
Decentralized Harmonic Synchronization
in Mobile Music Systems

Kristian Nymoen
Department of Musicology,
University of Oslo, Norway

Email: kristian.nymoen@imv.uio.no

Arjun Chandra, Kyrre Glette and Jim Torresen
Department of Informatics,
University of Oslo, Norway

Email: {chandra, kyrrehg, jimtoer}@ifi.uio.no

Abstract—A system for decentralized synchronization of mu-
sical agents is presented, inspired by Mirollo and Strogatz’ pulse-
coupled oscillator model of the synchronous flashing of certain
species of firefly. While most previous work on pulse-coupled
oscillators assume fixed and (close to) equal oscillator frequencies,
the presented system tackles the challenge of different starting
frequencies. Open source implementations in Puredata, Max, and
Matlab are provided. Test results for setups of six nodes show
that nodes reach a state of harmonic synchrony, where fire events
coincide and oscillators display integer-ratio frequency relations.

I. INTRODUCTION

Research on interactive music systems has become in-
creasingly popular with the emergence of various mobile
technologies. These technologies enable people to consume
or perform music anywhere. While portable technologies for
music consumption have been widespread since the 1980s, the
developments in last decade have also allowed an increased
research effort towards developing expressive musical instru-
ments on mobile platforms. Music technologies are often seen
as either technologies for creating music or technologies for
playing back prerecorded music.

Active music technologies challenge the traditional distinc-
tion between musical instruments (used by performers) and
music playback devices (used by listeners). The two may be
seen as opposite extremes on a continuum (Fig. 1), where
technologies allow different degrees of interaction with the
music. Active technologies provide users with a higher degree
of control than traditional music playback devices, yet not
requiring the expertise of professional performers on musical
instruments. Examples of such technologies are music games
like Guitar Hero [1] and devices that allow controlling musical
parameters based on various sensor inputs, e.g. by jogging [2].

?

Fig. 1. Active music technologies explore musical interaction between
instrument and playback device.

This research has received funding from EU FP7 under grant agreement
no. 257906 (EPiCS).

A. Collaborative active music

Our focus of research is on collaborative active music,
meaning a group of people who are using their mobile phones
to interact with music at a level where the degree of control is
higher than traditional media players, but still more constrained
than traditional musical instruments. The target group is non-
musicians, who may require varying degrees of assistance
from their respective mobile device. By applying techniques
from artificial intelligence, the devices used in the system may
process the control data in such a way that a degree of musical
coherence is preserved.

In our work, the system at hand is described as a network of
nodes, where each node is a mobile device that is controlled by
a human user or by a computational agent. To ensure stability
and scalability, we require the system to be decentralized,
which means that there exists no central point of control in
the network. Thus, desired global behavior has to emerge from
the actions of and interactions between nodes via algorithms
implemented locally on each node. As such, we specify self-
awareness as a requirement for the nodes [3]. In other words,
the nodes need mechanisms for analysing the musical scenario
within which they are playing, and mechanisms for adapting
their musical output accordingly.

B. Synchronization

Of the many challenging research topics that exist in the
implementation of a decentralized active music system, our
main focus in the present paper is decentralized synchroniza-
tion. If, at some point in the musical performance, a node
detects that it is out of sync with the rest of the group, it must
be able to take control of the timing.

In order to tackle the problems of decentralized synchro-
nization of musical agents, we take inspiration from previous
research in computational biology and adaptive systems, and
in the modeling of perception of musical meter. We present
an effective implementation inspired by Mirollo and Strogatz’
[4] algorithm for synchronizing the phase of pulse-coupled
oscillators (PCO) implemented on mobile devices. To remove
the need for any external communication protocol, all com-
munication is done through audio. Each node is able to output
short impulsive tones through its loudspeaker and obtain audio
data through its microphone. The node is required to extract
tone onsets from the audio input, but is unable to distinguish
between the output from different nodes.

As will be presented, previous research on PCOs has
mainly been concerned with synchronization of nodes with
equal, or almost equal, frequencies. We introduce a novel
algorithm where both oscillator phase and frequency are ad-
justed. This allows initial tempo differences between nodes,
converging to a state of what we shall call harmonic synchrony,
to be discussed further in section III-B1.

Before returning to our own algorithm, we will in the next
section present previous work on synchronization of agents
in music and in general. In section III we explain the basic
concepts of PCO, and our extension to the algorithm. In
section IV, implementations in Max, Puredata, and Matlab are
presented, followed by experiments and results in section V.
Finally, conslusions and plans for future extensions of the work
are presented in section VI.

II. BACKGROUND

We start this section by briefly outlining various previous
research on synchronization in music. Then we discuss firefly
inspired synchronization mechanisms in general.

A. Autonomous Synchronization in Music

In music research, synchronization has been studied from
several perspectives. In music cognition and perception, much
effort has been put into studying how people synchronize to
a musical beat, e.g. [5], [6], or to each other while engaging
in musical activities such as singing or dancing [7], [8]. One
model of human synchronization to music we find particularly
interesting has been presented by Large and Kolen [9]. Their
synchronization mechanism uses bi-directional adjustment of
phase and frequency, which has also been of importance in the
present paper. We discuss this further in Section III-B4.

A slightly different perspective on synchronization in music
research is to program computers in such a way that they are
able to follow musical beats. Lambert’s Crickets system is an
example of a system where all nodes adapt in order to agree
on a common output pattern [10]. Other systems, such as beat
trackers [11], adapt to the tempo of a master unit.

Most of the models used in music are systems where nodes
synchronize to a master unit. Lambert’s Crickets system is
an exception, being decentralized, but phase-coupled rather
than pulse-coupled. This means that the interaction between
oscillators is continuous, making the model very difficult to
implement in systems with separate computational nodes [12].

B. Firefly-based synchronization

Researchers have worked on modelling the emergence of
synchronization in nature via oscillators since the 1960s [13].
While most early work focused on phase-coupling between
oscillators, Mirollo and Strogatz [4], inspired by the work of
Peskin, argued that many oscillators in nature are coupled by
pulse-like interactions, giving the example of certain species
of firefly which adapt their flashing rhythms when observ-
ing flashes from other fireflies. Building on Peskin’s model,
Mirollo and Strogatz presented a PCO model that converges
towards synchrony for an arbitrary number of oscillators.

The need for synchronization in decentralized computing
systems has triggered the application of the PCO approach

in such systems in recent years. Babaoglu et al. used the
fireflies approach to synchronize clock cycles of nodes in peer-
to-peer networks [14]. Klinglmayr et al. offer an adaptation
of the firefly approach to synchronization in dynamic net-
works. Specifically, targeting the problem of robustness against
faulty nodes [15]. The Reachback Firefly Algorithm has been
proposed in order to deal with the problem of nodes being
unable to receive messages or ‘flashes’ while transmitting
[16], [17]. Another proposed solution to this problem is slot
synchronization [18].

Although most of the work presented above, and indeed
most previous work on PCO is concerned with oscillators
with equal frequencies, some research efforts have been made
toward frequency adaptation of the oscillators. Ermentrout
[19] proposed a phase-coupled model where oscillators would
adjust their own frequencies within certain fixed boundaries
and converge towards both common frequency and phase.
However, in addition to the limitations of a phase-coupled
system, the boundaries must be defined up front, and the
range of starting frequencies from which the system reaches
synchrony is limited. Konishi and Kokame [20] presented a
model where non-identical pulse-coupled oscillators could also
synchronise, given specific ranges for their refractory periods
and frequency distributions.

III. PROBLEM DESCRIPTION

An oscillator in our system is part of a self-contained
musical unit, hereby called a node, which contains several
elements: mechanisms for detecting sound onsets from other
nodes, self-adaptation, self-assessment, and playing tones. The
elements are to be described more in detail in this section.
A node may be implemented in an embedded system, such
as a mobile phone, or modeled in software. We specify the
following requirements for the system:

• The system should be completely decentralized, mean-
ing that there is no central control over the interaction
between nodes. This ensures maximum flexibility,
allowing nodes to leave or enter the network at any
time.

• To remove the need for any external communication
protocol, all communication should be done through
audio. Each node is able to output short impulsive
tones through its loudspeaker, and to obtain audio
data through its microphone. The node is required to
extract tone onsets from the audio input, but is unable
to distinguish between the output from different nodes.

• A node is aware of its current phase, but unaware of
the phase of other nodes.

• Temporal components in music tend to appear in
an integer-ratio relation to each other (e.g., beats,
measures, phrases, or quarter notes, 8ths, 16ths). As
such, we do not require all nodes to fire at the same
time, but to fire at a common underlying pulse. We call
this target state harmonic synchrony, to be specified
in section III-B1.

A. Phase Adjustment in Pulse-Coupled Oscillators

Various descriptions of pulse-coupled oscillators have been
made, using slightly different terminology. Our description

below uses much of the terminology from [21], however, some
adjustments have been made to address the problem at hand.

An oscillator ı is represented by its phase, φı(t). The phase
is initialized randomly (between 0 and 1), and evolves over
time (t) toward 1 at a rate of ωı(t) = dφı

dt , this rate is the
frequency of the oscillator. When the phase of oscillator ı
reaches maximum, the node “fires” by playing a short tone,
and resets back to 0 before continuing to evolve toward 1.

In the case when the frequencies of the oscillators are
identical (or nearly identical) a node performs self adaptation
by updating its phase only. Each time a node ı perceives a fire
event from a node , it immediately increases its own phase
by some amount. This amount is defined by the phase update
function, P (φı(t)). More precisely:

φ(t) = 1⇒
{
φ(t

+) = 0

φı(t
+) = P (φı(t)) ∀ı 6= 

, (1)

where t+ denotes the time step immediately after t. The phase
update function is given by:

P (φ) = (1 + α)φ, (2)

where α is the pulse coupling constant, denoting the coupling
strength between nodes.

Mirollo and Strogatz’ evidence for synchronization of
pulse-coupled oscillators assumes that communication between
nodes is done by infinitely short impulses without transmission
delay. Real systems contain delays, and the tones played by the
nodes in our system are not infinitely short. To cope with this,
a refractory period (tref) is introduced immediately after each
firefly has fired [22]. During this period the oscillator is pre-
vented from adjusting its state. Figure 2 shows the interaction
between two nodes with constant and equal frequencies.

Refractory
period, tref

Interaction
between nodes

Fire!

Fire within t
(no phase
adjustment)

ref

0

1

Ph
as

e
(ф

)

Time (t)

0

1

Ph
as

e
(ф

)

Time (t)

sync

Fig. 2. The figure illustrates how two equal pulse-coupled oscillators
synchronize using Mirollo-Strogatz algorithm.

B. Frequency Adjustment in Pulse-Coupled Oscillators

When nodes are not assumed to have fixed and equal
frequencies, synchronization is more difficult. In order to solve
this problem we propose a new synchronization mechanism.
The mechanism incorporates a model of self-awareness, in
which nodes assess their own level of synchrony. A small
change in the phase update function was also necessary to
solve the frequency synchronization problem. The mechanism
is presented in more detail below, but first we shall present the
target state of our system: harmonic synchrony.

1) Harmonic Synchrony: As opposed to traditional pulse-
coupled oscillators, all nodes in our system are not required
to fire simultaneously. Being an interactive music system,
people may want their device to synchronize with different
subdivisions of a measure (e.g. some play quarter notes while
others play 8ths). We choose the term harmonic synchrony,
taken from the concept of harmonics in the frequency spectrum
of a waveform, where the frequency of every harmonic is an
integer multiple of the lowest (fundamental) frequency. In other
words, harmonic synchrony is a state where the frequency
of each node is element of ωlow · 2N

+
0 , where ωlow is the

lowest frequency of all nodes in the group. Our approach for
reaching this state has been to make nodes only fire on every
other period, and to implement update functions for phase and
frequency which cause (close to) 0 change half-way through
the cycle.

2) Self-awareness in synchronizing fireflies: Lewis et
al. identified several key properties of what they call self-aware
nodes in computing systems [3]. Primarily, to be self-aware,
they conclude that a node must

• Possess information about its internal state.

• Possess sufficient knowledge of its environment to
determine how it is perceived by other parts of the
system.

In the context of synchronizing firefly imitating nodes, these
key properties are reflected by a node’s awareness of its current
phase, and its ability to assess its level of synchrony with the
received fire events from other nodes. Specifically, each time a
node detects a fire event from another node, an error-measure,
ε ∈ [0, 1] is calculated, which is at its highest value when
φ = 0.5, and lowest value when φ is equal to 0 or 1. More
precisely, we let

ε = sin(πφ(t))2 (3)

with the special case that ε = 0 if a fire event is received
within the refractory period. We may thus let ε(n) be a discrete
function describing the error measures at the n-th fire event
received by a node. We calculate the self-assessed synch score
of each node, s, by applying a running median filter to ε(n):

s = median{ε(n), ε(n− 1), ..., ε(n−m)}, (4)

where m−1 is the length of the median filter. Thus, s takes a
high value when the node is out of phase with the past received
fire events, and a low value when the node is in phase with
the past received fire events. The use of the self-assessment
measurement in the frequency update function is covered in
the section below.

3) Frequency update function: The only information a node
has to rely on for frequency adjustment are the discrete sound
onsets from other nodes. We specify a function that decreases
frequency if a fire event is received in the first half of its
cycle, and speeds up if in the last half (to “catch up” with the
firing node). Upon receiving a fire event from another node, the
receiving node calcultates ρ, which is negative when φ < 0.5
and positive when φ > 0.5.

ρ = sin(2πφ(t)) (5)

We let ρ(n) be a discrete function denoting the amplitude
and sign of frequency modification of the n-th received fire
event (cf. Equation 5), and s(n) describe the current self-
assessed synch score for the same fire event (cf. Equation 4).
We let H(n) describe the product of the two, indicating of
how a node should adjust its frequency based on the n-th fire
event received.

H(n) = ρ(n)s(n), (6)

Note that H outputs a value between −1 and 1 indicating
whether ω should be decreased or increased. In our first
experiments, where this function was applied to immediately
change the frequency of a node, the system often converged
to ω = 0. To prevent this, we take use of Werner-Allen’s
reachback firefly algorithm (RFA) [16]. Originally designed for
phase updates with the purpose of preventing “deafness” in a
firefly system, the concept of RFA is useful also in frequency
updates. RFA specifies a system which, rather than making
immediate phase jumps upon received fire events, collects the
received fire events and applies the total phase jump at the
beginning of its next cycle. We apply the same principle to
frequency updates, as illustrated in Figure 3 for the case when
a single fire event is received within a period. More precisely,
frequency updates are performed in the following manner:

φı(t) = 1⇒

F (n) = β ·
y−1∑
x=0

H(n− x)
y

ωı(t
+) = ωı(t) · 2F (n)

, (7)

where β is the frequency coupling constant, and y is the
number of received fire events during the latest oscillator
period. The maximum value of ωı(t+) is 2ωı(t), and happens
only when φ = 0.25 and β = s = 1. Similarly, the minimum
value of ωı(t+) is 1

2ωı(t), and happens only when φ = 0.75
and β = s = 1.

0

0.25

0.5

0.75

1

P
h

a
se

 (
ф

)

Fire event received in

the last half of the cycle

0

0.25

0.5

0.75

1

P
h

a
se

 (
ф

)

Fire event received in

the "rst half of the cycle

ω is increased at the

start of the next cycle
ω is decreased at the

start of the next cycle

Fig. 3. The figure displays how frequency of a node is adjusted when a
single fire event is received during the period. The grey areas show the range
of possible adjustment of ω for φ = 0.25 and φ = 0.75, respectively. Phase
adjustment is left out of this example.

4) Bi-directional phase shifts: Klinglmayr et al. [15] have
showed that the use of both excitatory and inhibitory phase
couplings between oscillators may be beneficial. That is,
perform a negative phase jump when a fire event is received
during the first half of the cycle, and a positive phase jump
when a fire event is received in the last half of the cycle.
A similar approach was taken previously by [9], who used
a sinusoidal delta-function to adjust the oscillator phase. Our
experiments showed that this was beneficial in our system,
and so we change our phase coupling function accordingly.
Due to the target of harmonic synchrony, we require a small
period half-way through the oscillator cycle in which no (or
only negligibly small) phase jumps are made. This is achieved

by our changed phase update function, P :

P (φ) = φ− α · sin 2πφ · |sin 2πφ| (8)

The function causes an oscillator to make a phase shift towards
0 or 1 (whichever is the closest) when a fire event is received.
Phase jumps half-way through the cycle are attenuated by the
|sin 2πφ| factor.

5) Other frequency adjustment mechanisms: In addition to
the main frequency adjustment mechanism presented above,
a few other mechanisms are included in our system, mainly
as mechanisms to prevent the system from reaching unstable
states. We set maximum and minimum frequency thresholds
for each node. If ω moves outside these thresholds, a new ω
value is set randomly. The lower threshold in our system is set
to 0.5 Hz, and upper threshold to 8 Hz. Our results presented in
section V show that the node frequencies rarely move outside
these limits.

When oscillators with large frequency differences interact,
the low-frequency node run the risk of continuously being reset
to 0, not ever reaching beyond φ = 0.5. To prevent this, a node
is programmed to double its own frequency if its phase is
reset repeatedly without ever reaching maximum. Additionaly,
as mentioned previously, our approach differs from previous
approaches by having nodes fire only every other time when
maximum phase is reached.

IV. IMPLEMENTATION

The system has been prototyped in Max1 where a node is
represented by a Max patch which is able to send and receive
audio signals to and from a common channel. By opening
several instances of this patch, we simulate several fireflies
within audible range of each other. Parts of the system has
also been implemented in Puredata (PD),2 which makes it
possible to run the algorithm on mobile devices (Figure 4).
A Matlab simulation has been set up to enable faster testing
of different parameter settings for varying numbers of nodes.
The developed software is open source and available online.3

Fig. 4. Picture of three iOS devices running the firefly Puredata patch

A. Prototyping in Max

The Max patch contains five main elements. (1) A listener,
detecting onsets in the input audio stream, (2) an oscillator,
which outputs a ramp signal between 0 and 1 at some randomly
initialized rate, (3) a phase-adjustment patch, adjusting the
phase of the oscillator, (4) a frequency-adjustment patch,
adjusting the frequency of the oscillator, (5) a synthesizer,
generating short sounds when the oscillator reaches maximum.
A flowchart of the system is displayed in Figure 5.

1http://www.cycling74.com
2http://puredata.info
3http://fourms.uio.no/downloads/software/musicalfireflies/

http://www.cycling74.com
http://puredata.info
http://fourms.uio.no/downloads/software/musicalfireflies/

Frequency

adjustment

Phase

adjustment

Listener
Synthesisersound in sound out

ф(t)+

ω(t)+

Oscillator

detect

onset

Trigger event when ф = 1

ф(t)

Fig. 5. Schematic overview of the structure of the firefly Max patch.

When a fire event is detected by the listener, it initiates
calculation of phase adjustment and frequency adjustment of
the oscillator. Phase adjustments are performed immediately,
and frequency adjustments are ‘collected’ and performed when
the oscillator reaches maximum. The synthesizer is based on
FM synthesis, set to output a random note from a pentatonic
scale (C4, D4, E4, G4, A4). The tones are generated with
an impulsive dynamic envelope to allow easy onset detection
(rise-time 6 ms, decay-time 300 ms). In addition to the
functional elements, a visualisation of each node was created,
showing a drawing of a firefly whose tail lights up upon firing.

B. PD/iOS implementation

Parts of the synchronization system has been implemented
in Puredata which facilitates porting the algorithm to mobile
devices. We use the iOS application MobMuPlat [23] to run the
PD patch on iOS devices. The MobMuPlat application is only
able to run components from the most basic implementation
of PD (known as PD vanilla), which complicates the process
of porting the system from Max. At the time of writing,
the oscillator, listener, synthesizer and phase-adaptation parts
are implemented. We are working on also incorporating the
frequency adaptation in the PD implementation. A video of
the PD patch running on six iOS devices is available online.4

C. Matlab simulation

The system has also been implemented as a Matlab func-
tion. The user may change a range of variables, such as α,
β, number of nodes, and more. The matlab function allows
plotting the phase and frequency of all of the nodes, and an
animation of how the phase and frequency of all the nodes
evolve over time. A video showing this animation is available
online.5 The delays in a real system is difficult to model in
the non-realtime Matlab implementation. As such, the Matlab
function is useful for initial testing, plotting, and animation,
but tests with the real-time implementations in Max and PD
provide more reliable results for a real system.

V. EXPERIMENTS AND RESULTS

Test environments have been set up in Matlab and Max.
Evaluation has been done by measuring synchronization times
and success rates for various parameter settings.

A. Synchronization measure

In order to evaluate the synchronization times and success
rates of various setups, a measure must be defined for when the
system has reached a state of synchrony. Using the firings of
the nodes, a set of conditions that had to be met were defined:

4http://vimeo.com/67205605
5http://vimeo.com/72493268

• Firing may only happen within a short time period tf .

• Between each tf , a period tq without fire events must
be equally long k times in a row.

• All nodes must have fired at least once during the
evaluation period.

These rules are best illustrated visually, as in Figure 6. Our
own qualitative assessment of the nodes being synchonised
coincided with the parameters tf ≤ 80ms and k ≥ 8, and as
such these values were used in the experiment. tq depends on
the frequency to which the nodes converge, and is therefore
not specified.

tq tq tq

Node 3

Node 2

Node 1

Silent t window (grey) de�ned
by two subsequent �rings

q2)

if �ring is observed
within t window
then reset

q
3)

New t window sizeq4)

f

1) First node �ring
followed by white
t window f

5) Firing only occurs within the
t window... this looks good!

No �rings within
t window k
times in a row
q

6)

All nodes have �red at least once:
Syncrony is obtained

7)

Fig. 6. Illustration of the synchronization measure used in testing of the
system. Three nodes are shown, with a black vertical line indicating a fire
event. The grey areas denote the tq period, and the shorter tf areas denote
the windows within which the nodes are allowed to fire.

B. Phase synchronization

We started by evaluating the performance of the system
in a simple phase synchronization task in Max. The node
phases were randomly initialized. A range of values of α was
tested, with 30 runs per value. The frequencies of all nodes
were set equal (ω = 1 Hz) and fixed (i.e. β = 0), and the
refractory period was set to 50 ms. Communication between
nodes occurred only through audio, but additionally, each node
sent a message to an external evaluation patch where the fire
events of all the nodes were recorded. This patch also acted
as an observer, terminating the current run if one of the two
following conditions were met:

• a state of synchrony was reached

• synchrony was not reached within 5 minutes

The results from the phase synchronization task are shown
in Figure 7. Overall, the experiment showed little difference
between synchronization times for different values of α, with a
small tendency towards longer synchronization times for lower
α. All runs reached synchrony well within the time limit of 5
minutes. The mean synchronization time for all runs and all
α-settings was 10.9 s.

0

10

20

30

40

50

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9

ti
m

e
 (

s
e

c
o

n
d

s
)

α

6

8

10

12

14

α
0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9

Fig. 7. Synchronization times for six nodes with equal and fixed frequency
(1 Hz). 30 tests were performed per α. Only small differences were observed.
The full range is shown on the left with a more detailed view on the right.

http://vimeo.com/67205605
http://vimeo.com/72493268

C. Frequency synchronization

Synchronization of nodes with different starting frequen-
cies is more challenging — to the point that not every run
reaches synchrony within the time limit. A range of values for
the phase and frequency coupling strength was tested on six
nodes.

Figure 8 shows the frequency synchronization results for
our experiment ordered by α value. The same, ordered by β,
is show in Figure 9. The figures show that most runs reach a
synchronous state within the time limit, and suggest that low
α levels may prevent the system from reaching synchrony.
Among the successful runs, most reached synchrony in less
than thirty seconds (mean: 22.4 ± 31.3 seconds). The time,
however, should not be given too much attention, since the time
greatly depends on the frequency to which nodes converge.
When the frequency is higher, nodes are able to make more
adjustments within a shorter timespan.

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9
α

Percentage of unsuccessful runsSynchronisation time

ti
m

e
 (

m
in

u
te

s)

e
rr

o
r

ra
te

 (
%

)

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9
α

Fig. 8. Frequency synchronization scores ordered by phase coupling strengths
(α). When α = 0.1 sync times are long, and the experiment also shows an
error rate of 3.3 %. Increasing α improves the sync times. No improvement
was seen beyond α ≈ 0.4.

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9
β

Percentage of unsuccessful runsSynchronization time

ti
m

e
 (

m
in

u
te

s)

e
rr

o
r

ra
te

 (
%

)

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9
β

Fig. 9. Frequency synchronization scores ordered by different frequency
couplings (β). Except for a few unsuccessful runs for low β values, the tested
values for the beta constant gave similar results.

VI. CONCLUSIONS AND FUTURE WORK

A system for decentralized synchronization of musical
nodes has been presented. The nodes communicate solely
through audio, which simplifies adding or removing nodes
from the network. Self-assessment of synchrony, bidirectional
phase shifts and a variant of the reachback firefly algorithm
together contribute to the system converging to a state of
harmonic synchrony. Implementations for Max, Puredata, and
Matlab have been made available. To the best of our knowl-
edge, the research introduced in this paper is the first example
of a fully decentralized interactive music system in which
nodes are communicating solely through audio, where the use
of pulse-coupled oscillators allow stigmergic synchronization
of both phase and frequency.

Network topologies have not been considered in this paper,
and the presented experiments assume that all nodes are able to
receive fire events from all of the other nodes. In the future, we
will investigate the system performance with different spatial
distribution between nodes.

REFERENCES

[1] “Guitar hero” (software), Cambridge, MA: Harmonix / Red Octane,
2005.

[2] B. Moens, L. van Noorden, and M. Leman, “D-jogger: Syncing music
with walking,” in Proceedings of the Sound and Music Computing
Conference, 2010, pp. 451–456.

[3] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bah-
soon, J. Torresen, and X. Yao, “A survey of self-awareness and its
application in computing systems,” in Proceedings of the International
Conference on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW), 2011, pp. 102–107.

[4] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled
biological oscillators,” SIAM J Appl Math, vol. 50, no. 6, pp. 1645–
1662, 1990.

[5] B. H. Repp, “Sensorimotor synchronization: A review of the tapping
literature,” Psychon B Rev, vol. 12, no. 6, pp. 969–992, 2005.

[6] B. H. Merker, G. S. Madison, and P. Eckerdal, “On the role and origin
of isochrony in human rhythmic entrainment,” Cortex, vol. 45, no. 1,
pp. 4–17, 2009.

[7] T. Himberg and M. Thompson, “Group synchronization of coordinated
movements in a cross-cultural choir workshop,” in Proceedings of the
Conference of European Society for the Cognitive Sciences of Music,
2009, pp. 175–180.

[8] P. Toiviainen, G. Luck, and M. R. Thompson, “Embodied meter: Hi-
erarchical eigenmodes in music-induced movement,” Music Perception,
vol. 28, no. 1, pp. 59–70, 2010.

[9] E. W. Large and J. F. Kolen, “Resonance and the perception of musical
meter,” Connection science, vol. 6, no. 2-3, pp. 177–208, 1994.

[10] A. Lambert, “A stigmergic model for oscillator synchronisation and
its application in music systems,” in Proceedings of the International
Computer Music Conference, vol. 247–252, 2012.

[11] R. B. Dannenberg, “Following an improvisation in real time,” in
Proceedings of the International Computer Music Conference, 1987,
pp. 241–248.

[12] I. Bojic, T. Lipic, and V. Podobnik, “Bio-inspired clustering and
data diffusion in machine social networks,” in Computational Social
Networks. Springer, 2012, pp. 51–79.

[13] A. T. Winfree, “Biological rhythms and the behavior of populations of
coupled oscillators,” J. Theor. Biol., vol. 16, no. 1, pp. 15–42, 1967.

[14] O. Babaoglu, T. Binci, M. Jelasity, and A. Montresor, “Firefly-inspired
heartbeat synchronization in overlay networks,” in Proceedings of the
International Conference on Self-Adaptive and Self-Organizing Sys-
tems., 2007, pp. 77–86.

[15] J. Klinglmayr, C. Kirst, C. Bettstetter, and M. Timme, “Guraranteeing
global synchronization in networks with stochastic interactions,” New
J. Phys., vol. 14, 2012.

[16] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal,
“Firefly-inspired sensor network synchronicity with realistic radio ef-
fects,” in Proceedings of the International Conference on Embedded
networked sensor systems, 2005, pp. 142–153.

[17] R. Leidenfrost and W. Elmenreich, “Firefly clock synchronization in
an 802.15.4 wireless network,” EURASIP J Embed Syst, vol. 2009, pp.
1–17, 2009.

[18] A. Tyrrell, G. Auer, and C. Bettstetter, “Emergent slot synchronization
in wireless networks,” IEEE Trans Mobile Comput, vol. 9, no. 5, pp.
719–732, 2010.

[19] B. Ermentrout, “An adaptive model for synchrony in the firefly pterop-
tyx malaccae,” J Math Biol, vol. 29, no. 6, pp. 571–585, 1991.

[20] K. Konishi and H. Kokame, “Synchronization of pulse-coupled oscil-
lators with a refractory period and frequency distribution for a wireless
sensor network,” Chaos, vol. 18, no. 3, p. 033132, 2008.

[21] J. Klinglmayr and C. Bettstetter, “Self-organizing synchronization with
inhibitory-coupled oscillators,” ACM Trans Auton Adap, 2012.

[22] R. Mathar and J. Mattfeldt, “Pulse-coupled decentral synchronization,”
SIAM J Appl Math, vol. 56, no. 4, pp. 1094–1106, 1996.

[23] D. Iglesia, “Mobmuplat” (iOS application), Iglesia Intermedia, 2013.

	Introduction
	Collaborative active music
	Synchronization

	Background
	Autonomous Synchronization in Music
	Firefly-based synchronization

	Problem Description
	Phase Adjustment in Pulse-Coupled Oscillators
	Frequency Adjustment in Pulse-Coupled Oscillators
	Harmonic Synchrony
	Self-awareness in synchronizing fireflies
	Frequency update function
	Bi-directional phase shifts
	Other frequency adjustment mechanisms

	Implementation
	Prototyping in Max
	PD/iOS implementation
	Matlab simulation

	Experiments and results
	Synchronization measure
	Phase synchronization
	Frequency synchronization

	Conclusions and Future Work
	References

