
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Resampling-Based Ensemble Methods for
Online Class Imbalance Learning

Shuo Wang, Member, IEEE, Leandro L. Minku, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Online class imbalance learning is a new learning problem that combines the challenges of both online learning and
class imbalance learning. It deals with data streams having very skewed class distributions. This type of problems commonly
exists in real-world applications, such as fault diagnosis of real-time control monitoring systems and intrusion detection in
computer networks. In our earlier work, we defined class imbalance online, and proposed two learning algorithms OOB and
UOB that build an ensemble model overcoming class imbalance in real time through resampling and time-decayed metrics. In
this paper, we further improve the resampling strategy inside OOB and UOB, and look into their performance in both static and
dynamic data streams. We give the first comprehensive analysis of class imbalance in data streams, in terms of data distributions,
imbalance rates and changes in class imbalance status. We find that UOB is better at recognizing minority-class examples in
static data streams, and OOB is more robust against dynamic changes in class imbalance status. The data distribution is a major
factor affecting their performance. Based on the insight gained, we then propose two new ensemble methods that maintain both
OOB and UOB with adaptive weights for final predictions, called WEOB1 and WEOB2. They are shown to possess the strength
of OOB and UOB with good accuracy and robustness.

Index Terms—Class imbalance, resampling, online learning, ensemble learning, Bagging.

F

1 INTRODUCTION

ONLINE class imbalance learning is an emerging
topic that is attracting growing attention. It aims

to tackle the combined issue of online learning [1]
and class imbalance learning [2]. Different from incre-
mental learning that processes data in batches, online
learning here means learning from data examples
“one-by-one” without storing and reprocessing ob-
served examples [3]. Class imbalance learning handles
a type of classification problems where some classes of
data are heavily underrepresented compared to other
classes. With both problems, online class imbalance
learning deals with data streams where data arrive
continuously and the class distribution is imbalanced.
Although online learning and class imbalance learn-
ing have been well studied in the literature individ-
ually, the combined problem has not been discussed
much. It is commonly seen in real world applications,
such as intrusion detection in computer networks and
fault diagnosis of control monitoring systems [4].

When both issues of online learning and class
imbalance exist, new challenges and interesting re-
search questions arise, with regards to the predic-
tion accuracy on the minority class and adaptivity
to dynamic environments. The difficulty of learning
from imbalanced data is caused by the relatively or
absolutely underrepresented class that cannot draw

• The authors are with the Centre of Excellence for Research in Compu-
tational Intelligence and Applications (CERCIA), School of Computer
Science, The University of Birmingham, Edgbaston, Birmingham B15
2TT, UK. E-mail: {S.Wang, L.L.Minku, X.Yao}@cs.bham.ac.uk

equal attention to the learning algorithm compared
to the majority class. It often leads to very specific
classification rules or missing rules for the minority
class without much generalization ability for future
prediction [5]. This problem is exaggerated when data
arrive in an online fashion. First, we cannot get a
whole picture of data to evaluate the imbalance status.
An online definition of class imbalance is necessary
to describe the current imbalance degree. Second, the
imbalance status can change over time. Therefore,
the online model needs to be kept updated for good
performance on the current minority class without
damaging the performance on the current majority
class.

As one of the earliest studies that focus on online
class imbalance learning, our recent work proposed
an online definition of class imbalance through two
indicators (i.e. time-decayed class size and recall), and
a class imbalance detection method to report the real-
time class imbalance status in the data stream [6].
Based on the status information, we proposed two
online ensemble learning methods – Oversampling-
based Online Bagging (OOB) and Undersampling-
based Online Bagging (UOB) [6], which can adjust the
learning bias from the majority to the minority class
effectively and adaptively through resampling.

However, because the resampling rate in OOB and
UOB does not consider the size ratio between classes,
there exists an issue that the resampling rate is not
consistent with the imbalance degree in data and
varies with the number of classes. Besides, no existing
work has studied the fundamental issues of class
imbalance in online cases and the adaptivity of online



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

learners to deal with dynamic data streams with a
varying imbalance rate so far. Most work focuses
on online learning with concept drifts that involve
classification boundary shifts. This paper will give the
first comprehensive analysis of class imbalance in data
streams.

First, we improve the resampling setting strategies
in OOB and UOB. Second, we look into the perfor-
mance of improved OOB and UOB in both static
and dynamic data streams, aiming for a deep under-
standing of the roles of resampling and time-decayed
metrics. We also give a statistical analysis of how their
performance is affected by data-related factors and
algorithm settings through factorial ANOVA. Gener-
ally speaking, our experiments show the benefits of
using resampling and time-decayed metrics in the
improved OOB and UOB. Particularly, UOB is better
at recognizing minority-class examples in static data
streams, and OOB is more robust against dynamic
changes in class imbalance status. The data distri-
bution is a major factor affecting their performance.
Based on the achieved results, for better accuracy
and robustness under dynamic scenarios, we propose
two ensemble strategies that maintain both OOB and
UOB with adaptive weight adjustment, called WEOB1
and WEOB2. They are shown to successfully combine
the strength of OOB and UOB. WEOB2 outperforms
WEOB1 in terms of G-mean.

2 LEARNING IMBALANCED DATA STREAMS

In this section, we define class imbalance under online
scenarios, introduce the two classification methods
(i.e. OOB and UOB), and review the research progress
in learning from imbalanced data streams. They form
the basis of this paper.

2.1 Defining Class Imbalance
To handle class imbalance online, we first need to
define it by answering the following three questions:
1) is the data stream currently imbalanced? 2) Which
classes belong to the minority/majority? 3) What is
the imbalance rate currently? We answered the ques-
tions by defining two online indicators – time-decayed
class size and recall calculated for each class [6].
Different from the traditional way of considering all
observed examples so far equally, they are updated
incrementally by using a time decay (forgetting) factor
to emphasize the current status of data and weaken
the effect of old data.

Suppose a sequence of examples (xt, yt) arriving
one at a time. xt is a p-dimensional vector belonging
to an input space X observed at time t, and yt is
the corresponding label belonging to the label set
Y = {c1, . . . , cN}. For any class ck ∈ Y , the class
size indicates the occurrence probability (percentage)
of examples belonging to ck. If the label set contains
only two classes, then the size of the minority class

is referred to as the imbalance rate (IR) of the data
stream, reflecting how imbalanced the data stream is
at the current moment. The recall of class ck indicates
the classification accuracy on this class. To reflect the
current characteristics of the data stream, these two
indicators are incrementally updated at each time
step. When a new example xt arrives, the size of each
class, denoted by w

(t)
k , is updated by [6]:

w
(t)
k = θw

(t−1)
k + (1− θ) [(xt, ck)] , (k = 1, . . . , N) (1)

where [(xt, ck)] = 1 if the true class label of xt is
ck, otherwise 0. θ (0 < θ < 1) is a pre-defined time
decay factor, which forces older data to affect the
class percentage less along with time through the
exponential smoothing. Thus, w(t)

k is adjusted more
based on new data.

If xt’s real label yt is ci, the recall of class ci, denoted
by R

(t)
i , is updated by [6]:

R
(t)
i = θ′R

(t−1)
i + (1− θ′) [xt ← ci] . (2)

For the recall of the other classes, denoted by R
(t)
j

(j 6= i), it is updated by:

R
(t)
j = R

(t−1)
j , (j = 1, . . . , N, j 6= i). (3)

In Eq.2, θ′ (0 < θ′ < 1) is the time decay factor for
emphasizing the learner’s performance at the cur-
rent moment. [xt ← ci] is equal to 1 if x is correctly
classified, and 0 otherwise. θ = 0.9 and θ′ = 0.9
were shown to be a reasonable setting to balance the
responding speed and the estimation variance in our
experiments [6].
w(t) and R(t) values are then used by a class imbal-

ance detection method, which outputs the information
of whether the data stream should be regarded as
imbalanced and which classes should be treated as
the minority class. It examines two conditions for any
two classes ci and cj :
• wi − wj > δ1 (0 < δ1 < 1)
• Ri −Rj > δ2 (0 < δ2 < 1)
If both conditions are satisfied, then class cj is sent

to the minority class label set Ymin and class ci is
sent to the majority class label set Ymaj . If Ymin and
Ymaj are not empty, it means that the data stream is
imbalanced. This can then be used to invoke the class
imbalance techniques running in the online model
to tackle the imbalanced distribution. Recall is used
as one criterion of estimating class imbalance status,
because it has been agreed that the imbalance rate
is not the only factor that causes the classification
difficulty [7].

2.2 Online Solutions OOB and UOB
With the information from the class imbalance detec-
tion method, we proposed OOB and UOB to learn im-
balanced data streams [6]. They integrate resampling



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

into ensemble algorithm Online Bagging (OB) [8].
Resampling is one of the simplest and most effective
techniques of tackling class imbalance [9] [10]. It
works at the data level independently of the learning
algorithm. Two major types of resampling are over-
sampling – increasing the number of minority-class
examples, and undersampling – reducing the number
of majority-class examples. Online Bagging [8] is an
online ensemble learning algorithm that extends the
offline Bagging [11]. It builds multiple base classi-
fiers and each classifier is trained K times by using
the current training example, where K follows the
Poisson (λ = 1) distribution. Poisson distribution is
used, because the Binomial distribution K in offline
Bagging tends to the Poisson(1) distribution when the
bootstrap sample size becomes infinity.

Once Ymin and Ymaj (the output of the class imbal-
ance detection method) are not empty, oversampling
or undersampling embedded in Online Bagging will
be triggered to either increase the chance of train-
ing minority-class examples (in OOB) or reduce the
chance of training majority-class examples (in UOB).
Their training procedures are given in Table 1.

TABLE 1: OOB and UOB Training Procedures.

Input: label sets Ymin and Ymaj , an ensemble with M base
learners, and current training example (xt, yt).

for each base learner fm (m = 1, 2, . . . ,M ) do
if yt ∈ Ymin

set K ∼ Poisson (λ1)
else

set K ∼ Poisson (λ2)
end if
update fm K times

end for

Resampling in OOB and UOB is performed through
the parameter λ of Poisson distribution to handle class
imbalance. In OOB, λ1 is set to 1/w

(t)
k ; λ2 is set to 1.

In UOB, λ1 is set to 1, λ2 is set to
(
1− w(t)

k

)
. If the

new training example belongs to the minority class,
OOB increases value K, which decides how many
times to use this example for training. Similarly, if
it belongs to the majority class, UOB decreases K.
The advantages of OOB and UOB are: 1) resampling
is algorithm-independent, which allows any type of
online classifiers to be used; 2) time-decayed class
size used in OOB and UOB dynamically estimates
imbalance status without storing old data or using
windows, and adaptively decides the resampling rate
at each time step; 3) like other ensemble methods,
they combine the predictions from multiple classifiers,
which are expected to be more accurate than a single
classifier.

2.3 Existing Research
Most existing algorithms dealing with imbalanced
data streams require processing data in

batches/chunks (incremental learning), such as
MuSeRA [12] and REA [13] proposed by Chen
et al., and Learn++.CDS and Learn++.NIE [14]
proposed by Ditzler and Polikar. Among limited class
imbalance solutions strictly for online processing,
Nguyen et al. first proposed an algorithm to deal
with imbalanced data streams through random
undersampling [15]. The majority class examples
have a lower probability to be selected for training.
It assumes that the information of which class
belongs to the minority/majority is known and the
imbalance rate does not change over time. Besides, it
requires a training set to initialize the classification
model before learning. Minku et al. [16] proposed to
use undersampling and oversampling to deal with
class imbalance in online learning by changing the
parameter corresponding to Online Bagging’s [8]
sampling rate. However, the sampling parameters
need to be set prior to learning and cannot be
adjusted to changing imbalance rates. Very recently,
two perceptron-based methods RLSACP [17] and
WOS-ELM [18] were proposed, which assign different
misclassification costs to classes to adjust the weights
between perceptrons. The error committed on the
minority class suffers a higher cost. RLSACP adopts
a window-based strategy to update misclassification
costs based on the number of examples in each
class at a pre-defined speed. WOS-ELM requires a
validation set to adjust misclassification costs based
on classification performance, which however may
not be available in many real-world applications.
They were tested in static scenarios with a fixed
imbalance rate and shown to be effective.

3 IMPROVED OOB AND UOB
In the current OOB and UOB methods, the choice
of λ for one class only depends on the size of this
class. Therefore, this training strategy can be applied
to multi-class cases directly, having more than one
minority or majority class. However, when the data
stream becomes balanced, λ will not be equal to 1. It
means that the resampling keeps running even when
the data is balanced, if the class imbalance detection
method is not applied as the trigger. For example,
given a balanced 2-class problem, where w(t)

k is equal
to 0.5, λ for one class will be set to 2 by OOB; given a
balanced 5-class problem, where w(t)

k is equal to 0.2,
λ for one class will be set to 5 by OOB. On the one
hand, the strategy of setting λ is not consistent with
the imbalance degree, and varies with the number of
classes. On the other hand, it is necessary to use the
class imbalance detection method, to inform OOB and
UOB of when resampling should be applied.

To overcome this issue, we improve OOB and UOB
with a better parameter setting strategy in this section.
λ in the improved versions is determined by the size
ratio between classes. The pseudo-code of improved



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

OOB and UOB at each training step t is given in
Table 2, assuming there are two possible classes Y =
{+1,−1} (denoted by ‘+’ and ‘-’ for simplicity).

TABLE 2: Improved OOB and UOB.

Input: an ensemble with M base learners, current training

example (xt, yt), and current class size w(t) =

(
w

(t)
+ , w

(t)
−

)
.

for each base learner fm (m = 1, 2, . . . ,M ) do

if yt = +1 and

{
w

(t)
+ < w

(t)
− for OOB

w
(t)
+ > w

(t)
− for UOB

set K ∼ Poisson
(
w

(t)
− /w

(t)
+

)
else if yt = −1 and

{
w

(t)
− < w

(t)
+ for OOB

w
(t)
− > w

(t)
+ for UOB

set K ∼ Poisson
(
w

(t)
+ /w

(t)
−

)
else

set K ∼ Poisson (1)
end if
update fm K times

end for

If the size of the positive class is smaller than the
size of the negative class at the current moment,
λ for the positive class will be set to w

(t)
− /w

(t)
+ for

oversampling in OOB; λ for the negative class will be
set to w

(t)
+ /w

(t)
− for undersampling in UOB. With the

same Bagging strategy as the traditional Online Bag-
ging (OB) [8], improved OOB and UOB only sweep
through each training example once. They need O (M)
time to keep the online model up-to-date, when the
base classifiers are updated sequentially.

When data become balanced, these methods will
be reduced to OB automatically. For any 2-class prob-
lems, therefore, it is not necessary to apply the class
imbalance detection method any more for a hard par-
tition of class labels into minority and majority label
sets. For multi-class problems, however, this hard par-
tition is still necessary for choosing w

(t)
min and w

(t)
maj ,

where w
(t)
min (w(t)

maj) stands for the class size of the
smaller (larger) class. For example, for a data stream
with 4 classes {c1, c2, c3, c4}, their proportions are 0.05,
0.15, 0.25, 0.55 respectively. Class c3 is a majority class
relative to c1, but a minority class relative to c4. Since
we do not want to overlook the performance of any
minority class, the class imbalance detection method
will label c3 as minority. This information is then used
by OOB and UOB to treat this class. Without recogniz-
ing this situation, it would be difficult to determine
the way of sampling. This paper focuses on 2-class
imbalanced data streams, so we do not use the class
imbalance detection method to trigger resampling in
improved OOB and UOB here. How it helps the
classification in multi-class cases will be studied as
our next-step work. All the following analysis will be
based on the improved OOB and UOB. We will simply
use “OOB” and “UOB” to indicate the improved ones

for brevity.

4 CLASS IMBALANCE ANALYSIS IN STATIC
DATA STREAMS

This section studies OOB and UOB in static data
streams without any changes. We focus on the fun-
damental issue of class imbalance and look into the
following questions under different imbalanced sce-
narios: 1) to what extent does resampling in OOB
and UOB help to deal with class imbalance online?
2) How do they perform in comparison with other
state-of-the-art algorithms? 3) How are they affected
by different types of class imbalance and classifiers?
For the first question, we compare OOB and UOB
with OB [8], to show the effectiveness of resampling.
For the second question, we compare OOB and UOB
with two recently proposed learning algorithms, RL-
SACP [17] and WOS-ELM [18], which also aim to
tackle online imbalanced data. For the third question,
we perform a mixed (split-plot) factorial analysis of
variance (ANOVA) [19] to analyse the impact of three
factors, including the data distribution and imbalance
rate in data, and the base classifier in OOB and UOB.

4.1 Data Description and Experimental Settings

This section describes the static imbalanced data used
in the experiment, including 12 artificial data streams
and 2 real-world data streams, and explains the al-
gorithm settings and experimental designs for a clear
understanding in the following analysis.

4.1.1 Data
To facilitate a deep understanding and accurate analy-
sis, artificial data sets are generated in order to obtain
desired types of imbalanced data streams. We produce
12 two-class data streams with different distributions
and imbalance rates. The imbalance rate (IR), i.e. the
occurrence probability of the minority class, is a direct
factor that affects any online learner’s performance.
A smaller rate means a smaller chance to collect the
minority-class examples, and thus a harder case for
classification. During the online processing, since it is
not possible to get the whole picture of data, the fre-
quency of minority-class examples and data sequence
become more important in online learning than in
offline learning. In addition to IR, complex data distri-
butions have been shown to be a major factor causing
degradation of classification performance in offline
class imbalance learning, such as small sub-concepts
of the minority class with very few examples [20], and
the overlapping between classes [21] [22]. Particularly,
authors in [23] distinguished and analysed four types
of data distributions in the minority class – safe, bor-
derline, outliers and rare examples. Safe examples are
located in the homogenous regions populated by the
examples from one class only; borderline examples



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

are scattered in the boundary regions between classes,
where the examples from both classes overlap; rare
examples and outliers are singular examples located
deeper in the regions dominated by the majority class.
Borderline, rare and outlier data sets were found to
be the real source of difficulties in real-world data
sets, which could also be the case in online applica-
tions [23].

In our experiment, we consider 4 imbalance levels
(i.e. 5%, 10%, 20% and 30%) and 3 minority-class
distributions (i.e. safe, borderline, rare/outlier). Rare
examples and outliers are merged into one category,
due to the observation that they always appear to-
gether [23]. Each data stream has 1000 examples
(namely 1000 time steps). Each example is formed of
two numeric attributes and a class label that can be
+1 or -1. The positive class is fixed to be the minority
class. Each class follows the multivariate Gaussian
distribution. We vary the mean and covariance ma-
trix settings of the Gaussian distributions to obtain
different distributions. For each type of distribution,
the data set contains more than 50% of correspond-
ing category of examples, measured by the 5-nearest
neighbour method [23]. In the borderline case, for
instance, more than 50% minority-class examples meet
the “borderline” definition.

For an understanding under practical scenarios, we
include 2 real-world data from fault detection appli-
cations – Gearbox [24] and Smart Building [25]. The
task of Gearbox is to detect faults in a running gear-
box using accelerometer data and information about
bearing geometry. Smart Building aims to identify
sensor faults in smart buildings [25]. Both contain two
classes, and the faulty class is the minority. Without
loss of generality, we let the minority class be the
positive class +1, and let the majority class be the
negative class -1. One data stream is generated from
each data source. We limit the length of the data
stream to 1000 examples and fix IR at 10%.

4.1.2 Settings
In the experiment of comparing OOB, UOB and OB,
each method builds an ensemble model composed
of 50 Hoeffding trees [26]. Hoeffding tree is an in-
cremental, anytime decision tree induction algorithm
capable of learning from high-speed data streams,
supported mathematically by the Hoeffding bound
and implemented by the Massive Online Analysis
(MOA) tool with its default settings [27]. It was shown
to be an effective base classifier for the original OOB
and UOB [28] [29].

When comparing OOB and UOB with RLSACP
and WOS-ELM, we use the multilayer perceptron
(MLP) classifier as the base learner of OOB and UOB,
considering that RLSACP and WOS-ELM are both
perceptron-based algorithms. The number of neurons
in the hidden layer of MLP is set to the number
of attributes in data, which is also the number of

perceptrons in RLSACP and WOS-ELM. The error
cost of classes is updated at every 500 time steps in
RLSACP. The error cost in WOS-ELM is predefined
based on the real imbalance rate in the data stream.
OOB and UOB are composed of 50 MLPs. For a
clear role of resampling, OOB with a single MLP
is also included in the comparison as a benchmark,
since RLSACP and WOS-ELM only involve one neural
network and they emphasize the minority class by
increasing its misclassification cost.

The decay factor for updating class size w(t)
k in OOB

and UOB is set to 0.9, based on our preliminary exper-
iments [6]. Every discussed method is repeated 100
times on each data stream. The average prequential
performance is recorded at each time step. Prequential
test is a popular performance evaluation strategy in
online learning, in which each individual example is
used to test the model before it is used for train-
ing, and from this the performance measures can be
incrementally updated. For example, the prequential
accuracy at time step t can be calculated by [1]

acc (t) =

{
accx (t) , if t = 1

acc (t− 1) + accx(t)−acc(t−1)
t , otherwise

where accx is 0 if the prediction of the current training
example x before its learning is wrong and 1 if it is
correct.

In our prequential test, we choose G-mean and
minority-class recall to be the evaluation metrics.
They are two most commonly used evaluation cri-
teria in the class imbalance learning literature, as
they are insensitive to the imbalance rate. Recall
is defined as the classification accuracy on a sin-
gle class. Minority(positive)-class recall (Recp) and
majority(negative)-class recall (Recn) can be obtained
through the following formulas: Recp = TP/P and
Recn = TN/N , where TP is the number of true
positives, TN is the number of true negatives, and P
and N are the total numbers of positive and negative
examples observed so far. G-mean is defined as the
geometric mean of recalls over all classes [30], e.g.√
Recp ·Recn for the two-class case. Recall helps us to

analyse the performance within classes, but does not
reflect any performance on other classes. G-mean is an
overall performance metric. It helps us to understand
how well the performance is balanced among classes.

When comparing any two learning algorithms,
we use the Wilcoxon Sign Rank test with Holm-
Bonferroni corrections to show the difference statisti-
cally, at the overall level of significance of 0.05. Holm-
Bonferroni corrections are performed to counteract the
problem of multiple comparisons.

4.2 Role of Resampling

We compare the final-step minority-class recall and
G-mean produced from tree-based OOB, UOB and



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

OB. They show the final prequential performance
step after the online model has gone through all the
examples, averaged over multiple runs.

TABLE 3: The final-step minority-class recall and statis-
tical test results from tree-based OOB, UOB and OB.

Data OOB UOB OBDistribute IR

safe

30% 0.970±0.002 0.973±0.001 0.969±0.001
(0.00000) (0.00000)

20% 0.981±0.003 0.964±0.002 0.964±0.004
(0.00000) (0.00510)

10% 0.912±0.007 0.936±0.005 0.905±0.007
(0.00000) (0.00000)

5% 0.840±0.000 0.917±0.013 0.876±0.019
(0.00000) (0.00000)

borderline

30% 0.636±0.013 0.774±0.007 0.462±0.015
(0.00000) (0.00000)

20% 0.577±0.007 0.811±0.007 0.266±0.046
(0.00000) (0.00000)

10% 0.424±0.018 0.868±0.011 0.026±0.016
(0.00000) (0.00000)

5% 0.225±0.035 0.831±0.019 0.000±0.000
(0.00000) (0.00000)

30% 0.197±0.016 0.662±0.033 0.033±0.004
(0.00000) (0.00000)

20% 0.395±0.015 0.755±0.014 0.142±0.015
rare/ (0.00000) (0.00000)

outlier 10% 0.195±0.024 0.699±0.014 0.195±0.024
(0.00000) (0.00000)

5% 0.310±0.010 0.519±0.021 0.008±0.009
(0.00000) (0.00000)

Gearbox 0.045±0.009 0.446±0.041 0.000±0.000
(0.00000) (0.00000)

Smart Building 0.430±0.004 0.764±0.011 0.234±0.103
(0.00000) (0.00000)

Tables 3 - 4 present their means and standard
deviations over the 100 runs. We can see that UOB
achieves the highest minority-class recall and G-mean
in almost all cases, and OB gets the lowest. Both
oversampling in OOB and undersampling in UOB
improve the prediction accuracy on the minority class
and the overall performance greatly compared to
OB. UOB is more effective. These observations are
further confirmed by our statistical test, between UOB
and OOB/OB. Twenty eight pairs of comparisons are
involved for each performance metric. The resulting
p-values are included in brackets in the tables. Those
in bold italics suggest a significant difference between
UOB and the method in the corresponding column.

Moreover, the three models show quite high perfor-
mance in the cases with a ‘safe’ distribution, but the
performance gets much worse in the other cases. Par-
ticularly, OB suffers a greater performance reduction.
It means that ‘borderline’ and ‘rare/outlier’ are harder
distributions than ‘safe’ in online learning. A smaller
IR does not necessarily cause worse performance from
the results here. More details about the impact of data
distribution and IR will be given in Section 4.4.

4.3 Comparison with Other Algorithms
This section compares MLP-based OOB and UOB
with two state-of-the-art methods RLSACP and WOS-
ELM. OOB with a single MLP is included as a

TABLE 4: The final-step G-mean and statistical test
results from tree-based OOB, UOB and OB.

Data OOB UOB OBDistribute IR

safe

30% 0.984±0.001 0.978±0.001 0.983±0.001
(0.00000) (0.00000)

20% 0.981±0.001 0.971±0.001 0.975±0.002
(0.00000) (0.00000)

10% 0.953±0.003 0.959±0.002 0.951±0.003
(0.00000) (0.00000)

5% 0.916±0.000 0.954±0.006 0.936±0.010
(0.00000) (0.00000)

borderline

30% 0.705±0.005 0.735±0.003 0.631±0.009
(0.00000) (0.00000)

20% 0.712±0.003 0.786±0.003 0.500±0.045
(0.00000) (0.00000)

10% 0.636±0.013 0.859±0.004 0.154±0.048
(0.00000) (0.00000)

5% 0.470±0.036 0.872±0.008 0.000±0.000
(0.00000) (0.00000)

30% 0.405±0.014 0.532±0.016 0.181±0.013
(0.00000) (0.00000)

20% 0.565±0.009 0.651±0.011 0.374±0.020
rare/ (0.00000) (0.00000)

outlier 10% 0.435±0.027 0.697±0.007 0.435±0.027
(0.00000) (0.00000)

5% 0.547±0.008 0.641±0.011 0.058±0.069
(0.00000) (0.00000)

Gearbox 0.206±0.023 0.498±0.013 0.000±0.000
(0.00000) (0.00000)

Smart Building 0.609±0.003 0.689±0.008 0.472±0.108
(0.00000) (0.00000)

benchmark, denoted by OOBsg. Tables 5 - 6 present
their final-step minority-class recall and G-mean re-
spectively. We can observe that UOB is the winner
of minority-class recall in most cases, and OOB is
the winner of G-mean. The Wilcoxon Sign Rank test
is thus carried out between UOB and every other
method for minority-class recall and between OOB
and every other method for G-mean. There are 56
pairs of comparison for each metric. P-values are
included in the tables.

Although undersampling in MLP-based UOB im-
proves minority-class recall greatly, we notice that
the majority-class recall is dragged down too much,
which explains why its overall performance is worse
than OOB. RLSACP and WOS-ELM outperform OOB
in terms of minority-class recall in some cases. How-
ever, because their majority-class recall is decreased
more than the increase of minority-class recall, their
G-mean does not beat OOB’s. Besides, we notice
that WOS-ELM presents very large performance vari-
ance in many cases. This is caused by the fact that
the minority-class examples are overemphasized and
the majority-class performance is sacrificed greatly
in some runs. A possible explanation for this phe-
nomenon is that the extreme learning machine (ELM)
used in WOS-ELM was found to be sensitive to
outliers in data and lacks robustness sometimes [31].
Especially after the minority class is further empha-
sized by a higher weight in WOS- ELM, the empirical
risk minimization principle of ELM is more likely to
lead to great bias towards the minority class.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

TABLE 5: The final-step minority-class recall and statistical test results from MLP-based OOB, OOBsg, UOB,
RLSACP and WOS-ELM.

Data OOB UOB RLSACP WOS-ELM OOBsgDistribute IR

safe

30% 0.973±0.004 (0.00000) 0.986±0.001 0.490±0.344 (0.00000) 0.332±0.466 (0.00000) 0.959±0.016 (0.00000)
20% 0.979±0.003 (0.00000) 0.992±0.007 0.551±0.373 (0.00000) 0.283±0.443 (0.00000) 0.960±0.026 (0.00000)
10% 0.923±0.005 (0.00620) 0.900±0.048 0.593±0.302 (0.00000) 0.586±0.466 (0.97450) 0.920±0.010 (0.0231)
5% 0.880±0.000 (0.00000) 0.741±0.120 0.027±0.025 (0.00000) 0.414±0.449 (0.02530) 0.884±0.025 (0.00000)

borderline

30% 0.488±0.016 (0.00000) 0.828±0.036 0.512±0.020 (0.00000) 0.194±0.286 (0.00000) 0.515±0.074 (0.00000)
20% 0.369±0.017 (0.00000) 0.854±0.055 0.535±0.028 (0.00000) 0.520±0.341 (0.00002) 0.392±0.079 (0.00000)
10% 0.293±0.011 (0.00000) 0.806±0.106 0.481±0.064 (0.00000) 0.296±0.398 (0.00000) 0.315±0.060 (0.00000)
5% 0.015±0.008 (0.00000) 0.456±0.212 0.039±0.017 (0.00000) 0.417±0.348 (0.21640) 0.032±0.026 (0.00000)

30% 0.196±0.019 (0.00000) 0.727±0.047 0.493±0.115 (0.00000) 0.559±0.149 (0.00000) 0.303±0.072 (0.00000)
rare/ 20% 0.370±0.011 (0.00000) 0.853±0.052 0.468±0.015 (0.00000) 0.234±0.266 (0.00000) 0.391±0.040 (0.00000)

outlier 10% 0.390±0.015 (0.00000) 0.839±0.088 0.521±0.144 (0.00000) 0.363±0.419 (0.00000) 0.408±0.044 (0.00000)
5% 0.181±0.004 (0.00000) 0.479±0.200 0.111±0.030 (0.00000) 0.164±0.270 (0.00000) 0.212±0.045 (0.00000)

Gearbox 0.008±0.005 (0.00000) 0.697±0.110 0.042±0.023 (0.00000) 0.888±0.022 (0.00000) 0.049±0.037 (0.00000)
Smart Building 0.065±0.014 (0.00000) 0.552±0.075 0.161±0.280 (0.00000) 0.484±0.011 (0.00000) 0.109±0.058 (0.00000)

TABLE 6: The final-step G-mean and statistical test results from MLP-based OOB, OOBsg, UOB, RLSACP and
WOS-ELM.

Data OOB UOB RLSACP WOS-ELM OOBsgDistribute IR

safe

30% 0.972±0.001 0.926±0.007 (0.00000) 0.493±0.345 (0.00000) 0.065±0.066 (0.00000) 0.963±0.006 (0.00000)
20% 0.970±0.001 0.907±0.010 (0.00000) 0.548±0.365 (0.00000) 0.036±0.077 (0.00000) 0.960±0.008 (0.00000)
10% 0.957±0.002 0.842±0.025 (0.00000) 0.593±0.304 (0.00000) 0.146±0.135 (0.00000) 0.955±0.005 (0.00240)
5% 0.933±0.000 0.776±0.040 (0.00000) 0.123±0.105 (0.00000) 0.160±0.181 (0.00000) 0.936±0.013 (0.02430)

borderline

30% 0.586±0.007 0.515±0.022 (0.00000) 0.515±0.079 (0.00000) 0.231±0.137 (0.00000) 0.580±0.026 (0.16150)
20% 0.537±0.010 0.426±0.050 (0.00000) 0.475±0.086 (0.00008) 0.348±0.138 (0.00000) 0.537±0.041 (0.37770)
10% 0.500±0.009 0.374±0.096 (0.00000) 0.467±0.123 (0.02940) 0.189±0.113 (0.00000) 0.509±0.042 (0.09680)
5% 0.104±0.061 0.447±0.060 (0.00000) 0.183±0.055 (0.00000) 0.306±0.172 (0.00000) 0.149±0.093 (0.00001)

30% 0.399±0.016 0.463±0.026 (0.00000) 0.513±0.021 (0.00000) 0.476±0.056 (0.00000) 0.458±0.039 (0.00000)
rare/ 20% 0.561±0.007 0.425±0.060 (0.00000) 0.482±0.093 (0.00000) 0.254±0.228 (0.00000) 0.558±0.022 (0.93770)

outlier 10% 0.598±0.011 0.447±0.094 (0.00000) 0.516±0.153 (0.09300) 0.163±0.170 (0.00000) 0.605±0.030 (0.03150)
5% 0.416±0.004 0.450±0.081 (0.00000) 0.316±0.047 (0.00000) 0.162±0.208 (0.00000) 0.446±0.045 (0.00000)

Gearbox 0.077±0.047 0.459±0.055 (0.00000) 0.189±0.063 (0.00000) 0.289±0.022 (0.00000) 0.198±0.088 (0.00000)
Smart Building 0.243±0.027 0.485±0.020 (0.00000) 0.220±0.081 (0.00033) 0.527±0.004 (0.00000) 0.295±0.082 (0.00000)

OOB and OOBsg have similar performance. OOBsg
shows better G-mean than RLSACP and WOS-ELM in
most cases. This observation confirms that resampling
is the main reason for OOB and UOB outperforming
RLSACP and WOS-ELM, rather than the ensemble of
classifiers.

4.4 Factorial Analysis of Data-Related Factors
and Base Classifiers

We have looked into the effectiveness of OOB and
UOB through algorithm comparisons. Based on the
results so far, we perform a mixed (split-plot) factorial
analysis of variance (ANOVA) [19], to study statisti-
cally whether and how their performance is affected
by types of class imbalance and base classifiers. Three
factors are analysed: data distributions, IR and base
classifiers. There are 3 different levels (settings) for
‘distribution’ (safe, borderline, rare/outlier) and 4
different levels for IR (5%, 10%, 20% and 30%). We
consider 2 levels (types) of base classifiers – decision
tree and MLP. A mixed design is necessary, because
the distribution and IR are between-subjects factors
(their levels vary with the data being used), and the
base classifier is a within-subjects factor (its levels
vary within the data). The factorial design allows the

effects of a factor to be estimated at several levels
of the other factors. The effects of the factors on
the final-step G-mean is discussed. The metric under
observation is also called “response” in ANOVA.

The ANOVA results are presented in Table 7,
including p-value and eta-squared (η2). A p-value
smaller than 0.05 indicates a significant difference by
rejecting the null hypothesis under the significance
level of 5%. η2 is a measure in the range of [0, 1]
describing the effect size. The larger the η2, the greater
the effect of the factor. It is worth mentioning here
that η2 is calculated separately for between-subjects
and within-subjects factors [32]. For the cases with
only between-subjects factors and the cases involving
within-subjects factors, the sum of η2 of the factor
effects and the associated standard errors is equal to
1 respectively.

Table 7 shows the factor effects on G-mean. All
the p-values are much smaller than 0.05, suggesting
that all the three factors and their interactions have
a significant impact on G-mean. According to η2,
the effect of data distribution (0.842 for OOB and
0.941 for UOB) is much larger than the effects of
IR (0.063 for OOB and 0.001 for UOB) and the base
classifier (0.201 for OOB and 0.692 for UOB). The effect



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

TABLE 7: Factor effects of data distributions (abbr.
Dis), imbalance rates (abbr. IR) and base classifiers
(abbr. BC), and their interaction effects on G-mean
from OOB and UOB. The symbol “*” indicates the
interaction between two factors.

Between-Subjects Effects
OOB UOB

p-val η2 p-val η2

Dis 0.000 0.842 0.000 0.941
IR 0.000 0.063 0.029 0.001

IR*Dis 0.000 0.091 0.000 0.028
Within-Subjects Effects

OOB UOB
p-val η2 p-val η2

BC 0.000 0.201 0.000 0.692
BC*Dis 0.000 0.438 0.000 0.182
BC*IR 0.000 0.181 0.000 0.062

BC*Dis*IR 0.000 0.152 0.000 0.019

of IR on UOB is much smaller than that on OOB,
suggesting that UOB is less sensitive to the imbalance
rate. The effect of base classifiers on OOB is much
smaller than that on UOB, suggesting that OOB is less
sensitive to the choice of base classifiers. Generally
speaking, the minority-class distribution is a major
factor affecting the performance of OOB and UOB,
compared to which their performance is quite robust
to the imbalance rate.

5 CLASS IMBALANCE ANALYSIS IN DY-
NAMIC DATA STREAMS

This section focuses on the dynamic feature of on-
line class imbalance. Different from existing concept
drift methods that mainly aim for changes in class-
conditional probability density functions, we look into
the performance of OOB and UOB when tackling data
streams with imbalance status changes (i.e. changes in
class prior probabilities). In other words, IR is chang-
ing over time. It happens in real-world problems.
For example, given the task of detecting faults in a
running engineering system, the faulty class is usually
the minority class that rarely occurs. The faults can
become more and more frequent over time, if the
damaged condition gets worse; or the faults are not
likely to happen from some moment, because the
faulty system is repaired. Dynamic data are more
challenging than static ones, because the online model
needs to sense the change and adjust its learning bias
quickly to maintain its performance. Different types of
changes in imbalance status are designed and studied
here, varying in changing speed and severity.

The adaptivity and robustness of OOB and UOB are
studied by answering the following questions: 1) how
does the time-decayed metric used in OOB and UOB
help to handle the imbalance change? 2) How do OOB
and UOB perform in comparison with other state-of-
the-art algorithms under dynamic scenarios? 3) How
is their performance affected by the decay factor? For
the first question, OOB and UOB are compared with

those applying the traditional method of updating the
class size. For the second question, OOB and UOB are
compared with RLSACP and WOS-ELM. For the final
question, ANOVA using a repeated measure design is
performed to analyse the impact of the decay factor.

5.1 Data Description and Experimental Settings

In this section, we first describe the dynamic imbal-
anced data used in the experiment, covering various
types of changes in terms of changing severity and
speed. Then, we give the algorithm settings and ex-
perimental designs.

5.1.1 Data
Three data sources are used to produce dynamic data
streams – Gaussian data, Gearbox and Smart Building.
By using the same data generation method as de-
scribed in Section 4.1, we produce two-class Gaussian
data streams formed of two numeric attributes and a
class label that can be +1 or -1. Each class follows the
multivariate Gaussian distribution. Some overlapping
between classes is enabled for a certain level of data
complexity. Gearbox and Smart Building are fault de-
tection data from the real-world applications used in
the previous section, containing a faulty class (+1) and
a nonfaulty class (-1). We limit the length of each data
stream to 1000 examples. Different from static data
streams, the dynamic ones involve a class imbalance
change right after time step 500. During the first 500
time steps, IR is fixed to 10% and the positive class
is the minority. From time step 501, a change occurs
at a certain speed and severity. Four data streams
are generated from each data source. Each type is a
combination of two changing severity levels and two
changing speeds. The changing severity can be either
high or low; the changing speed can be either abrupt
or gradual. The concrete change settings are:
• High severity: the negative class becomes the

minority with IR 10% in the new status.
• Low severity: the data stream becomes balanced

(i.e. IR = 50%) in the new status.
• Abrupt change: the length of the changing period

is 0. The new status completely takes over the
data stream from time step 501.

• Gradual change: the change lasts for 300 time
steps. During the changing period, the probabil-
ity of examples being drawn from the old joint
distribution decreases linearly.

5.1.2 Settings

When studying how the time-decayed class size w(t)
k

in OOB and UOB helps the classification in dynamic
data streams, we replace w

(t)
k with the class size

updated in the traditional way, which considers all
observed examples so far equally. They are denoted
by OOBtr and UOBtr and compared with OOB and



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

UOB. All the methods here build an ensemble model
composed of 50 Hoeffding trees.

When discussing the adaptivity of OOB and UOB
in comparison with RLSACP and WOS-ELM, MLP is
used as the base classifier of OOB and UOB as before.
Both OOB and UOB consist of 50 MLPs. OOB with
a single MLP (OOBsg) is included as the benchmark.
The window size for updating the error cost of classes
is shortened to 50 time steps in RLSACP, to encourage
a faster response to the change. The error cost in the
original WOS-ELM was updated based on a separate
validation data set in the original article [18], which
however may not be available in many real-world
problems, or expire over time. To allow the same level
of adaptivity as OOB and UOB, the time-decayed
class sizes are used to set the costs in WOS-ELM.
Specifically, the error cost of the majority class is
always equal to 1; the error cost of the minority class is
set to w(t)

maj/w
(t)
min, where w(t)

maj and w
(t)
min are the time-

decayed sizes of the current majority and minority
classes respectively.

The same as in Section 4, the prequential recall
and G-mean are tracked to observe the performance
before and after the change. For a clear and accurate
understanding of OOB and UOB learning dynamic
data, we divide the prequential evaluation process
into three stages, old-status stage, changing stage
and new-status stage, by resetting the performance
metrics to 0 between the stages. In more details, for
the data with an abrupt change (where there is no
changing stage), recall and G-mean are reset after
time step 500, when the change starts and ends; for
the data with a gradual change (where the changing
stage is 300 time-step long), recall and G-mean are
reset after time step 500 and 800. This is to ensure
that the performance observed after the change is
not affected by the performance before the change.
Prequential performance curves will be presented to
help visualize the performance behaviors at each time
step and the impacts of changes. For a quantitative
understanding, we will provide the average prequen-
tial performance covering all the time steps during
the new-status stage. It can better reflect the influence
of the status change than the final-step performance.
The Wilcoxon Sign Rank test with Holm-Bonferroni
corrections is applied for statistical analysis.

5.2 Role of the Time-Decayed Metric

In this section, we aim to find out: 1) how different
types of imbalance changes affect the performance
of OOB and UOB; 2) whether and how the time-
decayed class size in OOB and UOB facilitates learn-
ing in dynamic data streams, through the comparison
with OOBtr and UOBtr. To understand the impact of
change on each class, we monitor the behaviours of
prequential recall of minority and majority classes
individually along with time. Fig. 1 presents the recall

curves produced from the data streams using data
source Smart Building.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

P
os

iti
ve

 C
la

ss
 R

ec
al

l

Abrupt Change with High Severity

 

 

OOB
UOB
OOB

tr

UOB
tr

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

N
eg

at
iv

e 
C

la
ss

 R
ec

al
l

Abrupt Change with High Severity

 

 

OOB
UOB
OOB

tr

UOB
tr

(a) Abrupt change with high severity

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

P
os

iti
ve

 C
la

ss
 R

ec
al

l

Abrupt Change with Low Severity

 

 

OOB
UOB
OOB

tr

UOB
tr

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

N
eg

at
iv

e 
C

la
ss

 R
ec

al
l

Abrupt Change with Low Severity

 

 

OOB
UOB
OOB

tr

UOB
tr

(b) Abrupt change with low severity

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

P
os

iti
ve

 C
la

ss
 R

ec
al

l

Gradual Change with High Severity

 

 

OOB
UOB
OOB

tr

UOB
tr

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

N
eg

at
iv

e 
C

la
ss

 R
ec

al
l

Gradual Change with High Severity

 

 

OOB
UOB
OOB

tr

UOB
tr

(c) Gradual change with high severity

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

P
os

iti
ve

 C
la

ss
 R

ec
al

l

Gradual Change with Low Severity

 

 

OOB
UOB
OOB

tr

UOB
tr

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

N
eg

at
iv

e 
C

la
ss

 R
ec

al
l

Gradual Change with Low Severity

 

 

OOB
UOB
OOB

tr

UOB
tr

(d) Gradual change with low severity

Fig. 1: Prequential recall curves of positive (left) and
negative (right) classes from OOB, UOB, OOBtr and
UOBtr on Smart Building data with 4 types of changes.

For the abrupt change with high severity, before
the change happens, UOB and UOBtr have better
minority(positive)-class recall than OOB and OOBtr,
which confirms that undersampling is a more aggres-
sive technique of emphasizing the minority class than
oversampling. After time step 500 when this class
becomes the majority abruptly, all methods present
a rapid growth in recall, especially for OOBtr and
UOBtr. The growth is caused by the frequent arrival
of positive-class examples; OOBtr and UOBtr increase



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

faster than OOB and UOB, because the imbalance
status obtained by using the traditional method still
shows that this class is the minority within a period
of time after the change. So, the wrong resampling
technique is applied, which emphasizes this class
even when it has become the majority. The time-
decayed class size in OOB and UOB reflects the correct
imbalance status quickly, and thus OOB and UOB
adjust their focus on the correct class after the change.

In terms of negative-class recall, when this class
turns from the majority to the minority, all the meth-
ods present a more or less reduced recall; OOB is
the most resistant. One reason for the reduction is
the performance trade-off between classes. As the
positive class becomes the majority with a great per-
formance improvement, the performance of the other
class would be compromised to some extent. UOB
suffers from a greater reduction than OOB right after
the change, because undersampling makes the online
model learn less knowledge about this class before the
change. Even so, the recall from UOB recovers faster
than OOBtr and UOBtr. When OOBtr and UOBtr still
treat this class as the majority after the change, UOB
has already realized its minority status and applied
undersampling to the other class. The robustness of
OOB and the adaptivity of UOB prove the benefits of
using time-decayed class size and the importance of
considering real-time status of data streams.

The other three types of changes present similar
results. The positive-class recall presents a fast in-
crease, and the negative-class recall is decreased, after
the change occurs. Among the four methods, UOB is
the best at recognizing the minority-class examples
before the change; OOB is the most resistant method
to changes; UOB is affected more by the changes than
OOB on the old majority class, but its performance
recovers faster than OOBtr and UOBtr. For the space
consideration, the plots from Gaussian and Gearbox
were omitted, from which similar results are obtained.

To understand how the overall performance is af-
fected, we compare average G-mean over the new-
status stage. Table 8 shows its means and standard
deviations from 100 runs for the Smart Building data.
P-values from the Wilcoxon Sign Rank test between
OOB and every other method are included in brack-
ets, among which the ones in bold italics suggest
a significant difference. We can see that OOBtr and
UOBtr are significantly worse than OOB and UOB,
because of the incorrectly detected imbalance rate.
Although the above results show that UOB suffers
from a performance reduction on the old majority
class, its G-mean still outperforms OOB in some cases,
because of its fast performance recovery on this class
through undersampling using the correctly estimated
imbalance rate.

In conclusion, when there is an imbalance status
change in the data stream, OOB is the least affected.
A performance drop on the old majority class occurs

to UOB after the change, but its performance recovers
rapidly. It is necessary to use the time-decayed metric
for choosing the correct resampling technique and
estimating the imbalance status.

5.3 Comparison with Other Algorithms
This section discusses the performance of MLP-based
OOB and UOB on the above dynamic data, in compar-
ison with RLSACP and WOS-ELM. OOB containing a
single MLP (OOBsg) is included as the benchmark.
Average G-mean over the new-status stage and the
p-values produced from the Wilcoxon Sign Rank test
between OOB and the others are shown in Table 9.
“NaN” p-value in the table means that the two groups
of samples for the statistical test are exactly the same.

The results show that MLP-based OOB and UOB
are quite competitive. In Gaussian data, UOB shows
worse G-mean than OOB, because the imbalance
change causes larger recall degradation on the old ma-
jority class. In Gearbox and Smart Building data, OOB
produces zero G-mean in 2 cases, which is caused by
zero negative-class recall. In these two cases where the
negative class turns from the majority to the minority
gradually, because OOB is not so aggressive as UOB
at recognizing minority-class examples, it could not
adjust the learning bias to the new minority class
quickly enough. That is not observed in tree-based
OOB, as the decision tree was shown to be a more
stable base classifier than MLP based on the results
in Section 4. OOB and UOB outperform RLSACP
and WOS-ELM in most cases. Although WOS-ELM
applies the same time-decayed metric for updating
misclassification costs as in OOB and UOB, its G-
mean remains zero in many cases, caused by the
zero recall of the old minority class. This class is not
well learnt before the change, and its recall value
remains low after the change because no emphasis is
given to this class. Resampling is simply a better class
imbalance strategy than adjusting class costs through
the comparison with OOBsg, which tallies with our
observation in the previous section.

5.4 Factorial Analysis of the Decay Factor
Section 5.2 has shown the key role of using the time-
decayed class size w

(t)
k for deciding the resampling

rate in OOB and UOB. According to our preliminary
experiments [6], the decay factor θ in its definition
formula (Eq. 1) is set to 0.9 in the above experi-
ments. Too small values of θ (< 0.8) emphasize the
current performance too much, which can affect the
performance stability considerably. On the contrary,
too large values (> 0.95) can deteriorate the adaptivity
of online models to dynamic changes. Within a rea-
sonable setting range, this section studies the impact
of the decay factor on the performance of OOB and
UOB statistically. One-way ANOVA using a repeated
measure design is conducted.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 8: Average G-mean during the new-status stage and statistical test results from tree-based OOB, UOB,
OOBtr and UOBtr on Smart Building. (Change type: H, high severity; L, low severity; A, abrupt; G, gradual)

Change OOB UOB OOBtr UOBtr
H A 0.693±0.004 0.763±0.012 (0.00000) 0.389±0.018 (0.00000) 0.662±0.016 (0.00000)
H G 0.609±0.001 0.462±0.012 (0.00000) 0.000±0.000 (0.00000) 0.208±0.123 (0.00000)
L A 0.675±0.002 0.701±0.006 (0.00000) 0.446±0.025 (0.00000) 0.639±0.006 (0.00000)
L G 0.679±0.001 0.683±0.020 (0.29420) 0.000±0.000 (0.00000) 0.511±0.022 (0.00000)

TABLE 9: Average G-mean during the new-status stage and statistical test results from MLP-based OOB, OOBsg,
UOB, RLSACP and WOS-ELM. (Change type: H, high severity; L, low severity; A, abrupt; G, gradual)

Data Change OOB UOB RLSACP WOS-ELM OOBsg

Gaussian

H A 0.532±0.034 0.019±0.013 (0.00000) 0.366±0.096 (0.00000) 0.090±0.125 (0.00000) 0.544±0.049 (0.07080)
H G 0.360±0.002 0.359±0.011 (0.00440) 0.388±0.089 (0.04490) 0.037±0.095 (0.00000) 0.350±0.010 (0.00000)
L A 0.795±0.003 0.521±0.025 (0.00000) 0.439±0.210 (0.00000) 0.022±0.074 (0.00000) 0.778±0.013 (0.00000)
L G 0.811±0.001 0.758±0.015 (0.00000) 0.613±0.118 (0.00000) 0.015±0.056 (0.00000) 0.813±0.010 (0.00160)

Gearbox

H A 0.293±0.009 0.201±0.032 (0.00000) 0.438±0.012 (0.00000) 0.000±0.000 (0.00000) 0.261±0.113 (0.54110)
H G 0.000±0.000 0.364±0.119 (0.00000) 0.140±0.126 (0.00000) 0.000±0.000 (NaN) 0.161±0.177 (0.00000)
L A 0.452±0.014 0.479±0.012 (0.00000) 0.378±0.031 (0.00000) 0.000±0.000 (0.00000) 0.430±0.056 (0.01470)
L G 0.408±0.032 0.432±0.023 (0.00000) 0.055±0.095 (0.00000) 0.000±0.000 (0.00000) 0.373±0.080 (0.00078)
H A 0.276±0.028 0.261±0.052 (0.04740) 0.135±0.156 (0.00000) 0.123±0.008 (0.00000) 0.229±0.131 (0.03530)

Smart H G 0.000±0.000 0.140±0.091 (0.12090) 0.157±0.188 (0.00000) 0.000±0.000 (NaN) 0.063±0.094 (0.00000)
Building L A 0.451±0.019 0.435±0.016 (0.00000) 0.228±0.144 (0.00000) 0.000±0.000 (0.00000) 0.441±0.044 (0.23750)

L G 0.443±0.023 0.485±0.018 (0.00000) 0.080±0.078 (0.00000) 0.000±0.000 (0.00000) 0.374±0.112 (0.00000)

We choose three levels (settings) for the factor θ –
0.8, 0.9 and 0.95. DT-based OOB and UOB are applied
to the Smart Building data with an abrupt change in
high severity, under each setting of θ. The response
in this ANOVA is the average prequential G-mean
during the new-status stage of class imbalance. It is
worth nothing that the data groups under different
factor levels violate the assumption of sphericity in
ANOVA based on Mauchly’s test, i.e. the level of
dependence between pairs of groups is not equal.
Therefore, Greenhouse-Geisser correction is used [33].
The ANOVA and performance results are shown in
Table 10.

TABLE 10: ANOVA results and average G-mean from
OOB and UOB after the change.

ANOVA Average G-mean
p-val η2 θ = 0.8 θ = 0.9 θ = 0.95

OOB 0.000 0.989 0.726 0.693 0.643
UOB 0.018 0.077 0.763 0.763 0.760

According to the p-values and effect size η2, we can
see that the decay factor has a significant impact on
both OOB and UOB (p-val < 0.05). The effect on OOB
is much higher than the effect on UOB. For OOB,
a relatively smaller θ seems to be beneficial to its
performance, implying that adapting to the change
sooner may help OOB to respond to the new minority
class better. UOB is less sensitive to the setting of θ.

6 ENSEMBLES OF OOB AND UOB
UOB has been shown to be a better choice than
OOB in terms of minority-class recall and G-mean.
However, it has some weaknesses when the majority
class in the data stream turns into the minority class.
OOB has been shown to be more robust against

changes. To combine the strength of OOB and UOB,
this section proposes new methods based on the
idea of ensembles, which train and maintain both
OOB and UOB. A weight is maintained for each of
them, adjusted adaptively according to their current
performance measured by G-mean. Their combined
weighted vote will decide the final prediction.

Recalling the definition of time-decayed recall R(t)

in Section 2.1, we use R(t) to calculate real-time G-
mean for deciding the weights of online learners. It is
adaptive to dynamic changes through the time decay
factor, and reflects the current performance better
than the prequential recall. However, we find that
R(t) presents a large variance between time steps,
which may result in misleading and unstable weights.
So, we introduce the simple moving average (SMA)
technique to smooth out the short-term fluctuations
of R(t) curves. Given l values of R(t), smoothed recall
SR(t) at time step t is defined as,

SR(t) =
R(t) + . . .+R(t−bl/2c) + . . .+R(t−l)

l
.

SR(t) looks back l time steps for the smoother recall.
Using SR(t), we next introduce the weighted ensem-
ble methods of OOB and UOB, tested on the real-
world data in comparison with individual OOB and
UOB.

6.1 Weighted Ensemble of OOB and UOB
By calculating SMA of recall of both classes, we can
obtain current G-mean. It is used to determine the
weights of OOB and UOB. Their weighted ensemble,
denoted as WEOB, is expected to be both accurate
and robust in dynamic environments, as it adopts the
better strategy (OOB or UOB) for different situations.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

Two weight adjusting strategies are proposed and
compared here. Suppose OOB has G-mean value go
and UOB has G-mean value gu at the current moment.
Let αo and αu denote the weights of OOB and UOB
respectively. In the first strategy, normalized G-mean
values of OOB and UOB are used as their weights:

αo =
go

go + gu
, αu =

gu
go + gu

.

In the second strategy, the weights can only be
binary values (0 or 1):{

αo = 1, αu = 0 if go ≥ gu
αo = 0, αu = 1 if go < gu

In other words, the final prediction will solely depend
on the online model with the higher G-mean. Let’s
denote these two strategies as WEOB1 and WEOB2.
WEOB1 follows the traditional idea of ensemble. From
the statistical point of view, combining the outputs of
several classifiers by averaging can reduce the risk
of an unfortunate selection of a poorly performing
classifiers and thus provide stable and accurate per-
formance [34], although the averaging may or may
not beat the performance of the best classifiers in the
ensemble (used by WEOB2). Therefore, it is worth
looking into both strategies.

6.2 Data Description and Experimental Settings

To compare WEOB1 and WEOB2 with OOB and UOB,
we generate two data streams from real-world appli-
cations Gearbox and Smart Building. Each data stream
contains 5000 time steps. At every 500 time steps,
our data generation algorithm randomly chooses one
class to be the minority class, and fixes the imbalance
rate randomly chosen from set {5%, 10%, 20%}. By
doing so, there could be an abrupt change in the
class imbalance status after every 500 examples have
arrived. The detailed information of the resulting data
is summarized in Table 11, including which class
belongs to the minority during which period of time.

TABLE 11: Data Stream Description.

Data Class label Time steps of being minority
Gearbox Positive 1-500, 1501-2000, 3001-4500

Negative 501-1500, 2001-3000, 4501-5000
Smart Building Positive 1-500, 1501-2000, 3001-4000

Negative 501-1500, 2001-3000, 4001-5000

WEOB1 and WEOB2 combine one OOB and one
UOB composed of 50 base classifiers respectively. All
methods use Hoeffding tree as the base classifier. l is
set to 51 for calculating SR(t). All the other parameter
settings remain the same. Prequential recall and G-
mean are recorded at each time step. The performance
metrics are reset to 0 after every 500 time steps for a
clear observation.

6.3 Experimental Analysis

Prequential recall curves are shown in Fig. 2. Each
plot compares WEOB1, WEOB2, OOB and UOB. We
can see that, during the static periods of 500 time
steps between the performance resettings, when OOB
and UOB present a significant performance difference,
WEOB1 and WEOB2 always locate in between OOB
and UOB. When UOB suffers from a recall reduction
caused by the class imbalance change, WEOB1 and
WEOB2 are shown to be less affected by the change.

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

P
os

iti
ve

−
cl

as
s 

R
ec

al
l

Gearbox

 

 
OOB
UOB
WEOB1
WEOB2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

N
eg

at
iv

e−
cl

as
s 

R
ec

al
l

Gearbox

 

 

OOB
UOB
WEOB1
WEOB2

(a) Gearbox

0 1000 2000 3000 4000 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

P
os

iti
ve

−
cl

as
s 

R
ec

al
l

Smart Building

 

 

OOB
UOB
WEOB1
WEOB2

0 1000 2000 3000 4000 5000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time Steps
N

eg
at

iv
e−

cl
as

s 
R

ec
al

l

Smart Building

 

 

OOB
UOB
WEOB1
WEOB2

(b) Smart Building

Fig. 2: Prequential recall of positive (left) and negative
(right) classes.

With respect to the overall performance, Table 12
compares the average prequential G-mean during the
500 time steps after each status change, including its
mean and standard deviation over 100 runs, and the
p-values from Wilcoxon Sign Rank test performed
between WEOB2 and every other method. The com-
parative results from this table tally with our results
on recall. WEOB1 and WEOB2 are better than or locate
in between single OOB and UOB in 9 out of 10 cases.
On the Gearbox data, WEOB2 is competitive with
UOB, and outperforms the other two in most cases
significantly; on the Smart Building data, WEOB2
seems to be slightly worse than OOB, and better
than the other two in most cases. Overall, WEOB2
outperforms WEOB1 significantly in 6 out of 10 cases,
in terms of G-mean.

Generally speaking, WEOB1 and WEOB2 success-
fully combine the strength of OOB and UOB. They
achieve high performance in terms of recall and G-
mean, and show good robustness to changes in the
class imbalance status. Particularly, WEOB2 shows
better G-mean than WEOB1.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

TABLE 12: Average G-mean from tree-based OOB, UOB, WEOB1 and WEOB2 during the 500 time steps after
each status change, and statistical test results (in brackets). Values in bold italics indicate a statistically
significant difference.

Data Status change OOB UOB WEOB1 WEOB2
moments

Gearbox

500 0.237±0.045 (0.00000) 0.466±0.012 (0.12160) 0.364±0.014 (0.00000) 0.463±0.012
1500 0.397±0.056 (0.00000) 0.296±0.124 (0.00510) 0.395±0.079 (0.00830) 0.404±0.072
2000 0.329±0.015 (0.00000) 0.494±0.024 (0.00002) 0.424±0.018 (0.00000) 0.485±0.024
3000 0.371±0.022 (0.00000) 0.412±0.015 (0.00000) 0.437±0.015 (0.00000) 0.458±0.025
4500 0.309±0.039 (0.00000) 0.480±0.010 (0.00000) 0.424±0.023 (0.00000) 0.443±0.024
500 0.841±0.011 (0.00000) 0.770±0.008 (0.00000) 0.821±0.016 (0.00200) 0.831±0.015

Smart 1500 0.867±0.025 (0.22690) 0.793±0.009 (0.00000) 0.843±0.011 (0.00000) 0.865±0.022
Building 2000 0.872±0.011 (0.01240) 0.779±0.016 (0.00000) 0.886±0.003 (0.00000) 0.868±0.015

3000 0.865±0.009 (0.04100) 0.856±0.035 (0.67880) 0.854±0.002 (0.18780) 0.861±0.013
4000 0.849±0.014 (0.00410) 0.823±0.007 (0.00000) 0.839±0.005 (0.17010) 0.842±0.017

7 CONCLUSIONS

As one of the earliest works focusing on online class
imbalance learning, this paper improved and studied
in depth two ensemble learning methods OOB and
UOB using resampling and the time-decayed metric
to overcome class imbalance online. Four major con-
tributions have been made.

First, the original OOB and UOB were improved
with a better resampling strategy, in which the sam-
pling rate is consistent with the imbalance degree
in the data stream. Second, they were analysed in a
group of static data streams varying in data distribu-
tions and imbalance rates. Both oversampling in OOB
and undersampling in UOB were shown to facilitate
the recognition of minority-class examples with im-
proved minority-class recall and G-mean. They also
outperformed two recently proposed algorithms RL-
SACP [17] and WOS-ELM [18] for learning imbal-
anced data streams. To find out which fundamental
factors affect the performance of OOB and UOB the
most, three factors were investigated through facto-
rial ANOVA, which are data distributions, imbalance
rates and types of base classifiers. All of them had
significant impacts on G-mean. The data distribution
was found to be the most influential factor. Decision
tree was a better base classifier than MLP. Among
all discussed models, tree-based UOB showed the
best minority-class recall and G-mean on the static
data streams. Third, to examine the adaptivity and
robustness, OOB and UOB were studied in dynamic
data streams involving class imbalance changes with
different speed and severity. The time-decayed class
size played an important role in responding to the
change correctly and timely. However, it was found
that UOB suffers from a great performance reduction
right after the change, while OOB is more robust
against this situation. Finally, to combine the strength
of OOB and UOB, we proposed two weighted en-
semble methods – WEOB1 and WEOB2. Both showed
better accuracy than OOB and better robustness than
UOB. WEOB2 outperformed WEOB1 in terms of G-
mean.

In the future, we would like to extend our work to

multi-class cases. Second, we would like to study our
methods in data streams with concept drifts. Third,
the work presented in this paper relied heavily on
computational experiments. More theoretical studies
will be given.

ACKNOWLEDGMENTS

This work was supported by two European Com-
mission FP7 Grants (Nos. 270428 and 257906) and
an EPSRC Grant (No. EP/J017515/1). Xin Yao was
supported by a Royal Society Wolfson Research Merit
Award.

REFERENCES

[1] L. L. Minku, “Online ensemble learning in the presence of
concept drift,” Ph.D. dissertation, School of Computer Science,
The University of Birmingham, 2010.

[2] H. He and E. A. Garcia, “Learning from imbalanced data,”
IEEE Transactions on Knowledge and Data Engineering, vol. 21,
no. 9, pp. 1263–1284, 2009.

[3] N. C. Oza and S. Russell, “Experimental comparisons of online
and batch versions of bagging and boosting,” in Proceedings of
the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2001, pp. 359–364.

[4] J. Meseguer, V. Puig, and T. Escobet, “Fault diagnosis using
a timed discrete-event approach based on interval observers:
Application to sewer networks,” IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, vol. 40, no. 5,
pp. 900–916, 2010.

[5] G. M. Weiss, “Mining with rarity: a unifying framework,”
ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 7–19,
2004.

[6] S. Wang, L. L. Minku, and X. Yao, “A learning framework
for online class imbalance learning,” in IEEE Symposium on
Computational Intelligence and Ensemble Learning (CIEL), 2013,
pp. 36–45.

[7] N. Japkowicz and S. Stephen, “The class imbalance problem:
A systematic study,” Intelligent Data Analysis, vol. 6, no. 5, pp.
429 – 449, 2002.

[8] N. C. Oza, “Online bagging and boosting,” IEEE International
Conference on Systems, Man and Cybernetics, pp. 2340–2345,
2005.

[9] J. V. Hulse, T. M. Khoshgoftaar, and A. Napolitano, “Ex-
perimental perspectives on learning from imbalanced data,”
in Proceedings of the 24th international conference on Machine
learning, 2007, pp. 935–942.

[10] C. Elkan, “The foundations of cost-sensitive learning,” in
Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI’01), 2001, pp. 973–978.

[11] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[12] S. Chen, H. He, K. Li, and S. Desai, “MuSeRA: Multiple se-
lectively recursive approach towards imbalanced stream data
mining,” in International Joint Conference on Neural Networks,
2010, pp. 1–8.

[13] S. Chen and H. He, “Towards incremental learning of non-
stationary imbalanced data stream: a multiple selectively re-
cursive approach,” Evolving Systems, vol. 2, no. 1, pp. 35–50,
2010.

[14] G. Ditzler and R. Polikar, “Incremental learning of concept
drift from streaming imbalanced data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 10, pp. 2283 – 2301,
2013.

[15] H. M. Nguyen, E. W. Cooper, and K. Kamei, “Online learning
from imbalanced data streams,” in International Conference of
Soft Computing and Pattern Recognition (SoCPaR), 2011, pp. 347–
352.

[16] L. L. Minku and X. Yao, “DDD: A new ensemble approach for
dealing with concept drift,” IEEE Transactions on Knowledge and
Data Engineering, vol. 24, no. 4, pp. 619 –633, 2012.

[17] A. Ghazikhani, R. Monsefi, and H. S. Yazdi, “Recursive least
square perceptron model for non-stationary and imbalanced
data stream classification,” Evolving Systems, vol. 4, no. 2, pp.
119–131, 2013.

[18] B. Mirza, Z. Lin, and K.-A. Toh, “Weighted online sequential
extreme learning machine for class imbalance learning,” Neu-
ral Processing Letters, vol. 38, no. 3, pp. 465–486, 2013.

[19] D. C. Montgomery, Design and Analysis of Experiments. Great
Britain: John Wiley and Sons, 2004.

[20] T. Jo and N. Japkowicz, “Class imbalances versus small dis-
juncts,” in ACM SIGKDD Explorations Newsletter, vol. 6, 2004,
pp. 40–49.

[21] R. C. Prati, G. E. Batista, and M. C. Monard, “Class imbalances
versus class overlapping: An analysis of a learning system
behavior,” Lecture Notes in Computer Science, vol. 2972, pp. 312–
321, 2004.

[22] V. Garcia, J. Sanchez, and R. Mollineda, “An empirical study
of the behavior of classifiers on imbalanced and overlapped
data sets,” Progress in Pattern Recognition, Image Analysis and
Applications, vol. 4756, pp. 397–406, 2007.

[23] K. Napierala and J. Stefanowski, “Identification of different
types of minority class examples in imbalanced data,” Hybrid
Artificial Intelligent Systems, vol. 7209, pp. 139–150, 2012.

[24] “2009 PHM challenge competition data set,” The Prognostics
and Health Management Society (PHM Society). [Online].
Available: http://www.phmsociety.org/references/datasets

[25] M. P. Michaelides, V. Reppa, C. Panayiotou, and M. Polycar-
pou, “Contaminant event monitoring in intelligent buildings
using a multi-zone formulation,” in 8th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Processes
(SAFEPROCESS), vol. 8, 2012, pp. 492–497.

[26] G. Hulten, L. Spencer, and P. Domingos, “Mining time-
changing data streams,” in Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2001, pp. 97–106.

[27] MOA Massive online analysis: Real time analytics for data
streams. [Online]. Available: http://moa.cms.waikato.ac.nz/

[28] S. Wang, L. L. Minku, D. Ghezzi, D. Caltabiano, P. Tino, and
X. Yao, “Concept drift detection for online class imbalance
learning,” in International Joint Conference on Neural Networks
(IJCNN ’13), 2013, pp. 1–8.

[29] S. Wang, L. L. Minku, and X. Yao, “Online class imbalance
learning and its applications in fault detection,” International
Journal of Computational Intelligence and Applications, vol. 12, pp.
1 340 001(1–19), 2013.

[30] M. Kubat and S. Matwin, “Addressing the curse of imbalanced
training sets: One-sided selection,” in Proc. 14th International
Conference on Machine Learning, 1997, pp. 179–186.

[31] S. Ding, H. Zhao, Y. Zhang, X. Xu, and R. Nie, “Extreme
learning machine: algorithm, theory and applications,” Arti-
ficial Intelligence Review, p. (In Print), 2013.

[32] C. A. Pierce, R. A. Block, and H. Aguinis, “Cautionary note on
reporting eta-squared values from multifactor anova designs,”
Educational and Psychological Measurement, vol. 64, pp. 916–924,
2004.

[33] S. W. Greenhouse and S. Geisser, “On methods in the analysis
of profile data,” Psychometrika, vol. 24, no. 2, pp. 95–112, 1959.

[34] R. Polikar, “Ensemble based systems in decision making,”
IEEE Circuits and Systems Magazine, vol. 6, no. 3, pp. 21–45,
2006.

Shuo Wang is a Research Fellow at the
Centre of Excellence for Research in Compu-
tational Intelligence and Applications (CER-
CIA) in the School of Computer Science,
the University of Birmingham (UK). She re-
ceived the B.Sc. degree in Computer Sci-
ence from the Beijing University of Tech-
nology (BJUT), China, in 2006, and was a
member of Embedded Software and System
Institute in BJUT in 2007. She received the
Ph.D. degree in Computer Science from the

University of Birmingham, U.K., in 2011, sponsored by the Overseas
Research Students Award (ORSAS) from the British Government
(2007). Dr. Wang’s research interests include class imbalance learn-
ing, ensemble learning, online learning and machine learning in
software engineering. Her work has been published in internationally
renowned journals and conferences.

Leandro L. Minku is a Research Fellow II
at the Centre of Excellence for Research in
Computational Intelligence and Applications
(CERCIA), School of Computer Science, the
University of Birmingham (UK). He received
the BSc, MSc and PhD degrees in Com-
puter Science from the Federal University of
Parana (Brazil) in 2003, the Federal Univer-
sity of Pernambuco (Brazil) in 2006, and the
University of Birmingham (UK) in 2010, re-
spectively. He was an intern at Google Zurich

for six months in 2009/2010, the recipient of the Overseas Research
Students Award (ORSAS) from the British government, and of sev-
eral scholarships from the Brazilian Council for Scientific and Tech-
nological Development (CNPq). Dr. Minku’s main research interests
include machine learning in changing environments, ensembles of
learning machines, machine learning for software engineering and
search-based software engineering. His work has been published
in internationally renowned journals such as IEEE Transactions on
Knowledge and Data Engineering, IEEE Transactions on Software
Engineering and ACM Transactions on Software Engineering and
Methodology.

Xin Yao is a Chair (Professor) of Computer
Science and the Director of CERCIA (the
Centre of Excellence for Research in Com-
putational Intelligence and Applications) at
the University of Birmingham, UK. He is an
IEEE Fellow and the President (2014-15)
of IEEE Computational Intelligence Society
(CIS). His work won the 2001 IEEE Don-
ald G. Fink Prize Paper Award, 2010 IEEE
Transactions on Evolutionary Computation
Outstanding Paper Award, 2010 BT Gordon

Radley Award for Best Author of Innovation (Finalist), 2011 IEEE
Transactions on Neural Networks Outstanding Paper Award, and
many other best paper awards. He won the prestigious Royal Society
Wolfson Research Merit Award in 2012 and the IEEE CIS Evo-
lutionary Computation Pioneer Award 2013. He was the Editor-in-
Chief (2003-08) of IEEE Transactions on Evolutionary Computation.
His major research interests include evolutionary computation and
ensemble learning. He published 200+ refereed international journal
papers.


