specified in the SLAs. The middleware layer coordinates
interaction with cloud users and interaction among cloud providers in the feder-
ation. Each cloud provider is equipped with a cloud manager component which
interfaces with the middleware layer and coordinates the resources of its cloud.
All interaction with a cloud provider is via its cloud manager component.
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Figure 1: Cloud Federation Model [13]

To fully realise the cloud federation model, there are a number of open
research problems which must be tackled. They include: formalism of a language
to inform negotiation among cloud providers at run time [14], interoperability
of data formats and interfaces (APIs) to facilitate inter-cloud communication
[15], and middleware layer design for coordinating cloud federation resources
[16]. In this chapter, we focus on the design of the cloud federation middleware.

1http://opencirrus.org/
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According to [10], the two most important tasks of the middleware (referred to
as Service Manager in their work) are:

• deploying and provisioning users’ jobs based on specified configurations,
and

• monitoring and enforcing SLA compliance by throttling the capacity of
users’ jobs.

These tasks are necessarily geared toward allocating cloud resources to users.
Rochwerger et al. [10] further identified two approaches for reaching resource
allocation objectives: explicit and implicit approaches. The former involves pre-
cise definition of resource allocation tactics, such as scalability thresholds and
number of instances to launch or suspend. The elastic load balancer in AWS2

is an example of a load balancer that follows the explicit approach. Implicit
allocation, which is the approach taken in this work, relies on real-time moni-
toring and adjustment based on high-level service level objectives. Here, there
is no explicit definition of resource allocation tactics, instead, the interaction of
agents in a market for resources yields the allocation for each job request.

The importance of the middleware coordination layer in cloud federation is
well acknowledged [11, 10]. This middleware layer (sometimes referred to as the
Service Manager) is the highest level of abstraction responsible for coordination
of cloud providers and cloud users in the federation [10]. Importantly, it ensures
that cloud users’ jobs are allocated to one or more cloud providers who are
capable of executing those jobs without violating SLA constraints.

SLA management in the cloud is an active research area. An autonomic
resource provision technique was employed by [16] to manage SLAs in federated
clouds. While their work considers all phases of the SLA life cycle, there is no
explicit provision for post-negotiation causes of SLA violations such as variation
in workload. Brandic et al. [17] presented a proposal for SLA management in a
single cloud infrastructure. Their work provides a method for mapping low-level
resource metrics to high-level cloud user SLA specifications, and deducing the
likelihood of SLA violations from this mapping. Another interesting approach is
the autonomic resource allocator proposed by Ardagna et al. [18] for managing
SLAs of multiple applications running on a single cloud. The authors considered
SLA violation from the dimension of workload variation with the objective of
maximising cloud providers’ revenue. In reality, a broader set of events may
cause these violations, namely, heterogeneous user requests, workload variations
and unavailability of cloud providers in the federation.

2.2 Centralisation and Decentralisation

Classically, resource allocation objectives are achieved in a centralised manner,
often relying on a single node responsible for, say, load balancing [19]. As an

2http://aws.amazon.com/elasticloadbalancing/
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example, the AWS elastic load balancer functionality is often dedicated to a sin-
gle virtualised instance, or, in larger sites, to multiple instances, in a centralised
fashion. A balanced load, though by no means the only interesting outcome,
can be used as an example of a desired resource allocation, an objective against
which a particular approach to resource allocation may be tested. Load balanc-
ing is additionally in itself interesting, since it is useful in numerous real world
scenarios, including telecommunications networks, road networks and electricity
and water distribution networks. In many of these domains, even in very large
scale systems, centralisation is the usual approach taken [19].

In addition to the explicit-implicit distinction described in section 2.1, re-
source allocation techniques can be divided into those which are stateless and
those which are state-based [20]. Perhaps the most widely known and eas-
ily understood stateless approach, used to balance the load on web servers, is
round-robin DNS. A more complex example is proportional share scheduling
[6], in which resources are allocated to jobs according to a set of pre-determined
weights. However, stateless approaches such as this are unable to take account
of current server load or availability, leading to no guarantee that the desired
outcome is achieved. Simple state-based extensions permit the usage of infor-
mation about the resources being managed, and enable the proximity to the
desired allocation to be measured. Examples of state-based resource allocation
approaches include those which make use of geographical information and pre-
vious usage levels in order to determine an appropriate allocation of resource.
A useful review and comparison of these approaches in the web server domain
may be found in [20].

Centralised resource allocation methods do however have a number of draw-
backs [21]. These include the requirements:

• that the environment remain static while the central coordinator is calcu-
lating the optimal resource allocation,

• that the coordinator has global knowledge of the system and all nodes
within it,

• that all coordination messages must route through the central point, coun-
teracting the benefit from having resources distributed about the network,
reducing scalability [22] and creating a fundamentally brittle system [23].

The Internet in particular is a dynamic network, where the first two require-
ments are highly unlikely to be met [3]. Brittleness may be mitigated against
to a certain degree, by introducing backup coordinator nodes, however even in
these cases the wider system is reliant upon the existence and performance of a
small number of key nodes. Failure at these key points in the network may well
cripple wider functionality, at best [24].

These drawbacks lead to the need for a truly decentralised approach to the
allocation of resources that does not rely on a central coordinator [21]. In the
field of grid computing, examples include Cao et al.’s [25] hierarchical approach,
and TURBO [22]. In the latter, allocations are achieved through the reliance
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on altruistic behaviour between cooperating peers, which collaborate in order
to reach a global objective. Balanced overlay networks [26] are another effective
and generic technique for balancing a load across a decentralised network. In
this approach, resource providing nodes present an estimation of their availabil-
ity to other local nodes to which they are connected. Newly arriving jobs take a
random walk through the network and select the providing node with the high-
est availability. Upon accepting and completing a job, a provider node updates
its availability estimate. In decentralised peer-to-peer storage systems Surana
et al.’s [27] approach may also be used. Here the case is considered when mov-
ing loads around the network also uses bandwidth. Their objective is therefore
a balance between achieving an even load and minimising the amount of load
moved. Their fully decentralised approach is, in effect, tantamount to perform-
ing a centralised calculation at each node, periodically requiring cooperative
reassignment of a load, based on global knowledge of the system.

2.3 Cooperation, Non-Cooperation and Self-Interest

Critically however, many decentralised approaches either rely on nodes’ hav-
ing complete global knowledge, or else cooperating to some extent in order to
reach a shared objective [28]. As an example of this, in balanced overlay net-
works [26] resource users are self-interested within the bounds of the providers
observed within their random walk, though the providers themselves are relied
upon both to provide an honest and accurate account of their availability and
to facilitate the random walk by exposing their local connections. In the case
where such cooperation may not be relied upon, it is likely that the system’s per-
formance would deteriorate significantly. Similarly, Surana et al.’s [27] approach
assumes both cooperation between nodes and global knowledge of the system.
A non-cooperative, decentralised approach to resource allocation does exist in
the domain of downloading replicated files. Dynamic parallel access schemes
[29, 30] make use of self-interested smart clients to increase the speed of file
downloads. It is not yet clear however, how this approach might be generalised
to other service-based systems.

Buyya et al. [28] argue that we may not always be able to rely on cooperation
between nodes, for several reasons. Amongst these are the possibility that a
node behaves erroneously, perhaps due to a software or hardware error such
as a virus, unforeseen circumstances or an external fault. Large systems are
also likely to be noisy systems, as data is lost or corrupted in transit and the
likelihood of measurements being inaccurate or misreported increases. Finally,
limits on and delays in information transmission mean that nodes’ actions may
be misguided or insufficient. Crucially, Khan and Ahmad [31] show that in any
decentralised cooperative approach, global optima can only be achieved when
all the nodes cooperate. It is for these reasons that in seeking high resilience,
we look towards approaches which do not rely on the assumed cooperation of
nodes.

Some confusion does exist within the literature however in the treatment
of the terms non-cooperative and self-interested. It is important to note that
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non-cooperation does not imply self-interest. Indeed, in Khan and Ahmad’s [31]
study of various games-based resource allocation methods, they describe a model
in which non-cooperative agents bid for jobs based on an honest estimation of
the estimated time to complete a job. Their agents, though not cooperating, act
without consideration of the benefit they expect to derive from their actions.
Clearly, such a consideration is a prerequisite for self-interested behaviour and
hence the behaviour they describe is not self-interested.

Indeed, it is the assumption that an agent will behave either cooperatively
or non-cooperatively, regardless of its predicament, that is at odds with self-
interest. A self-interested agent may behave either cooperatively or non-cooperatively
at certain times. The key factor is that this decision will be made by the agent,
based on whether it is in its own perceived interest to do so. In making this
decision, the agent must therefore consider the benefit it expects to gain from
the options with which it is faced. If it does not, it cannot be said to be truly
self-interested.

Therefore, when considering systems where nodes are owned or administered
by separate parties, such as the very large distributed systems discussed by
Foster and Kesselman [3], rather than consider agents on a cooperative / non-
cooperative spectrum, it may instead be more useful to know whether or not an
agent is self-interested. If it is possible to assume this of nodes, then as will be
discussed in the following sections, the models and tools of economics allow for
a great deal of progress to be made.

2.4 Inspiration from Economics

When selecting components with which to compose an application in a cloud
system, appropriate resources may be available from a number of provider nodes.
Similarly, large numbers of users may find themselves competing for access to the
best resources, or a resource at a time more suited to their needs. If individual
users and providers are acting in a self-interested manner in these types of
computational systems, then the resulting interactions may be thought of as
being an economy [7].

Indeed, large computer networks such as the Internet, made up of hetero-
geneous individuals with independent objectives can quite rightly be viewed as
social networks as well as purely digital ones. It is perhaps of little surprise
then that a social science such as economics might be useful in solving a prob-
lem such as decentralised computational resource allocation, since economics
itself is concerned with the allocation of resources between individuals with
different objectives in human societies. Therefore, in computational networks
that are social, to what extent can economic theory be called upon in order
to predict, and hopefully design the resource allocation behaviour of complex
computational systems, where individual nodes are self-interested?

It is perhaps useful at this stage to present some relevant terminology.
Firstly, according to Begg et al. [32] economics is “how [a] society resolves the
problem of scarcity” (p3). Furthermore, they state that “a resource is scarce
if the demand at a zero price would exceed the available supply” (p5). This is
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exactly the scenario with which we are faced in the computational resource allo-
cation problem. There have of course been a number of different approaches to
this problem in human history, but one which is particularly dominant is the use
of markets. Rothbard [33] describes a free market as “an array of exchanges that
take place in society. Each exchange is undertaken as a voluntary agreement
between two people or between groups of people represented by agents.” Simi-
larly, Begg et al. [32] define a market as “a set of arrangements by which buyers
and sellers are in contact to exchange goods or services” (p32). The important
factors here are that there is an exchange between two or more individuals, and
that this exchange is voluntarily entered into by all participants.

In order to facilitate such exchanges, a particular type of good is often agreed
to serve as currency, in which case the individual giving away currency in or-
der to obtain another good is termed the buyer, while that which receives the
currency and gives away the other good is termed the seller. It is of course not
required that this formal delineation be present, though it has been argued [34]
that an economy will evolve towards common agreement on a particular good
to treat as currency, typically that which the individuals find easiest to retain
and exchange widely without additional cost. A mechanism through which vol-
untary exchanges between individuals are facilitated is called an auction, and
there are many sets of rules for these, leading to a huge range of possible auction
types.

A number of auction mechanisms can be found in common use, including
the English auction, found amongst other places on Ebay3; the Dutch auction;
Vickrey auction and Continuous Double Auction, often used in stock markets.
Cliff [35] gives a useful introduction to and critique of several auction mecha-
nisms, including those listed here, while Friedman and Rust [36] provide a more
detailed look at the Continuous Double Auction. Purely electronic markets also
make use of a range of auction mechanisms. In designing a mechanism, the
aim is typically to achieve an efficient system overall, by making use of the self-
interested nature of individuals. This is demonstrated by Phelps et al. [37],
Byde [38] and David et al. [39] amongst others. For many, the ultimate aim of
such research is the automation of the mechanism’s design, appropriate to indi-
vidual scenarios [40, 41, 42, 43]. Taking Cliff’s [43] work as an example of this,
a parametrised mechanism design space is specified, which may be searched in
order to find high performing mechanisms for specific scenarios. Results from
an evolutionary search demonstrate that classic, human-designed mechanisms
are often far from optimal.

3 Economics-inspired Computational Resource
Allocation

The application of economic ideas to resource allocation problems in compu-
tational systems is approached in the field of market-based control [7]. Using

3http://www.ebay.com/
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the terminology of Casavant and Kuhl’s [44] taxonomy of scheduling in dis-
tributed computing systems, this is a family of distributed mechanisms for dy-
namic global resource allocation. Such systems work by actions and decisions
of resource providers and resource users nodes being automated by the use of
software agents interacting in a (possibly artificial) market. The aim of a buyer
agent might be to secure the fastest and most reliable resource at the lowest
cost for its user. Conversely, a seller agent might aim to maximise the revenue
for the resource provider, or perhaps generate high levels of business. Whatever
the business strategy of the resource provider, the selling agent will be compet-
ing with similar agents from other providers for the same resource users. Each
agent will therefore have to employ its own strategy for success in the market.

There are several examples of market-based control being used in decen-
tralised computing systems. Brewer [19] proposes the idea of incorporating,
into a request for web services, a notion of its value or cost. It is argued that
this, along with the use of smart agents, would allow for responsive adaptation
in the presence of changes to the network, as well as graceful degradation. Sim-
ilarly, Gupta et al. [45] argue that in the provision of virtually zero cost per-use
computational services, a mechanism involving pricing and user self-selection is
preferable to the alternative of provider or regulator enforced limits: rationing.
More recently, researchers have pursued in-depth study of a market-oriented
cloud from various dimensions, including: price modelling [46], resource sharing
among service providers [47, 48, 49], and resource allocation at the hardware
layer [50]. A notable example that harnesses a game theoretic approach is the
formulation and study of the service provisioning problem in cloud systems by
Ardagna et al. [51]

Typically, resource owning or providing nodes are represented by selling
agents, and resource users or tasks are represented by buying agents. Buy-
ers then attempt to purchase sufficient resource to satisfy their task or user’s
requirements from the set of available sellers. Sellers charge an amount of (ei-
ther real or artificial) money for the resource, determined by their strategy and
dependent on factors such as the quantity or quality of the resource being pro-
vided. Since self-interested buyers can be expected to pay more for resources
which they desire more, and self-interested sellers will charge what they can get
away with in order to maximise their payoff, resources will tend to go to those
who value them the most. Fundamentally, these approaches attempt to harness
the rational behaviour of self-interested agents, which interact in some market
environment in order to achieve resource allocation without reference to a cen-
tral authority. Relying upon the theories of economics, through such repeated
exchanges between utility maximising individuals, efficient resource allocations
may be achieved.

3.1 Centralised Market Mechanisms

As in human economies, agents in a market-based computational system may
interact through any of a number of different mechanisms [35]. Common exam-
ples include English, Dutch and Vickrey auctions, in which an auctioneer facil-
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itates the bidding and determines the allocation of resources. Where scarcity
exists on both the seller and buyer sides, double auctions such as the Continu-
ous Double Auction and Clearing House provide an alternative approach [36].
Research in the field of automated mechanism design also suggests that other
less obvious auction mechanisms may lead to more efficient outcomes in certain
circumstances [43, 52, 53].

However, both Cliff and Bruten [54] and Eymann et al. [21] note that due to
the mechanisms employed, a large proportion of market-based control systems
are not decentralised, since they rely on a centralised price fixing process rather
than the participants between them determining prices. This is true of Wolski
et al.’s [55] G-Commerce model, which relies upon a central market maker.
Cliff and Bruten [54] argue that the presence of such a centralised process or
component removes the primary advantage of using a market-based system: its
robust, decentralised, self-organising properties.

Examples of the application of centralised market mechanisms in cloud-based
systems include [56] and [57]. In [56], the problem of running independent
equal-sized tasks on a cloud infrastructure with a limited budget was studied.
The authors concluded that a constrained computing resource allocation scheme
should be benefit-aware, i.e., the heuristics for task allocation should incorporate
the limited resource in supply within the system. Sun et al. [57] proposed a
Nash Equilibrium based Continuous Double Auction (NECDA) cloud resource
allocation algorithm for meeting performance and economic QoS objectives. In
each round of the system run, each provider agent determines its requested value
based on its workload, and each user agent determines its bid value based on the
remaining time and resources [57]. A CDA is then used to decide the outcome
resource allocation, and the existence of a Nash Equilibrium evaluated.

3.2 Distributed Market Mechanisms

A number of distributed auction mechanisms have also been proposed [58, 59,
60], which do not rely on one central coordinating node. These approaches
reduce the fragility associated with reliance upon a single point, provide more
scalability and allow for dynamic composition of auctions. Typically, either the
central auctioneer is replaced by a number of local ones, which may commu-
nicate through some secure means, or else the auctioneer role is fulfilled by a
spare, disinterested node. Double auctions for example, though relying on a
specialist to match bids and asks [37], may be decentralised by the presence of
multiple specialists between which the participants may choose [61, 62]. This
is the approach taken by [63], where multiple specialists were used for service
composition in a SaaS cloud. These techniques do reduce bottlenecks at cer-
tain points within the network and the removal of a single node cannot lead
to system-wide failure. However, similarly to the replicated round-robin DNS
approaches discussed in section 2.2 above, the system is still largely reliant on
a small subset of its nodes.

However, it may be possible in systems such as this to scale up the number
of auctioneers or specialists, in order to achieve a suitable degree of redundancy
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and decentralisation. This issue is an active area of research, though intuition
suggests that with all else equal, a system which relies upon a set of super-nodes
cannot provide the level of resilience of a system without such a need, even if
the super-nodes were present in abundance. Approaches such as this also raise
questions of motivation for those acting as super-nodes, as participation fees for
example are set by auctioneers in most cases [61]. Therefore, if an approach
exists without the need for such complexity, it should be preferred.

A further alternative is that individual provider nodes themselves host inde-
pendent auctions for their resources. This approach is applied to computational
resource allocation in Spawn [64]. Here, users’ agents bid in sealed-bid auctions
hosted by providers’ agents, for their resources. In order to be effective, this
requires a high level of strategic ability on the part of buyers, as they must
decide in which auctions to participate. Of course, consumers may win multiple
auctions, and questions then arise of how to handle these situations. Literature
exists which explores the dilemma faced by buying agents bidding in multi-
ple auctions, such as that by Gerding et al. [65, 66] though again this adds
complexity.

3.3 Bargaining

Cliff and Bruten [54] conclude from their critique that, rather than depend upon
a central node such as an auctioneer, market mechanisms should instead rely
on the ability of intelligent agents to bargain between themselves in order to
arrive at acceptable prices. This approach is taken in the AVALANCHE [67],
and CATNET [68, 69, 21, 23] systems. These take inspiration from Agent-
based Computational Economics (ACE) [70], an agent-based modelling tech-
nique which attempts to replicate the dynamics of human markets with complex
cognitive agents.

These approaches are those which attempt to replicate human markets the
most faithfully, since they rely on highly developed strategies, as agents nego-
tiate bilaterally in order to determine the provision of a resource. It is likely in
this approach that the development and operation of such strategies will them-
selves require significant computational overhead. While these approaches are
indeed effective and widely applicable, if a simpler alternative exists, it should
be preferred where possible. An additional point of interest is that in the mecha-
nism used in CATNET [21], resource providing nodes are relied upon to forward
requests to neighbouring hosts. They do this without any consideration of the
effect of this on their own interests, which would appear to be at odds with the
self-interested nature of the agents. The study of bargaining agents is a topic
of ongoing research [71, 72, 73] and has a relevance in economics more widely
than only for computational resource allocation.

3.4 Retail Markets and the Posted Offer Mechanism

Though they do not discuss them in detail, Cliff and Bruten [54] also briefly
mention retail markets as an alternative to auctions and bilateral bargaining.
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The mechanism used in modern retail markets is usually referred to as the
posted price or posted offer model [74, 75], though in online content delivery it
is sometimes referred to as the quoted price model [76]. It is a fully decentralised
approach to the determination of price without the need for complex bilateral
negotiation, and provides a potentially simpler alternative.

Wang [77] provides an interesting comparison of auction-based and posted
offer selling, and shows that auctions are more commonly used in human markets
where there is a greater dispersal of valuations of the good amongst the buyers.
Where buyer valuations are more similar however, he favours the posted offer
market mechanism. This can be reconciled with the idea that according to
the most common mechanism design objectives, there exists no single dominant
mechanism [53]. For an example of this in a specific case, the impossibility
result due to Myerson and Satterthwaite [78] shows that no double auction
can simultaneously be efficient and budget balanced while also ensuring that
at least one participant would not be better off using a different mechanism.
It is therefore appropriate that research into computational resource allocation
continues to consider the impact of a range of mechanisms.

The application of posted offer markets [74] to computational resource al-
location is the most recently proposed technique in the market-based control
family [79]. The posted offer mechanism is a process in which sellers of multiple
units of a good each post one price or offer, and buyers subsequently respond by
stating the quantity which they wish to purchase from each seller. Exchanges
then occur between buyers and sellers at these price and quantity values. Tech-
nically, the reverse process in which buyers quote prices and sellers state quan-
tities is also a posted offer mechanism, though is less commonly encountered.
Importantly, price quotations cannot be changed during the exchange period:
no further negotiation is permitted, substantially reducing the burden on agents
and simplifying the allocation process.

Some prior examples of the use of similar mechanisms in computational
resource allocation do exist in the literature, though they are not faithful im-
plementations and make additional assumptions. Chavez et al. [80] use an
approach of this type in Challenger, where offers are broadcast to the nodes in
a network, though instead of using price, bids contain an honest reporting of a
job’s priority. This honesty means that there is no competition between nodes
and as discussed in section 2.3 this not self-interested behaviour. Xiao et al. [81]
describe their system GridIS, in which buyers broadcast job requests and sellers
reply by posting offers to perform them at a price. However, the behaviour of
the sellers used requires certain global information in determining their price,
both in the form of the latest accepted market price, which in a posted offer
mechanism is considered to be private information, and also the level of aggre-
gate supply of all the providers in the network. Again, the assumption of private
information forbids this too.

One of the most faithful implementations of the posted offer mechanism in
decentralised computational resource allocation is that by Kuwabara et al. [82],
though they do not describe it as such. They propose an approach which in
which sellers quote prices for their resources, and buyers subsequently decide
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the quantity (which may be zero) to purchase from each seller. Their analysis
determines the quantities provided at the equilibria at which the markets arrive,
and present this as a stable outcome allocation of resources. This is indeed fully
decentralised, since no central component, such as an auctioneer or specialist
is used; prices are determined privately by the sellers and then posted via a
broadcast mechanism. More recently, we have extended this approach, inves-
tigating the behaviour of posted offer markets used for computational resource
allocation in a range of homogeneous and heterogeneous contexts [79, 83].

3.5 Applicability of Economic-Inspired Approaches

Many computational resource providers, for example those in the cloud, bid
to attract users by promising ‘elastic’ service provisioning with near-infinite
scalability. In reality, clouds, just like data centres, are resource constrained
and prone to failures at both node and network levels. However, in contrast
to conventional data centres, cloud providers face the problem of not being
able to fully anticipate the workload patterns imposed on their infrastructure
in advance. These conditions make it hard to promise high qualities of service
without incurring significant cost.

Economics-inspired methods offer a potential solution to alleviate this prob-
lem, providing increased resilience to internal unexpected changes (server or
network failures) and adaptivity to dynamics caused by external sources (e.g. a
spike or dwindle in workload) [84]. Ongoing research in this area investigates the
use of market mechanisms to manage interaction of computing nodes in cloud
systems. Results from cloud simulation studies (e.g. [83]) indicate that novel
resource allocation methods inspired by economics can be more resilient to node
failures. Due to the inherent decentralisation of many market mechanisms, they
offer the capability to manage resources at the scale of cloud federations [13].
In the following section, we will give an introduction to this work, providing an
example of how posted offer markets may be used for resource allocation both
in an abstract problem and cloud federations.

4 Cloud Resource Allocation using Posted Offer
Markets

Cloud federations are example of distributed environments in which the posted
offer mechanism may be used to allocate resources. A cloud federation consists
of single cloud providers who exchange (or trade) resources in order to improve
their SLA compliance levels. Buyya et al. [11] envisioned the federated (or
inter-cloud) model as an environment that could flexibly respond to variations
in workload, network and resource conditions by dynamically coordinating mul-
tiple clouds in the federation. Since it is infeasible for a cloud provider to have
data centres in every country, the federated cloud environment offers the addi-
tional benefit of rapidly scaling to meet the needs of geographically distributed
cloud users than any single cloud provider [11]. The RESERVOIR project [10]
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also sets out a vision similar to [11] for an open federated cloud computing
model to address the limited scalability of single cloud providers and lack of
interoperability among them.

4.1 Motivating Example: Service Selection Problem

Consider an hypothetical on-line shopping cart application that dynamically
composes its services to meet customer orders. An order typically consists of
one or more products, which may be purchased and shipped from a pool of
diverse services. For simplicity, we restrict the composition to four abstract
services in a sequential workflow pattern (figure 2) and an order contains only
one product. For more advanced workflow patterns see Jaeger et al. [85].

A

B1

B2

C1

C2 D

Browse Product 

Catalogue & Place Order
Product Supplier 

Services

Shipping Provider 

Services

Payment Service

OR

SPLIT

OR

JOIN

OR

SPLIT

OR

JOIN

BN
CN

Figure 2: Online Shopping Cart Service Composition [13]

The responsibilities of the four services are defined as follows.

• Service A: renders the company’s product catalogue in a browser and
provides a means for customers to place orders.

• Service B: provides selected product(s) in the customer order at a specified
cost. Suppose N product supplier services are available, possible options
are B1, B2,...,BN , of which only one is selected per product.

• Service C: offers shipping services for product(s) in the customer order
within specified delivery time and at a cost. For N shipping service
providers, possible options are C1, C2,...,CN .

• Service D: provides payment service to collect funds from customers on
behalf of the company.

Services A and D belong to the company, hence they are static. On the
other hand, services B and C are provided by software-as-a-service cloud service
providers (CSP), which are selected dynamically at run time. This implies
that product supplier services (B1, ...,BN ) are substitutable, similarly, supplier
services (C1, ...,CN ) are substitutable, subject to the following constraints:

• minimise product cost, and

• minimise delivery time and shipping cost.
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The company’s SLA objective is to minimise the cost of meeting orders (i.e.
product and shipping cost) without exceeding the promised delivery time.

The setup of the cloud federation is shown in figure 3. The on-line shopping
cart company interfaces with the cloud federation to find concrete CSP instances
of the product supplier and shipping services. For each requested service, the
order and associated SLA terms are submitted to the cloud federation. Here,
an order request i is denoted by Oi. To meet the SLA constraint specified
in customer orders, the following simplified SLA models are defined for the
dynamic services.

A B C D

(Oi, SLAB) (Oi, SLAC)

B1 B2

BN

C1

C2CN

Select Feedback Select Feedback

Substitutable SaaS Product CSPs Substitutable SaaS Shipping CSPs

Buyer Agent (product) Buyer Agent (shipment)MIDDLEWARE

Figure 3: On-line Shopping Cart Application interfacing with two specialised
cloud federations. The buyer agent (product) acts on behalf of the application to
select product supplier service, while the shipment buyer agent selects shipment
services on behalf of the application [13].

Each CSP (a seller in the posted offer market) publishes its cost and delivery
time offerings via its cloud manager interface. In terms of the posted offer
mechanism, this represents the posting of an offer. Buyer agents are specialised
for their respective objectives, and hence select CSPs according to their offers.
These CSPs are then instantiated in the workflow.

4.2 Bertrand-based Load Balancing

Bertrand’s [86] model of economic competition is one of the simplest to ac-
count for the interactions between individual sellers who compete on price to
provide homogeneous goods. The posted offer mechanism is qualitatively sim-
ilar to Bertrand’s model, in that it also accounts for sellers that compete on
price to provide a homogeneous good to a population of buyers. In the types
of computational resource allocation problems investigated here, including the
above example, the good is considered homogeneous, since the buyers do not
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care from whom they purchase equivalent resources or services, so long as it
fulfils the necessary requirements.

Many market-based resource allocation mechanisms, such as those discussed
in section 3, are concerned with achieving system-wide efficient allocations. In
this section however, we consider how to achieve particular outcome resource
allocations in a given scenario. The approach, which is described more fully
in [79] begins from the starting point of a desired allocation of resources which
the system designer or owner wishes to achieve. An artificial market is then
created in order to bring this allocation into effect, under the assumptions of
decentralisation and self-interest.

By means of an abstract problem model, consider a scenario consisting of
a set of resource providing nodes (or CSPs in the above example), S, each
member of which provides an equivalent, quantitatively divisible resource π,
which may vary only in price. The members of S are assumed to be self-
interested. Subsequently imagine a large population of resource users or buyers,
B, each member of which aims to consume some of the resource π (e.g. use the
service), at regular intervals.

If si is a node in S and bj is a node in B, qij is used to denote the quantity
of the resource π provided by si to bj . The total quantity of π provided by si
at a given instant, its load, lsi , is therefore:

lsi =

|B|∑
j=1

qij . (1)

As an example of a desired outcome resource allocation, we consider the
ability of Bertrand competition to bring about a balanced load, such that at
any instant, each resource providing node in S is providing an equal amount
of π across the population of resource users. A particular resource allocation
such as this, a configuration for the provision of π by the nodes in S at a given
instant, may be expressed by the vector ~LS = 〈ls1 , ls2 , ..., lsn〉, where n = |S|.
For convenience and ease of comparison between scenarios, we often normalise
this vector by the total resource being provided. An evenly balanced load may
therefore be written as 〈 1n ,

1
n , ...,

1
n 〉.

Though this is a trivial problem when central control or cooperation may be
assumed, here the objective is to achieve this using only self-interest, in a fully
decentralised manner with no central or regional control, and with only private
information available.

4.2.1 Mechanism and Assumptions

A posted offer mechanism is used to decide what quantity of the resource π is
provided to which user node and from which provider node. At a given instant,
a resource providing node, si ∈ S, advertises π at the price pπsi per unit via a
broadcast mechanism. Each resource user, a buyer in this case, then has the
option of purchasing some of the resource π, should it be in their interest to do
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so at the price offered. The system iterates, with sellers able to independently
adapt their prices to the market conditions over time.

Each time-step, each buyer, if it chooses to buy, may purchase any amount
of π from any number of resource providers in S, subject to the constraint that
the total amount purchased per time-step is equal to its total required quantity
(here often normalised to one unit). If no offer from any seller in S is acceptable,
the buyer may instead purchase nothing. These constraints mean therefore that∑|S|
i=1 qij ∈ {0, 1} for all bj ∈ B.

4.2.2 Buyer Behaviour

In this model, both buyers and sellers accrue a payoff, or utility gain, from their
interactions in the marketplace. For buyers, this is deemed to be the value they
associate with the price paid subtracted from the value they associate with the
purchased resource. If buyer bj ’s unit valuation of π is denoted by vπbj , then
its payoff from a unit transaction with si will be vπbj − p

π
si . Since any buyer

accepting a price above vπbj would lead to a negative payoff, this is its reserve
or limit price. From a buyer’s perspective, if a seller’s price would not lead to
a negative payoff for the buyer, then the price is described as being acceptable.
Sbj is used to denote the subset of S which contains exactly those sellers in S
whose price is acceptable to buyer bj . When buyers are homogeneous in so far as
they have the same reserve prices, such that vπbj = vπ ,∀bj ∈ B, a set of sellers
acceptable to the buyer population B exists, and is denoted as SB . Of course
SB ⊆ S, or more precisely SB = {si : si ∈ S, pπsi ≤ v

π}.
As with sellers, buyers are assumed to be self-interested and boundedly ra-

tional, at least insofar that they prefer higher payoffs to lower ones. As with real
economic actors, this is manifested through the following of some behavioural
strategy. The strategy incorporates a decision function, which given a situation
describes the quantity (which may be zero) to buy from each seller. A similar
approach is taken by Greenwald and Kephart [87], who model buyers as either
hyperrational bargain hunters, seeking out the best possible price, or else time
savers who will purchase from any acceptable seller, chosen at random4. In our
work [79] we consider these two buyer behaviour models and also a third be-
haviour called spread buyers, simple risk-averse buyers, which prefer to spread
their purchases across a number of sellers. The possibility of complex and arbi-
trary buyer decision functions means that there may not be a straightforward
mapping between sellers’ prices and buyer valuations, and the subsequent out-
come allocation. Determining the outcome is therefore non-trivial.

Though buyers may adopt any of a number of behavioural strategies, in this
chapter three representative buyer types are considered. These are Greenwald
and Kephart’s [87] hyperrational bargain hunters and time savers from and a
further type, a risk-averse spread buyer behaviour [88]. These are now described.

4Greenwald and Kephart [87] refer to time savers as any seller or type A buyers.
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Bargain Hunters Bargain hunters always attempt to maximise their instan-
taneous payoff. In each iteration, they check the prices of all the sellers, selecting
the one seller which provides the most attractive offer (i.e. the lowest price). If
this price is acceptable, then the buyer purchases its entire unit of π from that
seller. In the event that more than one seller provides an equally attractive and
acceptable offer, the buyer purchases an even proportion of π from each such
seller. This is the basic model of consumers used by Bertrand [86].

Time Savers Time savers do not check the price of every seller in the system
when deciding from whom to buy. Instead, they select a seller at random, and if
its price is acceptable, then they purchase the entire unit of π from that seller.
If it is not, then they continue selecting previously unchecked random sellers
until they find an acceptable price. If no seller has an acceptable price, then
they purchase nothing.

Spread Buyers Spread buyers are simple risk-averse agents, preferring to
spread their purchases across a number of sellers. At each time-step, the buyer
looks at all the available offers, and purchases a proportion of π from each seller
with a price below vπbj , relative to the expected utility gain from purchasing
from that seller. Specifically, the quantity purchased by buyer bj from seller si
is determined according to the following calculation:

qij =
(vπbj − p

π
si)

(nvπbj −
∑n
k=1 p

π
sk

)
. (2)

Spread buyers only consider those sellers with an acceptable price.
It is worth reinforcing that although three buyer behaviours are considered

here, many other potential behaviours will exist, and can be analysed using this
game theoretic methodology.

4.2.3 Seller Behaviour

Sellers also receive a payoff, defined by their payoff function. Seller si’s payoff
is denoted as Psi . In its simplest form, this is its revenue from the sale of π:

Psi =

|B|∑
j=1

pπsiqij , (3)

or indeed

Psi = pπsi × lsi . (4)

Clearly, a seller wishing to maximise its revenue would aim to increase both
its price and the quantity of its resource sold to the buyers, its market share.
However as we have seen from the buyers’ behaviour, the market share will
depend upon the relationship between its price and those of its competitors,
specifically a higher price is likely to lead to a lower market share.
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4.2.4 Outcome Behaviours and Allocations

One motivation for employing an artificial market is that competition between
self-interested sellers drives the system towards equilibrium. It is at this equi-
librium that the system is stable in the long term, and thus we refer to the
allocation of resources in this stable state as the outcome resource allocation.

The model described here is, in essence, a generalised version of the Bertrand
game [86]. The classic Bertrand game consists of two sellers, both of whom
offer to sell a certain homogeneous good to a population of buyers. Each seller
must decide what price to charge for the good, and then supply the quantity
subsequently demanded by the buyers. The buyers in the classic Bertrand game
behave hyperrationally, as with the bargain hunters studied here, always buying
from the seller with the lowest price, or half from each seller if the prices are
identical.

In this game either seller can take the entire market by offering a price
only fractionally lower than its competitor. However, since this applies to both
sellers, the non-cooperative Nash equilibrium for the game is for both sellers
to charge as little as possible, their zero-profit price. If each seller’s costs are
equal, then the equilibrium price for each seller will also be equal. This leads
to the sellers sharing the market equally at equilibrium, and it is this basic idea
which provides us with a balanced load in the simplest case.

However, in the more general case, where buyers may follow any of a num-
ber of strategies, calculating the expected outcome resource allocation may be a
more complex task. In [79] we describe and exemplify a game theoretic method-
ology for calculating the expected outcome resource allocation, by determining
the sellers’ best response at each iteration. This is done by solving payoff equa-
tions constructed from the given buyer behaviour. This enables us to identify
the Nash equilibrium outcome, where each and every seller’s best response is
equal to its previous position.

In the following illustrations, it is assumed that the buyers have an identical
reserve price, vπ = 300, and therefore that we have a single acceptable set of
sellers, SB . Any seller in S but not in SB will of course attract no buyers at all,
and will hence receive no payoff and have a load of zero. For the sake of clarity,
in the remainder of this section, only those sellers in SB are considered.

Bargain Hunters Let us first consider a scenario with two identical resource
providing nodes, such that S = {s1, s2}, each with costs of zero. Recalling the
sellers’ payoff function, given in equation 4, we have that

Ps1 = pπs1 × ls1 . (5)

and
Ps2 = pπs2 × ls2 . (6)

As in Bertrand competition, B is a large population of hyperrational buyers,
bargain hunters, as described in section 4.2.2. Recalling the decision function
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for these buyers, and the assumption that each buyer wishes to purchase exactly
one unit of π, we may therefore say that

Ps1 =

 |B| × pπs1 if ps1 < ps2 ;
0.5× |B| × pπs1 if ps1 = ps2 ;
0 otherwise.

(7)

and the equivalent for s2 respectively.
From a game theoretic perspective, given an observed value for their com-

petitor’s price, both s1 and s2 will wish to respond with the best response. In
this case, this will be to undercut the competitor’s price, if possible, in order to
receive the payoff given by the first case in equation 7. The competing seller will
of course act similarly, leading to a price war where each undercuts the other
until their zero-payoff price is reached. Assuming that a seller would rather
not participate than receive a negative payoff, once ps1 = ps2 = 0, the rational
course of action is to maintain a price of 0, accepting the second case.

Recalling that the current load on a resource providing node is given by
equation 1 above, we therefore have that at equilibrium,

ls1 = 0.5× |B| , (8)

and
ls2 = 0.5× |B| . (9)

This is indeed an evenly balanced load, i.e.

~LS = 〈1
2
,

1

2
〉. (10)

The theory of Bertrand competition (which is described more fully in [86])
demonstrates that when competing on price alone, two sellers are enough for
the perfectly competitive outcome described here. Since the same logic applies
to larger number of sellers, this evenly balanced outcome also holds for larger
systems under the same assumptions. This idea was was first presented in [88]
and elaborated upon in [79].

Time Savers Intuitively, a population of time savers will posses less of the all
or nothing nature of bargain hunters, as each will prefer potentially any seller
whose price is acceptable. Considering the simple two node example described
above, what outcome should we expect with a population of time savers? Re-
calling that only those sellers in SB are considered at present, the payoff for s1
and s2 should be expected to be

Ps1 =
pπs1
|SB |

(11)

Ps2 =
pπs2
|SB |

(12)

21



Here, unlike with bargain hunters, there is no advantage for a seller in un-
dercutting the price of a competing seller, since this will only serve to reduce
its payoff. Instead, the dominant position is to charge the highest possible price
while still remaining in SB ; the equilibrium is at ps1 = ps2 = vπ.

Similarly to bargain hunters however, since ps1 = ps2 , then ~LS ≈ 〈 12 ,
1
2 〉.

Note that due to the probabilistic nature of the buyers’ decision function, the
allocation will tend towards this as the probabilities average out.

Spread Buyers For a population of spread buyers, as described in section
4.2.2, the sellers’ payoff functions for the simple two node case are

Ps1 =

|B|∑
j=1

vπ − pπs1
2vπ − (pπs1 + pπs2)

× pπs1 , (13)

and

Ps2 =

|B|∑
j=1

vπ − pπs2
2vπ − (pπs2 + pπs1)

× pπs2 . (14)

Sellers s1 and s2 will each then attempt to maximise their respective payoff
function as before. The outcome resource allocation occurs when the system is
at equilibrium. Figure 4a illustrates an example payoff function for s1, when
vπ = 300 and pπs2 = 250.

Clearly, the best response price for s1 is less than pπs2 ; in fact in this instance
it is 217.71. However, given this value as pπs1 subsequently, s2 is then faced
with the payoff function illustrated in figure 4b. Of course, s2 will respond
to this value for pπs1 . Its best response is in this case 204.92. By using the
sellers’ payoff functions to iteratively calculate each seller’s best response, this
particular system is found to be at equilibrium when pπs1 = pπs2 = 200.

Clearly at this point the market share, and hence load, of each seller is also
equal: ~LS = 〈 12 ,

1
2 〉.

4.3 Deployment of Posted Offer Markets in the Cloud

Here we present an evaluation of homogeneous buyer and seller populations
under two cases of the cloud service selection case study. Two buyer strategies,
namely, time savers and bargain hunters (cf. section 4.2.2) are considered to
understand if a trade-off exists between the timeliness of meeting an order and
the selling price. In all experiments, results presented are averaged over 10
independent simulation runs to account for stochasticity.

The two cases considered are shown in table 1. An order request, Oi has a
priority - High, Medium, or Low - that indicate the urgency of the request. For
each order request, a buyer agent is assigned to search the seller agents (CSPs)
capable of fulfilling that order.

Given an SLA, the buyer utility function is defined as

Ub(Oi) = wb + (k ∗ βprice) (15)
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Figure 4: (a) Seller s1’s payoff function with one competitor and a population of
spread buyers, and (b) s2’s subsequent payoff function from s1’s best response.

The value of wb is initialised based on the order’s priority. For results pre-
sented here, the tuple is defined as (Priority, wb) = {(High, wb=2), (Medium,
wb=1),(Low, wb=0)}. SLA priorities are randomly assigned to orders, following
a normal distribution. k is a sensitivity factor for tuning the valuation of the
buyer agent. k = 0.1 for all experiments considered here. The value of βprice is
derived from summation of non-functional (NF) attributes of the buyer agent,
i.e. availability, reliability, and performance. Each NF attribute is randomly
initialized to a value in the interval [80, 99.999].

Given an order request, the seller utility is defined as

Us(Oi) = ws ∗ θprice (16)

The value of ws is initialised based on the rule
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No. Orders Arrival rate No. Service B No. Service C

Case A 50 10 ticks 25 25
Case B 100 10 ticks 25 25

Table 1: Scenarios

Figure 5: Trading Overhead

(Priority, ws) = {(High, ws=0.1), (Medium, ws=0.01),(Low, ws=0.001)}.
Similar to βprice, the value of θprice is derived from summation of NF attributes
of the seller agent, and set to 100 for the three NF attributes.

It is worth noting that this formulation ensures that it is always possible
to meet an order, although the time spent making the trading decision is non-
determinant.

The overhead of using a trading strategy is measured by the number of
seller agents inspected before a trading decision is made. From figure 5, it can
be observed that in both cases considered, time savers incurred a lower overhead
than bargain hunters. Therefore, time savers strictly dominate bargain hunters
when timeliness is the critical factor.

However, on the price dimension, figure 6 shows that in both cases, bargain
hunters always meet the order at lower prices when compared to time savers.
This strict dominance indicates that a trade-off exists between price and time-
liness when considering these strategies.

In practice, this indicative result may be used to guide the design of real
software agents. That is, specific software agents may be deployed in order to
implement the appropriate strategy for the context of the order at hand.
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Figure 6: Trading Price

5 Conclusions

Emerging paradigms for the development and deployment of massively dis-
tributed computational systems allow resources to span many locations, organ-
isations and platforms, connected through the Internet. In such systems, both
resource providing and resource using nodes may arrive, organise and dissipate,
as computational capabilities are formed and reformed as needed, without ref-
erence to a central authority or coordinator.

As these systems mature, it is predicted that the majority of their inter-
actions will be carried out by autonomous software agents on behalf of their
owners. In such distributed systems, where there exists a distribution of work
to be done or resource to be provided about a network of nodes, neither control
nor even full knowledge of key resources may be assumed, as they may be owned
or administered by different organisations or individuals and as such have in-
dependent objectives. There is a need to find novel ways to understand and
autonomically manage and control these large, decentralised and dynamic sys-
tems. As part of this, there remains the problem of how to allocate distributed
resources amongst the nodes in an adaptive and resilient way.

In this chapter, we have described a range of techniques that take inspiration
from economics. These provide methods for modelling such problems and recon-
ciling conflicting nodes’ objectives in an adaptive manner. In particular, game
theoretic analysis is a useful tool with which to reason about the interactions
between self-interested adaptive agents. A number of different approaches to
implementing economics-inspired resource allocation have been proposed. How-
ever, these approaches vary in terms of the resilience (or lack of resilience) that
they provide. Single and double sided auctions, typically either require a cen-
tralised price fixing process such as an auctioneer or specialist, or else regional
super-nodes able to perform this function in a distributed manner. Both ap-
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proaches require information to be channelled through one or more coordinating
nodes, introducing weak points in the system and potentially creating bottle-
necks. An alternative to this is bilateral bargaining, and this shows a great
deal of promise as a fully decentralised and more resilient approach. However it
seems likely that this requires highly complex agent capabilities throughout the
system, which will come with their own computational overhead. Furthermore,
when agents are unable to fulfil this role, they will most likely be disadvantaged.
The simpler retail-inspired posted offer market mechanism provides a further
promising alternative. Here agents are not required to possess complex strate-
gic capabilities, reducing computational overhead, and the mechanism does not
require global or regional coordination nodes, increasing resilience.

We have shown how posted offer markets may be applied to an abstract
problem model, motivated by the service selection problem in cloud comput-
ing, in order to achieve a balanced load across multiple resource providers. We
outlined a methodology for analysing outcome resource allocations, given arbi-
trary buyer behaviour models. We argued that different buyer behaviour types
may indeed be relevant for deployment in cloud-based systems, since they pos-
sess different characteristics representative of users’ preferences over quality of
service attributes.

In this chapter we focussed on cloud computing as a case study, but economics-
inspired techniques for resource allocation can equally be applied to a wide range
of computational and engineering problems. Other recent examples include the
use of auctions to adaptively allocate object tracking responsibilities among
nodes in smart camera networks [89], and for conflict resolution in multi-user
active music systems [90]. In the smart camera network case, analysis of the
performance of the system in the presence of node and network failures, and
node additions during run time, have shown high levels of resilience and advan-
tageous adaptivity [91]. On the subject of computational resource allocation
generally, there is much knowledge transfer between research in clouds and in
other decentralised systems, and each application area brings with it its own set
of challenging assumptions.

From a conceptual perspective, future research into market-based control
and economics-inspired computation must therefore consider that behaviours of
participating agents can not be assumed to be theoretically optimal and may
adapt in unpredictable ways. Similarly, mechanisms used may need to vary
by deployment, as different mechanisms themselves possess characteristics suit-
able for different assumptions and quality of service requirements, most notably
resilience. It is therefore important that research into economics-inspired com-
putational resource allocation continues to consider a wide range of behavioural
strategies and market mechanisms.
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