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Abstract. Run-time reconfiguration provides an opportunity to increase
performance, reduce cost and improve energy efficiency in FPGA-based
systems. However, run-time reconfigurable systems are more complex
to implement than static only systems. This increases time to market,
and introduces run-time overhead into the system. Our research aims to
raise the abstraction level to develop run-time reconfigurable systems. We
present operating system extensions which enable seamless integration of
run-time reconfigurable hardware threads into applications. To improve
resource utilization, the hardware threads are placed on a fine granular-
ity tile grid. We take advantage of a relocatable module placer targeting
modern field programmable gate arrays (FPGAs) to manage the recon-
figurable area. The module placer accurately models the FPGA resources
to compute feasible placement locations for the hardware threads at run-
time. Finally, we evaluate our work by means of a case study that consists
of a synthetic application to validate the functionality and performance
of the implementation. The results show a reduction in reconfiguration
time of up to 42% and more than double resource utilization.

1 Introduction

The design and implementation of field programmable gate array (FPGA)-based
systems which use run-time reconfiguration is significantly more complex com-
pared to purely static systems. Run-time reconfigurable systems require careful
floorplanning to partition the device into static and reconfigurable regions. In ad-
dition, the communication infrastructure that allows for communication between
the static and the run-time reconfigurable regions, introduces complexity which
increases development time, and introduces run-time overhead into the system.
The run-time overhead includes management of reconfigurable resources, recon-
figuration time and unused resources due to fragmentation. If the complexity
associated with partial run-time reconfiguration is not addressed, the advan-
tages offered may be nullified. It is therefore an attractive proposition to address
these challenges in order to allow systems to be implemented at lower cost.

For many years, the implementation of partial run-time reconfigurable systems
with many relocatable hardware threads has provided a challenge to engineers.
Recently however, improved tools which target partial run-time reconfigurable
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systems have become available [1,2]. These tools have simplified the design of
reconfigurable systems. In particular, new features enable implementation of
systems which allow partially reconfigurable (PR) modules to be relocated at
run-time.

Previous work related to both design time aspects and run-time aspects for
PR implement a coarse grained tile grid to place the PR modules [3,4]. As
device size and number of PR modules increase, it will be increasingly difficult
to maintain resource utilization on a coarse granularity tile grid used in earlier
work. This requires a fine granularity tile grid to place the PR modules. Part of
the theoretical foundation presented in these publications still applies to modern
devices. However, modern FPGAs are both larger and more heterogeneous than
earlier devices.

In this work, we present improvements to both the development framework
and the run-time environment. We aim to raise the abstraction level for de-
veloping such systems. A higher abstraction level has the potential to shorten
development time. This requires both a flexible development framework and an
operating system to manage the reconfigurable resources at run-time.

Our work targets ReconOS, an operating system and programming model
which supports heterogeneous applications [5]. These heterogeneous applications
consist of both hardware and software threads. ReconOS provides a unified pro-
gramming interface for both software and hardware threads. To raise the abstrac-
tion level, we hide implementation details related to scheduling and placement
of reconfigurable hardware threads behind the operating system’s application
programming interface (API). This allows the operating system to manage, not
only static hardware threads, but also hardware threads which are reconfigurable
at run-time.

Relocatable hardware threads are modules which can be placed at different
locations in the reconfigurable area during run-time. However, a number of con-
straints must be met to place a hardware thread. The resources required by the
hardware thread must be available at the location, the area must be free (i.e. not
used by another hardware thread) and communication has to be routed. To com-
pute placement locations where these constraints are met, we have integrated a
module placer into the ReconOS operating system.

The module placer implements a realistic constraint model to accurately
model the fabric of the FPGA. Computation of feasible placement locations
is based on constraint satisfaction theory [6]. This allows us to implement hard-
ware threads with a complex layout. In addition, the module placer supports
multiple alternative layouts for a single hardware thread. Multiple layout vari-
ants increase the number of feasible placement locations as reported in [6,7].

In addition, we have implemented a communication infrastructure according
to the zero logic overhead concept introduced by Koch et al. [8]. To provide a
communication infrastructure between the static and the reconfigurable area,
routing of the communication wires is critical. There is no built-in support in
the vendor tools to enable fine granularity routing constraints (i.e. mapping of a
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signal to a physical wire). Therefore, this has to be undertaken with dedicated
tools, for example GOAHEAD [2] and OpenPR [1].

The remainder of the paper is organized as follows: The implementation flow
is introduced in the following Section 2. In Section 3, we introduce the run-
time environment. This is followed by experimental results in Section 4, and a
conclusion in Section 5.

2 Run-time Reconfigurable System Implementation

To implement run-time reconfigurable systems, the design is partitioned into
static and dynamically reconfigurable regions. In this work, we have partitioned
the device according to the GOAHEAD floorplan flow presented in [2]. GOA-
HEAD works in conjunction with the Xilinx tools by generating placement and
routing constraints. The GOAHEAD flow covers system partitioning and signal-
to-wire mapping of wires crossing the boundary of the reconfigurable region.
The signal-to-wire mapping is required to implement communication between
the regions. In addition, GOAHEAD supports routing of the clock nets. It is a
prerequisite to implement identical clock net routing for the static and partial
run-time reconfigurable region.

Subsequent to the essential steps of system partitioning, signal-to-wire map-
ping and clock net routing, the static design can be implemented independently
of the hardware threads. Independent implementation of the static design and
the hardware threads is a feature supported in both OpenPR [1] and GOAHEAD,
however not in PlanAhead according to [2]. This is of particular importance in
this work, as we implement many hardware threads in small bounding boxes
to reduce fragmentation. This significantly increases the tool time to place and
route the hardware thread. It is therefore essential to be able to implement
multiple hardware threads concurrently.

OpenPR and GOAHEAD allows design changes to be made to the static design
without incurring a reiteration of place and route of the relocatable hardware
threads.

2.1 System Partitioning

We aimed to minimize the static region and maximize the run-time reconfig-
urable areas, since this allows the maximum number of hardware threads to run
concurrently. The maximum number of concurrent hardware threads is how-
ever restricted to the number of fast simplex link (FSL) ports supported by the
MicroBlaze processor. Currently, this is limited to 14 ports.

The static region is not required to have a rectangular shape. For example,
it is possible to define reconfigurable areas which are & and 1 shaped in addi-
tion to rectangular areas. GOAHEAD allows definition of placement and routing
constraints with a polyomino (e.g. T) shaped layout, and modeling this layout
is supported by the module placer.

The size, shape and location of the static region is determined by two fac-
tors. Size is determined by the resource requirements. The shape and location
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Fig. 1. 8 ReconOS hardware threads placed on a 24 x6 tile grid. The placement depicted
is computed by the module placer.

is constrained by the IOs to external peripherals. For example, the location of
10s for the PCI-Express interface and memory controller typically reside in the
static partition. On the Virtex-6 ML605 evaluation kit, used in this work, the
external memory is connected to I0s in the center of the device. In Figure 1,
the floorplan of a fully placed and routed design is depicted. To the right of
the device depicted in the figure, dedicated interfaces such as high speed serial
PCI-Express links are located.

2.2 Relocatable Hardware Threads

We have implemented the run-time reconfigurable area with a fine granularity
tile grid, 24x6. 24x6 tiles means the FPGA is divided into a fine granular-
ity grid of 24x6 tiles. However, communication is implemented on a coarser
granularity tile grid, 2x6. This allows the implemented hardware threads to
have little internal fragmentation. However, unused area between the hardware
threads decreases resource utilization for the reconfigurable area. To address this,
we support hardware threads with polyomino shapes, as depicted in Figure 1.
For example, hardware threads can be of 4, &, @ and J shape. These hard-
ware threads span more than one configuration frame in height, also depicted in
Figure 1.

The layout for a hardware threads are defined in GOAHEAD. GOAHEAD can
be used to generate constraints to allow a hardware thread to be implemented
with a particular shape. This forces the Xilinx tools to implement the hardware
thread within the defined bounding box. As the Xilinx placer does not support
an API to guide the routing decisions, the size of the area defined to implement
the hardware thread may be too large or too small. A larger area results in in-
ternal fragmentation and a larger bitstream. A smaller area leads to unsuccessful
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implementation, for example a hardware thread which does not meet timing
constraints.

Hardware threads can be made relocatable by modifying the frame address
registers (FARs) within the generated bitstreams on the fly during reconfigura-
tion. This is accomplished by storing the addresses where the FARs are located
in a list. Since this is done once for each module at design-time, we do not have to
parse the entire bitstream at run-time to find the FARs. The FARs are updated
to their new values at run-time when the hardware thread position is known.

3 Run-time Environment Implementation

In this section we present our extensions to the ReconOS operating system for
the support and management of relocatable hardware threads. The extensions
consist of integration of a reconfiguration manager to manage the partial run-
time reconfigurable area, and operating system support to schedule hardware
threads at run-time. We have encapsulated low level implementation details into
a high level thread API. This provides the necessary abstraction level to aid
developers to use relocatable hardware threads. The high level API is exposed
to the application as a set of system functions to create, suspend, resume and
terminate threads.

3.1 ReconOS API Extensions and Scheduling

The ReconOS system function hwt create creates a hardware thread. In Figure 2
API extensions and the life cycle of a hardware thread is depicted. Each hardware
thread has a software delegate thread to manage communication with the other
threads of the application. Similar to software threads, hardware threads have a
thread control block (TCB). The TCB is used by the hardware thread scheduler
and contains pointers to the bitstream layout variants, the address of the FSL
communication port, and the current scheduling state. The FSL port address is
required to allow the hardware thread to communicate with the delegate thread.

The reconfiguration manager is invoked through the hardware thread sched-
uler to compute a feasible location for the hardware thread’s bitstream variants.
If a feasible location exists, the FARs in the bitstream are updated and the
bitstream is transmitted to the internal configuration access port (ICAP) port
of the FPGA. The TCB is updated with the current FSL port address and the
scheduling state is set to RUNNING. If a feasible location does not exist for any
of the hardware thread layout variants, the scheduling state is set to WAITING.
It can then be placed at a later time when the hardware thread constraints are
met in the run-time reconfigurable region. We follow the software methodology
of adding (hardware) threads to a waiting queue if they cannot be placed. This
allows for the creation of more hardware threads than can currently fit into the
reconfigurable region.
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Fig. 2. API extensions to control the life cycle of a hardware thread

Hardware threads can be suspended and resumed through the API functions
hwt yield and hwt resume. In this work, we consider a co-operating scheduling
strategy of the hardware threads. A co-operative, or run to completion, schedule
allows a hardware thread to finish its execution before it is suspended.

When a hardware thread is suspended (hwt yield), the reconfigurable area is
marked as unused, and the TCB is updated to reflect the new state. The area can
then be used by another hardware thread. If there are threads in the waiting
queue, the reconfiguration manager is invoked by the scheduler to compute a
feasible placement location for the waiting hardware threads. Hardware threads
which have a feasible placement location are placed in the reconfigurable area,
and the TCBs are updated with the new FSL port address and state.

Finally, the hwt kill function terminates both, the hardware thread and the
delegate thread. The reconfiguration manager is then updated to allow the area
to be reused by another hardware thread.

3.2 Reconfiguration Manager

In order to find suitable placements for hardware threads, we integrated a mod-
ule placer into the ReconOS system. The module placer takes unused area, hard-
ware thread layouts, communication interface and the heterogeneous tile grid into
account to compute feasible placement locations. This is accomplished accord-
ing to the placement model formulated in [6]: A module (hardware thread), M,
consist of a sequence of one or more layouts, M = {L1,...,L,}. A layout, L is
a implementation variant, consisting of a sequence of one or more tile resources,
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L = {Ry,..., R,}. The tile resource sequence, R, is the arrangement of tiles re-
quired by the layout variant. There are different types of tile resources, represent-
ing physical FPGA resources such as logic and memory. R is defined as a bounding
box, R(xo, Yo, x1,Y1, k), in which x and y represent the bounding box coordinates.
k is a sequence of elements denoting the type of the tile resource column on the
FPGA (e.g. a logic or memory column). Similarly, the run-time reconfigurable
area is modeled as a sequence of tile resources, FPGA = {Ry, ..., R, }.

To compute feasible placement locations, the constraint solver evaluates each
constraint (i.e. unused area, resources). This results in a sequence for each con-
straint, C. The intersection of all sequences form a sequence, P, of feasible pla-
cement locations: P = {Carea N Coommunication N Ctitegrid }- P is computed by our
constraint solver using a branch and bound depth first search function.

An up to date scheduling state of all placed hardware threads in the tile grid
is kept by the module placer. This state is updated whenever hardware threads
are created, suspended, resumed or terminated. When a hardware thread is to
be placed, the module placer is invoked by the hardware thread scheduler. The
module placer computes a feasible placement location for one of the hardware
thread layout alternatives. The computed placement is then returned to the
scheduler which updates the bitstream with the new location and writes the
updated bitstream to the ICAP port.

4 Experimental Results

To assess our approach, we have implemented the system presented in the pre-
vious sections and performed an experimental evaluation. The experiments have
been carried out on a Xilinx ML605 Board. Our implementation supports up to
12 active hardware threads located within a 24x6 tile grid (2x6 for communi-
cation). The implemented design is depicted in Figure 3.

We have implemented a benchmark application which consists of hardware
and software threads. The application creates 20 hardware threads, 5 for each
function listed in Table 1. The hardware threads are scheduled and placed by the
operating system. This allows us to verify the correct operation of the system
when threads are suspended and resumed. In addition, the application allows us
to evaluate the effect of multiple layout variants for the hardware threads on a
fine granularity tile grid through experiments rather than simulation.

For comparison, we have also done experiments on two coarser tile grids,
1x6 and 2x6. The height of each tile is a single configuration frame. For the
1x6 tile grid (i.e. slot style), a single tile contains 9920 LuTs (1240 CLBs), 32
BRAMs and 32 DsPs on our XC6VLX-240T FPGA. At this course granularity
the tiles are still homogeneous. For the 2x6 tile grid, we have a tile size of
4960 LUTs (620 CLBs), 16 BRAMs and 16 DsPs. Note that our communication
infrastructure is implemented according to the zero logic overhead concept for
all tile grids - a communication infrastructure that uses only routing resources.
Therefore, all other reconfigurable resources in the tiles are available to the the
hardware threads. For the 246 tile grid (2x6 tile grid for communication), the
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Fig. 3. Implementation of a the 24x6 (2x6 for communication) tile grid on a Virtex-6
(xc6vIx240t) FPGA. The depicted FPGA fabric is generated from the XDL file of a
fully placed and routed system.

tile grid becomes heterogeneous and not every tile contains CLB resources. At
this granularity the tile grid contains either 640 LUTs (80 CLBSs), 8 BRAMS or 8
DSPs.

4.1 Hardware Thread Implementations

In Table 1, the available hardware thread layout alternatives are listed. The hard-
ware threads were implemented independently of the static system as described
in Section 2. The selection of hardware threads include accelerators for compu-
tation of square root (SQRT), SHA256 hash function, single precision floating
point (FP) addition/subtraction, and fast Fourier transform (FFT).

Resource utilization within the layout bounding box (i.e. the internal frag-
mentation) is listed as the percentage of the total amount of LUTs used within
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Table 1. Relocatable Hardware Threads

Func- Lay- Tile Tiles Usage LUT- Tool Thread
tion out  Grid LUTs s/REGs Time Size
SQRT [C—1 1x6 1 11% 1162/1390 21m 342KB
SQRT O 2x6 1 23% 22m 206KB
SQRT O 24x6 5 62% 2h49m 91KB
SHA256 1 1x6 1 67% 6664,/6971 6h24m 392KB
SHA256 ] 2x6 2 67% 6h24m 392KB
SHA256 [ 24x6 19 80% 16h35m 376KB
SHA256 & 24x6 16h34m 376KB
SHA256 [@ 24x6 16h34m 376KB
SHA256 24x6 16h35m 376KB
SHA256 <& 24x6 16h36m 376KB
FP C—1 1x6 1 1% 410/629 22m 209KB
FP O 2x6 1 8% 25m 111KB
FP i 24x6 4 21% 26m 59KB
FP 0 24x6 5 21% 21m 73KB
FFT L1 1x6 1 21% 1996 /2737 22m 384KB
FFT (. 2x6 1 40% 26m 246KB
FFT 0 24x6 8 62% 6h40m 172KB

the bounding box. A higher utilization is not always possible due to the resource
demands of the hardware thread, the granularity of tile grid and routing con-
straints. For example, hardware threads such as the square root have a high
amount of unused resources when implemented on a coarse granularity tile grid.
If the hardware thread does not fit on a single tile, two or more tiles are used.
For example, the SHA256 hardware thread does not fit in a single 2x6 tile, and
therefore requires two 2x6 tiles. The number of tiles listed for the 24x6 grid
include BRAM and DSP tiles.

In our work, we have considered layout variants, but not design variants of the
hardware threads for the different tile grids. In many cases it is possible to exploit
the module design space to better utilize tile resources. For example, various
levels of transformations (e.g. loop unrolling and pipelining) can be applied to
the SHA256 hashing algorithm to obtain design variants with different resource
requirements. In Figure 4, placed and routed layout variants of a functionally
equivalent hardware thread is depicted.

We observe that a smaller layout bounding box increase the tool time to
implement the hardware thread. In particular the place and route time increases.
The tool times as measured on a Xeon X5690 server are listed for each hardware
thread, together with the size of the generated bitstream. We also find that a
smaller layout bounding box reduce run-time reconfiguration time. This is to be
expected, as the resulting bitstream has fewer configuration frames and thus has
a reduced size.
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Fig. 4. A hardware thread implemented with multiple layout variants

Table 2. Bitstream Data for all Hardware Threads on Different Tile Grids

Tile Grid Bitstreams Size Bitstreams Average LUT Usage

1x6 6635KB 20 26
2x6 4775KB 20 35
24x6 3855KB 55 56

4.2 Run-time Experiments

In order to evaluate the placement, the application creates 20 hardware threads.
Each hardware thread is executed 5 times. After each execution the thread yields,
and is removed from the reconfigurable area. If the hardware thread has design
alternatives (i.e. the SHA256 and FP), each design alternative is evaluated by
the module placer to find one that is feasible.

In Table 2, the hardware thread bitstream data is listed for tile grids of 1x6,
2x6 and 24x6 (2x6 for communication) granularity. On a 1x6 tile grid, a max-
imum of 6 hardware threads can be executed concurrently. On a 2x6 and 24x6
tile grid, up to 12 hardware threads can be executed at the same time.

A fine granularity tile grid allows significant reduction in the total bitstream
size as shown in Table 2. The results show a reduction in bitstream size of up
to 42% between a 1x6 and a 24x6 tile grid. Besides reduced storage require-
ments, the main benefit of this is the decrease in configuration time, which is
proportional to the bitstream size. In Table 3, the total bitstream data trans-
ferred during execution of the application is listed. On a 24x6 tile grid we have
reduced the reconfiguration time by up to 46% compared to a 1x6 tile grid. Us-
ing external sp1 flash memory at 100MHz, this translates into an improvement
from 2.6 seconds (33175KB) down to 1.4 seconds (17800KB).

In addition, we have measured the effect of layout alternatives on resource uti-
lization. While hardware thread layout alternatives consume additional memory
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Table 3. Run Time Experiment Results

Tile Grid Bitstream Data Transferred

1x6 33175KB
2x6 23850KB
24 %6 17800KB

for storage, FPGA resources are significantly more expensive than non-volatile
memory'. It is therefore beneficial to use hardware thread layout alternatives
to increase resource utilization, even for hardware thread alternatives which are
rarely used.

Through our experiments, we found that even with a course granularity 2x6
communication tile grid, it is possible to achieve improved resource utilization
when combined with multiple hardware thread layout alternatives and a fine
granularity resource tile grid (24x6).

5 Conclusion

In this work, we have presented our research on integrating support for relocat-
able hardware threads in the ReconOS operating system. Our aim has been to
raise the abstraction level to develop run-time reconfigurable systems. We have
achieved this with extensions to ReconOS which encapsulate implementation de-
tails into a high level thread API. This allows seamless integration of run-time
reconfigurable hardware threads into applications.

To manage the reconfigurable area, we have implemented a module placer tar-
geting modern FPGAs. The module placer accurately models the reconfigurable
resources. This is utilized by the operating system to compute feasible placement
locations for the hardware threads. The computed placement positions are then
used to relocate the hardware threads by updating the frame addresses in the
respective bitstreams.

The system floorplan has been created with GOAHEAD, which enables the
implementation of a zero logic overhead communication infrastructure. We have
used the tool-flow to develop, synthesize, place, and route the hardware threads
independently of the static system as well as other hardware threads. Thus, our
improvements allow hardware threads to be implemented independently of each
other, similar to the threads of a pure software application.

Our experiments were performed on a Virtex-6 device with a implementation
that supports a fine granularity 24x6 tile grid and multiple hardware thread
layout variants. This combination enables an efficient use of reconfigurable re-
sources at the cost of additional non-volatile memory to store layout variants.

! The price of a Virtex-6 (xc6vlx195t) FPGA is 2210 Euro, and the price of non-
volatile memory (16GB compact flash), 214 Euro. The prices have been obtained
from http://de.rs-online.com/web/.
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