
A Multi-Objective Ensemble Method for Online Class Imbalance

Learning

Shuo Wang, Leandro L. Minku and Xin Yao

Abstract— Online class imbalance learning is an emerging
learning area that combines the challenges of both online
learning and class imbalance learning. In addition to the
learning difficulty from the imbalanced distribution, another
major challenge is that the imbalanced rate in a data stream
can be dynamically changing. OOB and UOB are two state-
of-the-art methods for online class imbalance problems [1].
UOB is better at recognizing minority-class examples when the
imbalance rate does not change much over time, while OOB
is more prepared for the case with a dynamic rate. Aiming
for an effective method for both static and dynamic cases, this
paper proposes a multi-objective ensemble method MOSOB
that combines OOB and UOB. MOSOB finds the Pareto-optimal
weights for OOB and UOB at each time step, to maximize
minority-class recall and majority-class recall simultaneously.
Experiments on five real-world data applications show that
MOSOB performs well in both static and dynamic data streams.
Furthermore, we look into its performance on a group of highly
imbalanced data streams. To respond to the minority class
within 10000 time steps, the imbalance rate can be as low as
0.1% for easy data streams; at least 3% of imbalance rate is
required to classify difficult data streams.

I. INTRODUCTION

O
NLINE class imbalance learning studies the combined

issue of online learning and class imbalance learn-

ing, which has received growing attention in recent years.

Specifically, online learning is concerned with the develop-

ment of methods that process each data example one-by-

one arriving in the form of data streams and maintain a

model reflecting the current concept to make a prediction

at each time step [2]. Class imbalance learning handles a

type of classification problems where some classes of data

(minority) are heavily underrepresented compared to other

classes (majority), due to the fact that some data are very

difficult or expensive to be collected [3]. Although each topic

has been extensively discussed in the literature individually,

new challenges arise when both exist. Two essential issues in

online class imbalance learning are: how to overcome class

imbalance online and how to adapt online models to dynamic

changes. When dealing with class imbalance online, new

problems include how to determine the current imbalance

status without a general view of data and how to estimate

the current imbalance degree. More difficult problems appear

when the imbalance status is changing over time, such as

how to detect the change and how to adapt the online model

for good performance on the current minority class without

damaging the performance on the current majority class.

Shuo Wang, Leandro L. Minku, and Xin Yao are with CERCIA, School
of Computer Science, University of Birmingham, Birmingham, UK, B15
2TT (email: {S.Wang, L.L.Minku, X.Yao}@cs.bham.ac.uk).

In our recent work, we proposed an online definition of

class imbalance through two indicators, and a class imbal-

ance detection method to report the current class imbalance

status in the data stream [1]. Based on the status information,

we proposed two online learning methods – Oversampling-

based Online Bagging (OOB) and Undersampling-based On-

line Bagging (UOB) [1]. UOB was shown to be very good

at recognizing minority-class examples when the imbalance

rate does not change much over time, and OOB is quite

robust to cases with a dynamic imbalance rate. Imbalance

rate (IR) is defined as the occurrence probability (percentage)

of the minority class in data. It would be ideal if we can

integrate the advantages of OOB and UOB into one model,

to overcome both issues of poor classification performance

and adaptation to dynamic environments.

It is commonly agreed that there is a performance trade-

off between minority and majority classes of imbalanced

data [4] [5]. Solely improving the recognition accuracy on

one class often harms the accuracy on the other. Therefore, a

multi-objective method can be a good option here, to find the

optimal performance balance between minority and majority

classes. This idea has been applied to offline class imbalance

learning successfully [6] [7].

In order to overcome present limitations and obtain an

effective and robust online model, this paper proposes a

multi-objective approach – Multi-Objective Sampling-based

Online Bagging (MOSOB), which builds a hybrid online

model combining OOB and UOB. It aims to maximize

accuracies on minority and majority classes simultaneously

and tackle both static and dynamic data streams. The ac-

curacy on each class is termed “recall” in the rest of the

paper for consistency. At each time step, MOSOB finds

the Pareto-optimal weights assigned to OOB and UOB, by

searching in a finite set of solutions. For a swift response

to the new class imbalance status in the dynamic data

stream, time-decayed recall [1] is used to evaluate the fitness.

The performance of MOSOB is discussed through extensive

experiments in comparison with four other methods – OOB,

UOB, RLSACP [8] and WOS-ELM [9]. MOSOB is shown

to successfully combine the advantages of OOB and UOB,

and suitable for both static and dynamic data streams.

Finally, for a thorough understanding of the predictive

ability of MOSOB, we look into its performance on highly

imbalanced data streams with a fixed IR ranging between

0.1% and 3%. To respond to the minority class within 10000

time steps, MOSOB needs at least 3% IR for difficult data; IR

can be as low as 0.1% for easy data. Otherwise, auxiliary data

knowledge and methods must be used to help the learning.



The classification difficulty here is categorized according to

the performance of MOSOB on the data sets we discussed

in the experiments.

II. LEARNING FROM IMBALANCED DATA STREAMS

In this section, we review the research progress in learn-

ing from imbalanced data streams, define class imbalance

under online scenarios, and introduce the two classification

methods (i.e. OOB and UOB) to learn from imbalanced data

streams. They form the basis of this paper.

A. Research Progress

Most existing algorithms dealing with imbalanced data

streams require processing data in batches (incremental learn-

ing), such as MuSeRA [10] and REA [11] proposed by Chen

et al., and Learn++.CDS and Learn++.NIE [12] proposed by

Ditzler and Polikar. Among limited class imbalance solutions

strictly for online processing, Nguyen et al. first proposed

an algorithm dealing with imbalanced data streams through

random undersampling [13]. It assumes that the information

of which class belongs to the minority/majority is known

and the imbalance rate does not change over time. Minku

et al. [14] proposed to use undersampling and oversampling

to deal with class imbalance in online learning by chang-

ing the parameter corresponding to Online Bagging’s [2]

sampling rate. However, the sampling parameters need to

be set prior to learning and cannot be adjusted to changing

imbalance rates. Very recently, two perceptron-based meth-

ods RLSACP [8] and WOS-ELM [9] were proposed, which

assign different misclassification costs to classes to adjust

the weights between perceptrons. The error committed on

the minority class suffers a higher cost. RLSACP adopts

a window-based strategy to update misclassification costs

based on the number of examples in each class at a pre-

defined speed. WOS-ELM requires a validation set to adjust

misclassification costs based on classification performance,

which however may not be available in many real-world

applications. They were tested in static scenarios with a fixed

imbalance rate and shown to be effective.

B. Defining Class Imbalance Online

To handle class imbalance online, we first need to define

it by answering the following three questions: 1) is the

data stream currently imbalanced? 2) Which classes belong

to the minority/majority? 3) What is the imbalance rate

currently? We answered the questions by defining two online

indicators – time-decayed class size and recall calculated

for each class [1]. Different from the traditional way of

considering all observed examples so far equally, they are

updated incrementally by using a time decay (forgetting)

factor to emphasize the current status of data and weaken

the effect of old data.

Suppose a sequence of examples (xt, yt) arriving one at

a time. xt is a p-dimensional vector belonging to an input

space X observed at time t, and yt is the corresponding label

belonging to the label set Y = {c1, . . . , cN}. For any class

ck ∈ Y , the class size indicates the occurrence probability

(percentage) of examples belonging to ck. If the label set

contains only two classes, then the size of the minority class

is referred to as the imbalance rate (IR) of the data stream,

reflecting how imbalanced the data stream is at the current

moment. The recall of class ck indicates the classification

accuracy on this class. To reflect the current characteristics

of the data stream, these two indicators are incrementally

updated at each time step. When a new example xt arrives,

the size of each class, denoted by w
(t)
k , is updated by [1]:

w
(t)
k = θw

(t−1)
k + (1− θ) [(xt, ck)] , (k = 1, . . . , N) (1)

where [(xt, ck)] = 1 if the real class label yt of xt is ck,

otherwise 0. θ (0 < θ < 1) is a pre-defined time decay factor,

which forces older data to affect the class percentage less

along with time through the exponential smoothing. Thus,

w
(t)
k is adjusted more based on new data.

If xt’s real label yt is ck, the recall of class ck, denoted

by R
(t)
k , is updated by [1]:

R
(t)
k = θ′R

(t−1)
k + (1− θ′) [xt ← yt] . (2)

For the recall of all the other classes (ck 6= yt), R
(t)
k is

updated by:

R
(t)
k = R

(t−1)
k , (k = 1, . . . , N, ck 6= yt). (3)

In Eq.2, θ′ (0 < θ′ < 1) is the time decay factor for em-

phasizing the learner’s performance at the current moment.

[xt ← yt] is equal to 1 if x is correctly classified, and 0

otherwise. θ = 0.9 and θ′ = 0.9 were shown to be a

reasonable setting to balance the responding speed and the

estimation variance in our experiments [1].

w(t) and R(t) values are then used by a class imbalance

detection method, which outputs the information of whether

the data stream should be regarded as imbalanced and which

classes should be treated as the minority class. It examines

two conditions for any two classes ci and cj :

• wi − wj > δ1 (0 < δ1 < 1)

• Ri −Rj > δ2 (0 < δ2 < 1)

If both conditions are satisfied, then the small class is sent

to the minority class label set Ymin and the large class is sent

to the majority class label set Ymaj . If Ymin and Ymaj are

not empty, it means that the data stream is imbalanced, which

will then invoke the class imbalance techniques running in

the online model to tackle the imbalanced distribution.

C. OOB and UOB Methods

With the information from the class imbalance detection

method, we proposed OOB and UOB to learn imbalanced

data streams [1]. They integrate resampling into Online

Bagging (OB) [2]. Once Ymin and Ymaj are not empty,

oversampling or undersampling embedded in Online Bagging

will be triggered to either increase the chance of training

minority class examples (in OOB) or reduce the chance

of training majority class examples (in UOB), through the



TABLE I: OOB and UOB Training Procedures.

Input: label sets Ymin and Ymaj , an ensemble with M base learners,
and current training example (xt, yt).

for each base learner fm (m = 1, 2, . . . ,M ) do

if yt ∈ Ymin

set K ∼ Poisson (λ1)
else

set K ∼ Poisson (λ2)
end if

update fm K times
end for

parameter of Poisson distribution. Their training procedures

are given in Table I.

In OOB, λ1 is set to 1/w
(t)
k ; λ2 is set to 1. In UOB, λ1

is set to 1, λ2 is set to
(

1− w
(t)
k

)

. Both OOB and UOB

showed improved classification performance. Particularly,

UOB performs better on the minority class. However, it

suffers from performance reduction when there is a sudden

and severe change in the class imbalance status, due to the

information loss from undersampling during the old status.

OOB is more robust against this type of changes. It is

worth clarifying that the dynamic change in class imbalance

discussed in this paper is referred to as the change in class

priors usually caused by the nonstationary data source. It can

be viewed as a form of concept drift [15].

III. A MULTI-OBJECTIVE ENSEMBLE METHOD

With the aim of combining the strength of OOB and UOB

and achieving the best performance trade-off between mi-

nority and majority classes, this section proposes the multi-

objective sample-based Online Bagging method (MOSOB),

maximizing the minority- and majority-class recall as com-

peting objectives in the learning process. It builds a hybrid

online model, which trains and keeps both OOB and UOB.

Combining multiple models have been shown to be beneficial

to the generalization in class imbalance learning [16]. For the

final prediction, MOSOB maintains a set of model weights,

optimized at each time step. Due to the requirement of real-

time processing and the nonstationary feature, a simple and

efficient optimization strategy is adopted here. The pseudo-

code of MOSOB at each training step t is given in Table II,

assuming two possible classes Y = {+1,−1} (denoted by

‘+’ and ‘-’ for simplicity).

Before the learning starts, an OOB model and an UOB

model are initialized, with a random weight assigned to each.

The weight of UOB is denoted by wuob; the weight of OOB

is always (1− wuob). At each time step, we first obtain the

weighted vote ŷ from OOB (with output ŷoob) and UOB (with

output ŷuob) as the prediction of MOSOB on the current

example xt (lines 1-3). After we receive its expected label

yt, time-decayed class size w(t) and recall of OOB (R
(t)
(o))

and UOB (R
(t)
(u)) are updated based on the values from the

previous time step (lines 4-6), in which w(t) =
(

w
(t)
+ , w

(t)
−

)

,

TABLE II: Multi-Objective Sample-based Online Bagging

(MOSOB).

Input: label sets Ymin and Ymaj , two ensembles OOB and UOB with
M base learners each, finite set of possible model weights W , UOB

weight wuob ∈ W , OOB recall R
(t−1)
(o)

, UOB recall R
(t−1)
(u)

, MOSOB

recall R(t−1), class sizes w(t−1), and current example (xt, yt).

// make the prediction and update status
1. ŷoob = OOB (xt)
2. ŷuob = UOB (xt)
3. ŷ = argmax

y∈Y

((1− wuob) ŷoob + wuobŷuob)

4. Update and obtain class size w(t) using Eq.1.

5. Update and obtain OOB recall R
(t)
(o)

=
(

R
(t)
+(o)

, R
(t)
−(o)

)

using Eq.2 and Eq.3.

6. Update and obtain UOB recall R
(t)
(u)

=
(

R
(t)
+(u)

, R
(t)
−(u)

)

using Eq.2 and Eq.3.

// optimize wuob

7. for all wuob ∈ W do
8. ŷcdd = argmax

ŷ∈Y

((1− wuob) ŷoob + wuobŷuob)

9. Get a candidate R = (R+, R−) using Eq.2 and Eq.3

based on ŷcdd and R(t−1).
10. Save current R.
11. end for

// set the Pareto-optimum to wuob based on candidate Rk’s
12. Let {wopt} = argmin

wuob∈W

(‖(R+, R−) , (1, 1)‖).

13. if |{wopt}| = 1
14. wuob = wopt

15. else

16. if

∥

∥

∥

(

R
(t)
+(o)

, R
(t)
−(o)

)

, (1, 1)
∥

∥

∥
>

∥

∥

∥

(

R
(t)
+(u)

, R
(t)
−(u)

)

, (1, 1)
∥

∥

∥

17. wuob = 1
18. else

19. wuob = 0
20. end if

21. end if

22. Update and obtain R(t) =
(

R
(t)
+ , R

(t)
−

)

using Eq.2 and Eq.3

based on ŷ and R(t−1).

// train online models and update class imbalance status
23. Train OOB using (xt, yt).
24. Train UOB using (xt, yt).

25. Update Ymin and Ymaj based on w(t) and R(t).

R
(t)
(o) =

(

R
(t)
+(o), R

(t)
−(o)

)

and R
(t)
(u) =

(

R
(t)
+(u), R

(t)
−(u)

)

.

Next, we optimize UOB’s weight wuob based on the

respective output of OOB and UOB (ŷoob and ŷuob). MOSOB

searches in a finite set of candidate weights W in the range

of [0, 1]. By setting wuob to each element in W at each

iteration, we get a weighted vote as one candidate output of

MOSOB (denoted by ŷcdd, line 8). Based on ŷcdd and recall

of the previous time step R(t−1), we obtain a temporary

time-decayed recall pair R = (R+, R−) using Eq.2 and Eq.3

(lines 9-10). Each wuob in W results in a pair of recall values.

After going through all candidate wuob values, the optimal

weight for UOB is set to the one having (R+, R−) closest to

the ideal point (1, 1), denoted by wopt (line 14). This choice

is a Pareto optimum of this multi-objective maximization

problem [7] according to Kuhn-Tucker Theorem [17], based

on the current status of data stream. This optimal weight will

be used for classifying the next data point. It is possible that



different wuob values lead to the same distance between the

recall pair of MOSOB and point (1, 1), i.e. the cardinality

of set {wopt} is larger than 1. When it happens, we simply

assign weight value 1 to the model, whose own recall values

(R
(t)
(o) or R

(t)
(u)) are closer to (1, 1), and assign 0 to the other

(lines 16-20). After the optimization steps are completed,

R(t) of MOSOB is updated based on its original output ŷ
and R(t−1) (line 22).

Finally, example (xt, yt) is sent to OOB and UOB for

training, following the procedures in Table I (lines 23-24).

The class imbalance status of data stream is also updated

according to w(t) and R(t) (line 25). The use of time-decayed

recall and class size guarantees a timely reflection of online

status of the data stream. The optimization procedure returns

a Pareto-optimal solution for model weights that best balance

the online performance between classes.

IV. PERFORMANCE ANALYSIS

This section examines the performance of MOSOB, in

comparison with OOB, UOB, and two recently proposed

algorithms RLSACP [8] and WOS-ELM [9]. The experi-

ments here aim to answer the following two questions: first,

is MOSOB effective on both types of data streams with static

and dynamic imbalance rates? Second, is MOSOB effective

on highly imbalanced data streams?

A. Effectiveness on Data Streams with Static and Dynamic

Imbalance Rates

We consider two online imbalanced scenarios – data

streams with a fixed IR (static) and data streams with a

changing IR (dynamic). Dynamic ones are more challenging,

because they require that the online model can sense the

change and then adjust its learning bias quickly to maintain

its performance. We generate both types for this experiment,

using data from five real-world applications. Therefore, ten

data streams are produced in total. Detailed data information

and experimental settings will be given next.

1) Data and experimental design: The five real-world

applications are: Gearbox fault detection data [18], Smart

Building fault detection data [19], PAKDD 2009 credit card

data [20], KDD Cup 1999 network intrusion detection [21]

and iNemo robotic platform data with faults [22]. They are

inherently imbalanced data obtained online and have been

used in related studies [14] [23].

Gearbox aims to detect faults in a running gearbox. The

original data contain multiple types of faults. To simplify

the problem, we pick one type of faults that happens to the

helical gear with 24 teeth. Smart Building is a two-class fault

detection data set, aiming to identify sensor faults in smart

buildings. In this data set, the sensor placed in the kitchen

can be faulty. iNemo is a multi-sensing platform developed

for robotic systems and HCI applications. To avoid any

functional disruption caused by signalling faults in iNemo,

a fault emulator is developed for producing and analysing

different types of faults. In our study, we introduce the offset

type of faults into x-axis of sensor gyroscope.

The task of the above three data applications is to build

and maintain an effective online learner to detect faults.

Due to the rarity and importance of faults, fault detection

in engineering systems is a typical problem of learning from

imbalanced data streams. There are two classes in the data

stream – nonfaulty and faulty. The faulty class is usually

the minority as it is much less likely to happen than the

nonfaulty class. Nevertheless, it could also happen that those

faults become very frequent suddenly, when the damaged

condition gets worse, or the faults are not likely to happen

any more, when the faulty system is repaired.

Data in PAKDD 2009 are collected from the private label

credit card operation of a Brazilian retail chain. The task

of this problem is to identify whether the client has a good

or bad credit. The “bad” credit is the minority class, taking

round 19.75% of the data. Because data has been collected

from a time interval in the past, gradual market change occurs

and may reduce the performance of the online model.

The task of KDD Cup 1999 data set is to distinguish be-

tween attacks and normal connections in computer networks.

This data contain a total of 24 attack types. We only use the

attack class “back” and class “normal” in this experiment, in

which around 2.21% of data belong to the attack class.

For each of the data applications, we generate a data

stream with static IR and a data stream with dynamic IR.

For a clear observation, we choose 1000 examples forming

the static one and 5000 examples forming the dynamic one

without changing the original time order within each class.

For the static data stream, the minority class is fixed, which is

the smaller class in the original data set. The dynamic data

stream contains 5 static periods of 1000 time steps. Each

class takes turns to be the minority class after every 1000

examples has arrived. Although some changes may not seem

to be practical, more challenging scenarios can better test our

methods. For the three fault detection data, IR is always 5%

in both static and dynamic scenarios. The original IR is kept

for the other two data sets.

MOSOB, OOB, UOB, RLSACP [8] and WOS-ELM [9]

are compared. The latter two are perceptron-based ap-

proaches. We include them in our comparisons because they

are recent online class imbalance learning algorithms. There

are few other online class imbalance learning algorithms in

the literature. Following the choice in the original papers, we

set the number of neurons to the number of features of data,

with the sigmoidal activation function. RLSACP includes two

error weighting strategies to tackle class imbalance. The sec-

ond strategy RLSACPII is adopted here, which has fewer pre-

defined parameters and was shown to produce similar results

to the first error weighting strategy RLSACPI. RLSACPII

penalizes errors differently between classes, depending on

the imbalance ratio. This ratio is updated at every 100 time

steps. WOS-ELM requires a validation data set for adjusting

class weights to overcome class imbalance. Considering

that the validation set is not always available and it may

expire over time, we modify its weight-updating strategy

and use time-decayed size percentage instead. Specifically,



TABLE III: Means and standard deviations of minority-class recall on the last time step for static data streams.

Method Gearbox Smart Building PAKDD iNemo KDD

Tree
ensemble

MOSOB 0.092±0.018 0.439±0.022 0.281±0.022 0.887±0.023 0.635±0.012
OOB 0.000±0.000 0.097±0.026 0.331±0.018 0.888±0.010 0.631±0.000
UOB 0.190±0.025 0.525±0.026 0.187±0.022 0.896±0.016 0.684±0.000

Perceptron
ensemble

MOSOB 0.007±0.010 0.000±0.000 0.034±0.053 0.004±0.011 0.000±0.000
OOB 0.000±0.000 0.000±0.000 0.001±0.001 0.001±0.003 0.000±0.000
UOB 0.028±0.020 0.001±0.006 0.051±0.084 0.002±0.007 0.000±0.000

RLSACP 0.299±0.085 0.949±0.122 0.000±0.000 0.558±0.292 0.000±0.000

WOS-ELM 0.003±0.012 0.023±0.000 0.063±0.009 0.000±0.000 0.000±0.000

TABLE IV: Means and standard deviations of G-mean on the last time step for static data streams.

Method Gearbox Smart Building PAKDD iNemo KDD

Tree
ensemble

MOSOB 0.287±0.029 0.640±0.017 0.477±0.016 0.940±0.012 0.800±0.007
OOB 0.000±0.000 0.306±0.042 0.509±0.011 0.940±0.005 0.795±0.000
UOB 0.397±0.027 0.683±0.020 0.399±0.022 0.946±0.008 0.827±0.000

Perceptron
ensemble

MOSOB 0.046±0.068 0.000±0.000 0.139±0.105 0.022±0.060 0.000±0.000
OOB 0.000±0.000 0.000±0.000 0.010±0.025 0.004±0.025 0.000±0.000
UOB 0.138±0.087 0.002±0.024 0.178±0.102 0.014±0.044 0.000±0.000

RLSACP 0.450±0.029 0.072±0.095 0.000±0.000 0.334±0.219 0.000±0.000

WOS-ELM 0.012±0.051 0.150±0.000 0.243±0.017 0.000±0.000 0.000±0.000

the error cost for the majority class is fixed to 1, while

that for the minority class is set to w
(t)
maj/w

(t)
min, where

w
(t)
maj (w

(t)
min) denotes the time-decayed recall of the majority

(minority) class calculated by Eq.1. There are two reasons for

making this modification: 1) avoid using validation sets; 2)

our preliminary results show that using fixed class weights

without the validation set in WOS-ELM causes very poor

performance in dynamic data streams.

MOSOB, OOB and UOB are ensemble methods composed

of multiple base classifiers. Hoeffding tree [24] and single

perceptron classifier are chosen to be the base classifier.

Hoeffding tree is a fast decision tree induction algorithm

that is capable of learning from massive data streams. It is

shown to be effective in OOB and UOB [15] [23]. Single

perceptron classifier is included here for a fair comparison

with RLSACP and WOS-ELM. OOB and UOB consist of 50

base classifiers. MOSOB includes one OOB and one UOB.

The candidate set for optimizing model weights is a set of

values in range [0, 1] with interval 0.1. The implementation

of base classifiers was provided by the Massive Online

Analysis (MOA) tool with its default settings [25]. All the

five methods are repeated for 100 times on every data stream.

Our performance comparison and evaluation are based on

prequential test [26], in which each individual example is

used to test the model before it is used for training, and from

this the performance measures can be incrementally updated.

The model is always being tested on examples it has not seen,

and thus reflects its prediction performance so far. Because

class imbalance status changes after every 1000 examples

arrive in dynamic data streams, we reset performance metrics

to 0 right after the change occurs. This ensures that the

performance observed after the change is not affected by

the performance before the change, allowing us to analyse

the behaviour of the models before and after the change

adequately. G-mean and minority-class recall are recorded

at each time step for performance analysis, which are the

two most commonly used evaluation criteria in the class

imbalance learning literature. Recall reflects classification

accuracy on a single class. G-mean measures the overall

accuracy by calculating the geometric mean of recalls over

all classes [27]. They are better metrics than the traditional

accuracy, because the latter can be overwhelmed by the high

accuracy on the majority class and hide the poor performance

on the minority class. All the comparative analysis below is

based on the statistical test of Wilcoxon Sign Rank test with

Holm-Bonferroni corrections at the significance level of 0.05.

Holm-Bonferroni corrections are performed to counteract the

problem of multiple comparisons.

2) Results and Analysis: Tables III - IV present the last-

step minority-class recall and G-mean from all the methods

learning the static data streams. Due to the limited space and

great performance difference between methods, the statistical

test results of comparison for the static data are not shown in

the tables. We can see that the single perceptron classifier is

generally not a good base classifier for the three sampling-

based ensemble methods, which produce poor recall and G-

mean in all cases. Also using perceptrons, RLSACP and

WOS-ELM perform better than the perceptron-based ensem-

bles in some cases, such as Gearbox and iNemo for RLSACP

and Smart Building and PAKDD for WOS-ELM, but the

improvement is limited. The performance of RLSACP seems

to be very dependent on data sets. For example, it achieves

the highest minority-class recall and G-mean in Gearbox

among all, but produces zero in PAKDD and KDD. Besides,

although it shows the highest minority-class recall in Smart

Building (0.949%), majority-class performance is sacrificed

greatly so that final G-mean on this data is only 0.072%.

For tree-based MOSOB, OOB and UOB, they outperform

the others significantly in all cases in terms of G-mean,

except for Gearbox. Among these three tree-based ensem-

bles, consistent with our previous work [1], UOB is the best

significantly in four out of five cases regarding both recall

and G-mean. It is more aggressive at finding minority-class



TABLE V: Means and standard deviations of average G-mean during every 1000 time steps from moment 1001. P-values

of the Wilcoxon Sign Rank tests between MOSOB and every other method are given in brackets, based on 16 comparisons

performed on each dynamic data stream. P-values in bold italics indicate statistically significant differences.

Duration (1000, 2000] (2000, 3000] (3000, 4000] (4000, 5000]

MOSOB 0.462±0.043 0.497±0.008 0.399±0.046 0.502±0.018
OOB 0.235±0.022 (0.00000) 0.446±0.020 (0.00000) 0.429±0.057 (0.00001) 0.420±0.019 (0.00000)

Gearbox UOB 0.205±0.076 (0.00000) 0.408±0.041 (0.00000) 0.360±0.050 (0.00000) 0.404±0.019 (0.00000)

RLSACP 0.346±0.060 (0.00000) 0.008±0.019 (0.00000) 0.086±0.146 (0.00000) 0.082±0.144 (0.00000)

WOS-ELM 0.000±0.000 (0.00000) 0.000±0.000 (0.00000) 0.000±0.000 (0.00000) 0.000±0.000 (0.00000)

MOSOB 0.769±0.011 0.799±0.019 0.819±0.004 0.850±0.003
Smart OOB 0.711±0.028 (0.00000) 0.832±0.009 (0.00000) 0.822±0.003 (0.00000) 0.870±0.005 (0.00000)

Building UOB 0.776±0.016 (0.00002) 0.807±0.025 (0.00052) 0.826±0.005 (0.00000) 0.840±0.019 (0.00007)

RLSACP 0.053±0.115 (0.00000) 0.003±0.032 (0.00000) 0.003±0.035 (0.00000) 0.013±0.053 (0.00000)

WOS-ELM 0.001±0.000 (0.00000) 0.000±0.000 (0.00000) 0.009±0.002 (0.00000) 0.214±0.050 (0.00000)

MOSOB 0.555±0.009 0.444±0.013 0.589±0.011 0.529±0.011
OOB 0.564±0.005 (0.00000) 0.453±0.011 (0.00000) 0.599±0.014 (0.00000) 0.540±0.006 (0.00000)

PAKDD UOB 0.516±0.016 (0.00000) 0.421±0.006 (0.00000) 0.434±0.023 (0.00000) 0.512±0.031 (0.00000)

RLSACP 0.000±0.000 (0.00000) 0.000±0.000 (0.00000) 0.000±0.000 (0.00000) 0.000±0.000 (0.00000)

WOS-ELM 0.000±0.000 (0.00000) 0.000±0.000 (0.00000) 0.000±0.000 (0.00000) 0.000±0.000 (0.00000)

MOSOB 0.991±0.000 0.997±0.000 0.993±0.000 0.996±0.000
OOB 0.991±0.000 (NaN) 0.997±0.000 (NaN) 0.993±0.000 (0.08270) 0.996±0.000 (NaN)

iNemo UOB 0.990±0.000 (0.31610) 0.996±0.000 (0.00067) 0.993±0.000 (0.09010) 0.996±0.000 (0.01330)
RLSACP 0.316±0.175 (0.00000) 0.123±0.133 (0.00000) 0.239±0.150 (0.00000) 0.104±0.092 (0.00000)

WOS-ELM 0.023±0.046 (0.00000) 0.124±0.159 (0.00000) 0.050±0.101 (0.00000) 0.105±0.159 (0.00000)

MOSOB 0.977±0.001 0.924±0.004 0.920±0.009 0.998±0.000
OOB 0.984±0.001 (0.00000) 0.932±0.021 (0.03820) 0.912±0.000 (0.00000) 0.997±0.000 (0.00000)

KDD UOB 0.978±0.001 (0.00470) 0.925±0.000 (0.04440) 0.921±0.001 (0.13790) 0.998±0.000 (0.70180)
RLSACP 0.000±0.000 (0.00000) 0.000±0.000 (0.00000) 0.000±0.000 (0.00000) 0.000±0.000 (0.00000)

WOS-ELM 0.141±0.041 (0.00000) 0.143±0.110 (0.00000) 0.262±0.160 (0.00000) 0.023±0.073 (0.00000)

examples. As the hybrid model of OOB and UOB, MOSOB’s

performance always lies in between them. It improves the

performance of OOB, but it is not as aggressive as UOB.

Now we divert our attention to dynamic data streams.

Because of the class imbalance change and performance

resetting at every 1000 time steps, we compare the aver-

age prequential G-mean during each static interval, from

the instant when the first status change occurs (time step

1001). Minority-class recall is omitted here, because the

minority class label changes over time. The perceptron-

based MOSOB, OOB and UOB are also not included, for

their poor performance in the static data streams. Therefore,

five methods are compared in four time intervals from each

data stream here. The Wilcoxon Sign Rank test is carried

out between MOSOB and each of the others. Sixteen pairs

of comparisons are involved for each data stream in this

analysis. Table V presents the mean and standard deviation

of G-mean and the corresponding statistical test results in-

cluding p-values. P-values in bold italics indicate statistically

significant differences.

We can see that, different from static cases, UOB is worse

than OOB in most cases, because of the lack of training on

the majority class before the change. When this class turns

into the minority, UOB suffers more performance reduction.

OOB is more prepared for dynamic data. With the optimized

model weights, MOSOB inherits the characteristic of OOB

and presents to be more robust than UOB. Gearbox is a quite

difficult data set, based on its overall poor G-mean compared

to that of the other data sets. MOSOB performs particularly

well on Gearbox. After the imbalance status changes every

time, MOSOB achieves the significantly best G-mean in 3

out of 4 intervals, and lies in between OOB and UOB in the

remaining one. Smart Building and PAKDD are easier data

than Gearbox. UOB is not always worse than OOB in Smart

Building. On these two data streams, MOSOB’s G-mean

lies in between OOB and UOB’s G-mean with a significant

difference in most cases. iNemo and KDD are the easiest

data, which receive G-mean higher than 0.9 from all the three

tree-based ensembles. Their G-mean is very close to each

other. “NaN” p-value in iNemo means that the two groups of

samples for the statistical test are exactly the same. These two

data streams are easy enough to counteract the negative effect

of class imbalance changes on UOB. Comparing to MOSOB,

OOB and UOB, RLSACP and WOS-ELM produce quite low

G-mean in all the five data streams. Even though WOS-ELM

applies the time-decayed recall for updating misclassification

costs, the results are still not good enough. In conclusion,

considering all the five cases, tree-based MOSOB is more

robust against dynamic imbalance status than UOB.

For a deeper understanding, we observe the optimal model

weights of OOB and UOB during the learning process. As

we expect, OOB is more likely to have a higher weight than

UOB after a few time steps of the status change. Although

the time-decayed metrics vary with the current status of the

data stream, the model priority does not change frequently

between OOB and UOB. Therefore, the performance of

MOSOB is quite stable. Because there is no known noise in

the data used in this paper, it is hard to say whether MOSOB

will become sensitive to noisy data. It is worth looking into

this issue in our future work.

In terms of computational time, because of the training

of multiple classifiers and the searching effort for optimal



0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time Steps

G
−

m
e

a
n

Gearbox

 

 

3%

0.1%

0.5%

1%

2%

3%

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time Steps

G
−

m
e

a
n

Smart building

 

 

0.1%

0.5%

1%

2%

3%

0.1%

0.5%

1%

2%

3%

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time Steps

G
−

m
e

a
n

PAKDD09

 

 

0.1%

0.5%

1%

2%

3%

0.1%

0.5%

1%

2%

3%

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

G
−

m
e

a
n

iNemo

 

 

0.1%

0.5%

1%
2%3%

0.1%

0.5%

1%

2%

3%

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

G
−

m
e

a
n

KDD99

 

 

0.1%

0.5%
1%

2%
3%

0.1%

0.5%

1%

2%

3%

Fig. 1: Prequential G-mean curves of MOSOB on highly imbalanced data streams.

weights, MOSOB shows a much higher computational cost

than the other compared methods. It relies on multiple

factors, including the choice of base classifiers in OOB and

UOB, the ensemble size, and the pool size of candidate

weights. A concrete comparison will be included in our

future work.

B. Effectiveness on Highly Imbalanced Data Streams

Following on the promising result of MOSOB using de-

cision tree base classifiers, this section aims to understand

its effectiveness from a different perspective. Data from

many real-world applications with inherent class imbalance

problems can be highly skewed. In the fault detection data

“Smart Building”, for example, we fix the imbalance rate

to 5% in the above experiment. In the real world, however,

the chance of a sensor in the building becoming faulty is

usually very low, such as 0.5%, 0.1% or even lower. As a

part of class imbalance study, it is necessary and useful to

know how imbalanced the data stream can be, on which the

learning algorithm is still effective. Therefore, we focus on

highly imbalanced data streams in this section.

1) Data and experimental design: We use the above five

data applications and generate very imbalanced data streams,

with the length of 10000 time steps. Five data streams

are produced for each application, which have a fixed IR

∈ {0.1%, 0.5%, 1%, 2%, 3%}. For the lowest case IR=0.1%,

there are only 10 minority-class examples in the whole data

stream. Tree-based MOSOB is applied here with the same

settings as in Section IV-A. Average prequential G-mean over

100 runs is recorded at each time step without resetting.

2) Results and Analysis: Fig. 1 compares the prequential

G-mean curves with different imbalance rates. For the diffi-

cult data Gearbox, G-mean remains zero until IR is increased

to 3%. Zero G-mean is caused by zero minority-class recall.

For Smart Building and PAKDD with medium classification

difficulty, IR=0.1% is still too small for the online model to

identify any minority-class examples. G-mean grows faster

and earlier as IR increases, when IR≥0.1%. G-mean in

PAKDD is decreasing along with learning during some pe-

riod of time, probably because the data concept is drifting as

stated in the data description. For the easiest data iNemo and

KDD, MOSOB responds to the minority class in all cases,

with G-mean exceeding 0.7 when the learning procedure

stops. A higher IR leads to a faster and quicker response.

For the most imbalanced case with IR=0.1%, MOSOB does

not detect any minority-class examples until time steps 4000-

5000. In other words, even for easy data, an online learner

armed with class imbalance techniques needs at least 4-5

minority-class examples to learn the concept of this class.

Therefore, we do not recommend using this type of learning

methods solely learning from very imbalanced data with IR

smaller than 0.1%, without any pre-knowledge. Otherwise,

auxiliary methods must be applied to improve the prediction

accuracy on the minority class, such as one-class learning to

train the online model with only one class of data [28] and

transfer learning to introduce new data knowledge [29].

V. CONCLUSIONS

This paper proposed a multi-objective ensemble method

for online class imbalance learning, called MOSOB, which

aims to maximize minority-class and majority-class recall

simultaneously for the best performance trade-off between

classes. It maintains two ensemble models OOB and UOB

and finds the Pareto-optimal weights to combine their pre-

dictions at each time step. It is motivated by the observation



that UOB has better classification performance and OOB has

better robustness against dynamic imbalance status. MOSOB

is expected to combine their advantages with improved

classification accuracy and learning adaptivity.

The performance of MOSOB is studied from two perspec-

tives. First, we tested MOSOB on ten static and dynamic data

streams from five real-world applications, in comparison with

OOB, UOB and two state-of-the-art methods. MOSOB using

decision tree base classifiers is shown to be the most stable

and accurate model that outperforms OOB in static cases

in terms of G-mean and minority-class recall and is more

robust against class imbalance changes than UOB. Second,

we explored its ability in a group of highly imbalanced data

streams with fixed IR ranging between 0.1% and 3%. We

showed that MOSOB needs at least 3% IR to respond to the

minority class on difficult data. IR can be as low as 0.1%

on easy data. Otherwise, extra data knowledge and auxiliary

methods must be used to help the learning.

Currently, this work is limited to two-class problems

(i.e. two objectives). In addition, the searching technique in

MOSOB is a brute-force approach, looking for the optimal

within a finite set of candidates. More advanced optimiza-

tion methods will be considered in the future work, such

as MOEAs [30]. It is also important to study MOSOB’s

performance in data streams with classification boundary

drift and noise.

ACKNOWLEDGMENT

This work was supported by two EU FP7 Grants (Nos.

270428 and 257906) and a NSFC Grant (No. 61329302).

Xin Yao was also supported by a Royal Society Wolfson

Research Merit Award.

REFERENCES

[1] S. Wang, L. L. Minku, and X. Yao, “A learning framework for online
class imbalance learning,” in IEEE Symposium on Computational

Intelligence and Ensemble Learning (CIEL), 2013, pp. 36–45.

[2] N. C. Oza, “Online bagging and boosting,” IEEE International Con-

ference on Systems, Man and Cybernetics, pp. 2340–2345, 2005.

[3] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE

Transactions on Knowledge and Data Engineering, vol. 21, no. 9,
pp. 1263–1284, 2009.

[4] S. Wang and X. Yao, “Relationships between diversity of classification
ensembles and single-class performance measures,” IEEE Transactions

on Knowledge and Data Engineering, vol. 25, no. 1, pp. 206–219,
2013.

[5] V. Lopez, A. Fernandez, S. Garcia, V. Palade, and F. Herrera, “An
insight into classification with imbalanced data: Empirical results and
current trends on using data intrinsic characteristics,” Information

Sciences, vol. 250, pp. 113–141, 2013.

[6] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Evolving diverse en-
sembles using genetic programming for classification with unbalanced
data,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 3,
pp. 368–386, 2013.

[7] P. Soda, “A multi-objective optimisation approach for class imbalance
learning,” Pattern Recognition, vol. 44, no. 8, pp. 1801–1810, 2011.

[8] A. Ghazikhani, R. Monsefi, and H. S. Yazdi, “Recursive least square
perceptron model for non-stationary and imbalanced data stream
classification,” Evolving Systems, vol. 4, no. 2, pp. 119–131, 2013.

[9] B. Mirza, Z. Lin, and K.-A. Toh, “Weighted online sequential extreme
learning machine for class imbalance learning,” Neural Processing

Letters, vol. 38, no. 3, pp. 465–486, 2013.

[10] S. Chen, H. He, K. Li, and S. Desai, “MuSeRA: Multiple selectively
recursive approach towards imbalanced stream data mining,” in Inter-

national Joint Conference on Neural Networks, 2010, pp. 1–8.
[11] S. Chen and H. He, “Towards incremental learning of nonstationary

imbalanced data stream: a multiple selectively recursive approach,”
Evolving Systems, vol. 2, no. 1, pp. 35–50, 2010.

[12] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” IEEE Transactions on Knowledge and

Data Engineering, vol. 25, no. 10, pp. 2283 – 2301, 2013.
[13] H. M. Nguyen, E. W. Cooper, and K. Kamei, “Online learning

from imbalanced data streams,” in International Conference of Soft

Computing and Pattern Recognition (SoCPaR), 2011, pp. 347–352.
[14] L. L. Minku and X. Yao, “DDD: A new ensemble approach for

dealing with concept drift,” IEEE Transactions on Knowledge and

Data Engineering, vol. 24, no. 4, pp. 619 –633, 2012.
[15] S. Wang, L. L. Minku, D. Ghezzi, D. Caltabiano, P. Tino, and

X. Yao, “Concept drift detection for online class imbalance learning,”
in International Joint Conference on Neural Networks (IJCNN ’13),
2013, pp. 1–8.

[16] S. Wang and X. Yao, “Multi-class imbalance problems: Analysis
and potential solutions,” IEEE Transactions on Systems, Man and

Cybernetics, PartB: Cybernetics, vol. 42, no. 4, pp. 1119–1130, 2012.
[17] H. W. Kuhn, “Nonlinear programming: a historical view,” in ACM

SIGMAP Bulletin, 1982, pp. 6–18.
[18] “2009 PHM challenge competition data set,” The Prognostics and

Health Management Society (PHM Society). [Online]. Available:
http://www.phmsociety.org/references/datasets

[19] M. P. Michaelides, V. Reppa, C. Panayiotou, and M. Polycarpou, “Con-
taminant event monitoring in intelligent buildings using a multi-zone
formulation,” in 8th IFAC Symposium on Fault Detection, Supervision

and Safety of Technical Processes (SAFEPROCESS), vol. 8, 2012, pp.
492–497.

[20] C. Linhart, G. Harari, S. Abramovich, and A. Buchris, “PAKDD data
mining competition 2009: New ways of using known methods,” New

Frontiers in Applied Data Mining, Lecture Notes in Computer Science,
vol. 5669, pp. 99–105, 2010.

[21] K. Bache and M. Lichman, “UCI machine learning repository:
http://archive.ics.uci.edu/ml,” 2013.

[22] STMicroelectronics, “iNemo: iNErtial MOdule
V2 demonstration board.” [Online]. Available:
http://www.st.com/internet/evalboard/product/250367.jsp

[23] S. Wang, L. L. Minku, and X. Yao, “Online class imbalance learning
and its applications in fault detection,” International Journal of Com-

putational Intelligence and Applications, vol. 12, pp. 1 340 001(1–19),
2013.

[24] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2001, pp. 97–
106.

[25] MOA Massive online analysis: Real time analytics for data streams.
[Online]. Available: http://moa.cms.waikato.ac.nz/

[26] A. P. Dawid and V. G. Vovk, “Prequential probability: Principles and
properties,” Bernoulli, vol. 5, no. 1, pp. 125–162, 1999.

[27] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training
sets: One-sided selection,” in Proc. 14th International Conference on

Machine Learning, 1997, pp. 179–186.
[28] N. Japkowicz, C. Myers, and M. A. Gluck, “A novelty detection

approach to classification,” in Proceedings of the 14th international

joint conference on Artificial intelligence, 1995, pp. 518–523.
[29] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE

Transactions on Knowledge and Data Engineering, vol. 22, no. 10,
pp. 1345–1359, 2009.

[30] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary
algorithms in multiobjective optimization,” Evolutionary Computation,
vol. 3, no. 1, pp. 1–16, 1995.


